

350 Wellington Road 7

Township of Wellington County of Centre Wellington

Traffic Impact Study for Elora 7 OP Inc.

Type of Document: Final Report

> Project Number: JDE – 22030

Date Submitted: November 2nd, 2022

John Northcote, P.Eng.

Professional License #: 100124071

JD Northcote Engineering Inc. 86 Cumberland Street Barrie, ON

> 705.725.4035 www.JDEngineering.ca

Legal Notification

This report was prepared by JD Northcote Engineering Inc. for the account of Elora 7 OP Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **JD Northcote Engineering Inc.** accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

This report summarizes the traffic impact study for the proposed community, on a site municipally known as 350 Wellington Road 7, located on the south side of Wellington Road 7, midblock between David Street West and Wellington Road 18, in the Township of Centre Wellington [Township], County of Wellington [County]. The report assesses the impact of traffic related to the community on the adjacent roadway and provides recommendations to accommodate this traffic in a safe and efficient manner.

The proposed community will consist of 273 townhouse units.

The proposed community will have three access driveways onto Wellington Road 7 [North Access, Centre Access, South Access].

The scope of this analysis includes a review of the following intersections:

- Wellington Road 7 / Wellington Road 18;
- Wellington Road 7 / Middlebrook Road / David Street West;
- Wellington Road 7 / North Access
- Wellington Road 7 / Centre Access; and
- Wellington Road 7 / South Access.

Conclusions

- 1. The proposed community is expected to generate a 110 AM and 140 PM peak hour trips.
- Detailed intersection counts were conducted at the study intersection on Thursday August 4th, 2022.
- 3. An intersection operation analysis was completed at the study area intersections, using the existing (2022) and background (2027 & 2032) traffic volumes. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed community. The following improvements are recommended to coincide with the increase in posted speed limit to 80 km/h on Wellington Road 7:

Background (2027) Traffic Volumes

- Wellington Road 7 / Middlebrook Road / David Street West
 - Northbound left turn lane: 15 metre storage length, 50 metre parallel length and
 65 metre taper length
 - Southbound left turn lane: 25 metre storage length, 50 metre parallel length and
 80 metre taper length
- 4. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area street and intersections.
- 5. An intersection operation analysis was completed under total (2027 & 2032) traffic volumes with the proposed community operational at the study area intersections. No improvements are recommended within the study area with respect to intersection operations.
- 6. The proposed North Access, Centre Access and South Access will operate efficiently as full-movement accesses, with one-way stop control for eastbound movements. A single ingress and egress lane at the North Access, Centre Access and South Access will provide the necessary capacity to service the proposed community.

- 7. It is recommended the Client install a Level 2 Type C pedestrian crossing at the north leg of the Wellington Road 7 / Middlebrook Road / David Street West intersection.
- 8. It is recommended the County maintain the posted 50km/h speed limit within the study area (between Middlebrook Road / David Street West and Wellington Road 18). The following traffic calming measures are recommended to support the posted 50km/h speed limit:
 - Construct a raised median island on Wellington Road 7, north of the subject site to
 provide a visual cue that will link the two adjacent low-speed sections on Wellington
 Road 7 (to be completed by the Client);
 - Provide enhanced street tree plantings on both sides of Wellington Road 7, between Middlebrook Road / David Street West and the bridge over the Grand River (to be completed by the Client); and
 - Extend the existing sidewalk from the bridge over the Grand River to Middlebrook Road, to activate the boulevard of Wellington Road 7 and also provide additional pedestrian access to the Elora Gorge Trail (to be completed by the County).
- 9. The proposed parking supply meets the minimum requirements in the Township's Zoning Bylaw 2009-045.
- 10. In summary the proposed community will not cause any operational issues and will not add significant delay or congestion to the local roadway network.

Table of Contents

1	Introduction	1
1.1	Background	1
1.2	Study Area	1
1.3	Study Scope and Objectives	3
1.4	Horizon Year and Analysis Periods	3
2	Information Gathering	3
2.1	Street and Intersection Characteristics	3
2.2	Local Transportation Infrastructure Improvements	5
2.3	Transit Access	5
2.4	Other Developments within the Study Area	5
2.5	Background Traffic Growth	5
2.6	Traffic Counts	6
2.7	Horizon Year Traffic Volumes	8
3	Intersection Operation without Proposed Community	11
3.1	Intersection Capacity Analysis Criteria	11
3.2	Existing (2022) Intersection Operation	12
3.3	Background (2027) Intersection Operation	13
3.4	Background (2032) Intersection Operation	14
4	Proposed Community	16
4.1	Traffic Generation	16
4.2	Traffic Assignment	16
4.3	Total Horizon Year Traffic Volumes with the Proposed Community	19
5	Intersection Operation with Proposed Community	22
5.1	Total (2027) Intersection Operation	22
5.2	Total (2032) Intersection Operation	23
5.3	Site Access	25
5.4	Pedestrian Connectivity Review	26
5.5	Sight Distance Review	26
5.6	Speed Management Review	26
5.7	Parking Review	27
6	Summary	28

List of Tables

Table 1 – Traffic Count Data	6
Table 2 – Level of Service Criteria for Intersections.	
Table 3 – Existing (2022) LOS	
Table 4 – Background (2027) LOS	
Table 5 – Background (2032) LOS	
Table 6 – Estimated Traffic Generation for the Subject Site	16
Table 7 – Proposed Community Traffic Distribution	
Table 8 – Total (2027) LOS	
Table 9 – Total (2032) LOS	
Table 10 - Zoning By-law Parking Requirements	27 28
Figure 1 Prepared Site Legation and Study Area	,
Figure 1 – Proposed Site Location and Study Area	
Figure 2 – Existing (2022) Intersection Spacing and Lane Configuration within Study Area	
Figure 3 – Existing (2022) Traffic Volumes	
Figure 4 – Background (2027) Traffic Volumes	
Figure 5 – Background (2032) Traffic Volumes	
Figure 6 – Proposed Community Traffic Assignment	
Figure 7 – Total (2027) Traffic Volumes	
Figure 8 – Total (2032) Traffic Volumes	21

List of Appendices

APPENDIX A – Site Plan
APPENDIX B – Traffic Count Data
APPENDIX C – Synchro Analysis Output – Existing Traffic Volumes
APPENDIX D - Synchro Analysis Output - Background Traffic Volumes
APPENDIX E – Synchro Analysis Output – Total Traffic Volumes
APPENDIX F – MTO Left Turn Analysis
APPENDIX G – OTM Signal Justification Sheets
APPENDIX H – Pedestrian Crossing Warrant
APPENDIX I – 2016 Transportation Tomorrow Survey Output

1 Introduction

1.1 Background

Elora 7 OP Inc. [The Client] is proposing a residential community located on a site municipally known as 350 Wellington Road 7, located on the south side of Wellington Road 7, midblock between David Street West and Wellington Road 18, in the Township of Centre Wellington [Township], County of Wellington [County].

The proposed community will consist of 273 townhouse units.

The proposed community will have three access driveways onto Wellington Road 7 [North Access, Centre Access, South Access].

The Client has retained **JD Northcote Engineering Inc.** [JD Engineering] to prepare this traffic impact study in support of the proposed community.

1.2 Study Area

Figure 1 shows the location of the subject site and study area intersections in relation to the surrounding area. The Site Plan by MHBC is provided in **Appendix A**.

The subject site is bound by Wellington Road 7 to the northeast and undeveloped rural lands to the northwest, southwest and southeast.

Through consultation with the Township and County, the following intersections are included in this study:

- Wellington Road 7 / Wellington Road 18;
- Wellington Road 7 / Middlebrook Road / David Street West;
- Wellington Road 7 / North Access
- Wellington Road 7 / Centre Access; and
- Wellington Road 7 / South Access.

Figure 1 – Proposed Site Location and Study Area

1.3 Study Scope and Objectives

The purpose of this study is to identify the potential impacts to traffic flow at the site access and on the surrounding roadway network. The study analysis includes the following tasks:

- Consult with the Township and County to address any traffic-related issues or concerns they have with the proposed community;
- Determine existing traffic volumes and circulation patterns;
- Estimate future traffic volumes if the proposed community was not constructed, including the impact of additional proposed developments in the area;
- Complete level-of-service [LOS] analysis of horizon year (without the proposed community) traffic conditions and identify operational deficiencies;
- Estimate the amount of traffic that would be generated by the proposed community and assign to the roadway network;
- Complete LOS analysis of horizon year (with the proposed community) traffic conditions and identify additional operational deficiencies;
- Identify improvement options to address operational deficiencies;
- Review the suitability of the study area road network to accommodate future community growth;
- Complete a review of the proposed site accesses;
- Review the proposed parking supply and assess the suitability for the proposed community; and
- Document findings and recommendations in a final report.

1.4 Horizon Year and Analysis Periods

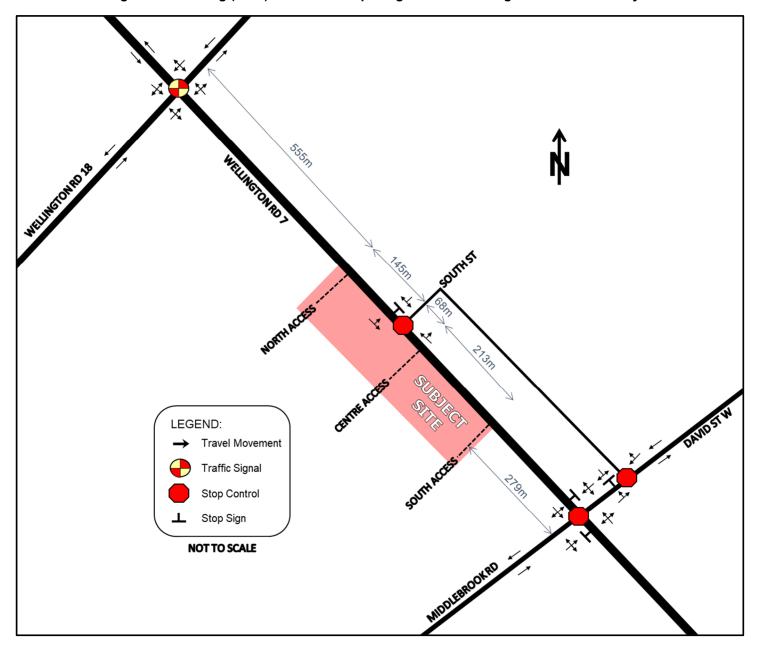
Traffic scenarios for the existing year (2022) and horizon years (2027 & 2032) were selected for analysis of traffic operations in the study area. The weekday morning [AM] and weekday afternoon [PM] peak hours have been selected as the analysis periods for this study.

2 Information Gathering

2.1 Street and Intersection Characteristics

Wellington Road 7 is a two-lane arterial road with a posted speed limit of 50km/h in the study area. Wellington Road 7, south of David Street West has an urban cross-section with a sidewalk on the east side of the road. Wellington Road 7 north of David Street West has a rural cross-section with paved shoulders extending 268 metres, where it transitions with gravel shoulders for 781 metres and transitions north of this segment with paved shoulders in the study area. Wellington Road 7 is under jurisdiction of the County.

Wellington Road 18 (Woolwich Street West) is a two-lane arterial road with a posted speed limit of 50km/h in the study area. Wellington Road 18 east of Wellington Road 7 has an urban cross-section with a sidewalk on the north side of the road. Wellington Road 18 west of Wellington Road 7 has a rural cross-section with gravel shoulders. Wellington Road 18 is under jurisdiction of the County.


Middlebrook Road is a two-lane local road with a rural cross-section and gravel shoulders. Middlebrook Road has an unposted (assumed) speed limit of 60km/h within the study area and is under jurisdiction of the Township.

David Street West is a two-lane collector road with an urban cross-section and a sidewalk on both sides of the road in the study area. David Street West has an unposted (assumed) speed limit of 50km/h within the study area and is under jurisdiction of the Township.

The existing intersection spacing and lane configuration within the study area is illustrated in Figure 2.

Figure 2 – Existing (2022) Intersection Spacing and Lane Configuration within Study Area

2.2 Local Transportation Infrastructure Improvements

Based on a review of the County's Capital Budget (2022) and Township's Capital Budget (2022) there are no planned improvements that would impact traffic in the study area.

Based on a review of the County's Road Master Action Plan (December 2021) [RMAP] the following improvements were recommended in the plan:

Wellington Road 7 – from the Elora / Salem Community to the Highway 6 Junction (10 – 20 years)

• Widen the roadway and provide one additional lane per direction.

Wellington Road 7 – from Side Road 11 to First Line

- Increase speed limit from 50 km/h to 60 km/h; and
- Urbanization of the road segment.

Wellington Road 7 / Wellington Road 18 (2032)

- Install single lane roundabout; and
- Construct paved shoulders on Wellington Road 18.

Since the above noted improvements are not in the County's Capital Budget 10-year horizon (2022 - 2031) and the above noted improvements are generally planned in the long-term horizon, we have not assumed the above noted improvements in the analysis.

2.3 Transit Access

There is no transit service available in the Township. The County's RMAP identified a potential fixed-route transit service to operate in the County; however, there are no current plans to implement this transit system.

The RIDE WELL ride sharing service is provided by the County to provide on-demand shared rides. RIDE WELL provides connections within the County and City of Guelph as long as the origin or destination is within the County. RIDE WELL operates Monday to Friday from 06:00 – 19:00.

2.4 Other Developments within the Study Area

The Township is experiencing a growth in new urban development within the urban areas and in the rural areas adjacent to the boundaries of the Township. Based on correspondence with the Township, it was determined that utilization of conservative background growth factor would be sufficient in capturing the future development volumes in Section 2.5.

2.5 **Background Traffic Growth**

Based on the County's RMAP, a 0.4% nominal compound annual growth rate was applied to the County roads to account for background growth in the County.

The Township's Transportation Master Plan (2019) [TMP] generated traffic projections model based on a Emme traffic modelling software for the existing (2019) and future (2041) horizon years. Using on the Emme traffic model data, comparing the existing (2019) and future (2041) for the preferred alternative improvements in the Township scenarios, a background traffic growth rate was calculated. The background traffic growth rate calculated on Wellington Road 7, Wellington Road 18 and Middlebrook Road were 2.8%, 3.3% and 1.7% respectively. Based on direction provided by the Township, a conservative growth rate of 4.5% has been utilized on Wellington Road 7, Wellington Road 18,

Middlebrook Road and David Street West to ensure a conservative approach and account for the impact by the planned local development.

2.6 Traffic Counts

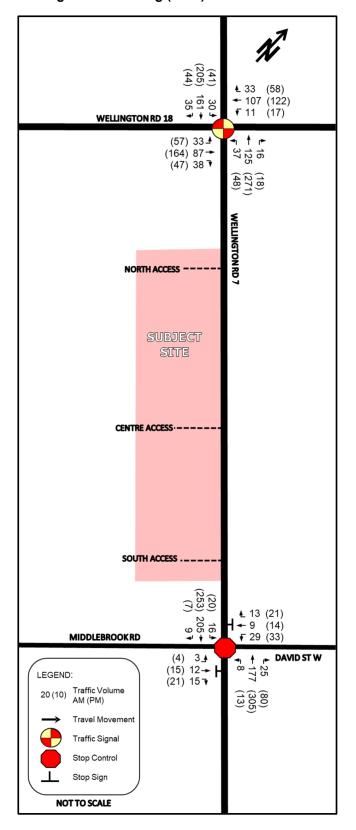
Detailed turning movement traffic and pedestrian counts were commissioned at the study area intersections. **Table 1** summarizes the traffic count data.

Table 1 - Traffic Count Data

Intersection (N-S Street / E-W Street)	Count Date	AM Peak Hour	PM Peak Hour	Source
Wellington Road 7 / Wellington Road 18	Thursday August 4 th , 2022	07:45 – 08:45	16:00 – 17:00	JD Eng.*
Wellington Road 7 / South Street	Thursday August 4 th , 2022	08:00 - 09:00	16:00 – 17:00	JD Eng.*
Wellington Road 7 / Middlebrook Road / David Street West	Thursday August 4 th , 2022	08:00 - 09:00	16:00 – 17:00	JD Eng.*

^{*}Counts were completed by Accu Traffic Inc. on behalf of JD Engineering.

Detailed traffic count data can be found in **Appendix B**. The peak hours of traffic generation for the study area intersections generally aligned with the anticipated peak hour of traffic generation by the proposed community.


The through traffic volumes at the site access driveways have been estimated based on the north and south leg traffic at the Wellington Road 7 / South Street intersection.

Heavy vehicle percentages from the traffic count data have also been included in the Synchro analysis.

The existing (2022) AM and PM peak hour traffic volumes through the study are illustrated in Figure 3.

Figure 3 – Existing (2022) Traffic Volumes

2.7 Horizon Year Traffic Volumes

The background (2027 & 2032) horizon year traffic volumes without the proposed community were estimated using the background growth rate discussed in Section 2.4.

The background (2027 & 2032) horizon year traffic volumes are illustrated in **Figures 4** and **5** respectively.

Figure 4 – Background (2027) Traffic Volumes

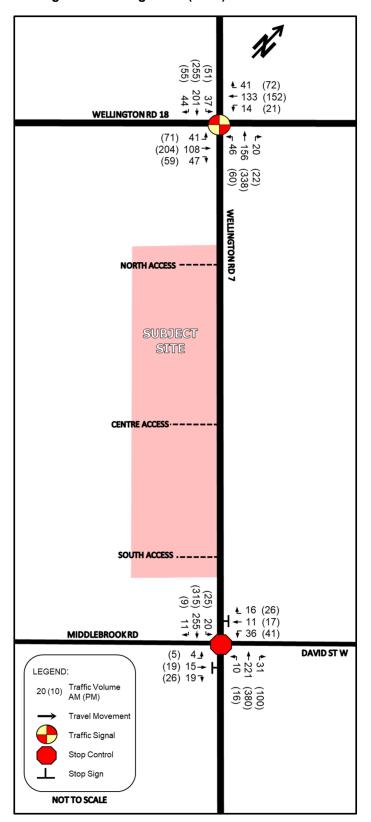
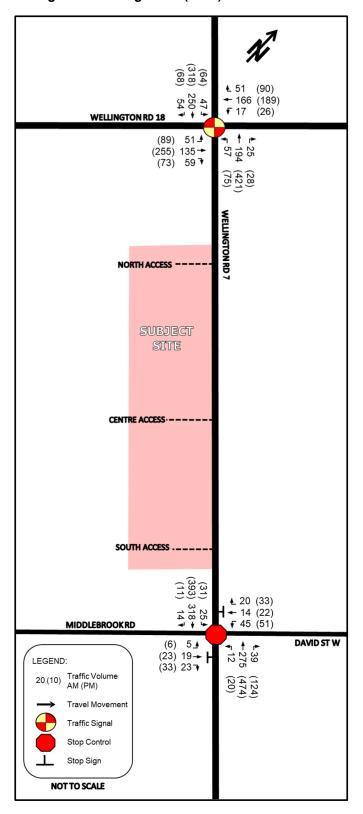



Figure 5 – Background (2032) Traffic Volumes

3 Intersection Operation without Proposed Community

3.1 Intersection Capacity Analysis Criteria

Existing and background horizon operational conditions were established to determine how the street network within the study area is currently functioning without the proposed community. This provides a base case scenario to compare with future development scenarios. Traffic operations within the study area were evaluated using the existing and future background traffic volumes with the existing road configuration and traffic control. The intersection performance was measured using the traffic analysis software, Synchro 11, a deterministic model that employs Highway Capacity Manual and Intersection Capacity Utilization methodologies for analyzing intersection operations. These procedures are accepted by provincial and municipal agencies throughout North America.

Synchro 11 enables the study area to be graphically defined in terms of streets and intersections, along with their geometric and traffic control characteristics. The user is able to evaluate both signalized and unsignalized intersections in relation to each other, thus not only providing level of service for the individual intersections, but also enabling an assessment of the impact the various intersections in a network have on each other in terms of spacing, traffic congestion, delay, and queuing.

The intersection operations were also evaluated in terms of the LOS. LOS is a common measure of the quality of performance at an intersection and is defined in terms of vehicular delay. This delay includes deceleration delay, queue move-up time, stopped delay, and acceleration delay. LOS is expressed on a scale of A through F, where LOS A represents very little delay (i.e. less than 10 seconds per vehicle) and LOS F represents very high delay (i.e. greater than 50 seconds per vehicle for a stop sign controlled intersection and greater than 80 seconds per vehicle for a signalized intersection).

The LOS criteria for signalized and stop sign-controlled intersections are shown in **Table 2.** A description of traffic performance characteristics is included for each LOS.

For County intersections, for signalized intersections V/C ratio greater than 0.85 for intersection operation, through or shared through / turning movements and greater than 0.95 for exclusive turning movements have been highlighted in the LOS tables. For unsignalized intersections LOS E or worse are considered to be critical movements and have been highlighted in the LOS tables.

Table 2 - Level of Service Criteria for Intersections

		Control Delay (seconds per vehicle)					
LOS	LOS Description	Signalized Intersections	Stop Controlled Intersections				
Α	Very low delay; most vehicles do not stop (Excellent)	less than 10.0	less than 10.0				
В	Higher delay; more vehicles stop (Very Good)	between 10.0 and 20.0	between 10.0 and 15.0				
С	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	between 20.0 and 35.0	between 15.0 and 25.0				
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	between 35.0 and 55.0	between 25.0 and 35.0				
Е	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	between 55.0 and 80.0	between 35.0 and 50.0				
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	greater than 80.0	greater than 50.0				

3.2 Existing (2022) Intersection Operation

The results of the LOS analysis under existing (2022) traffic volumes during the AM and PM peak hour can be found below in **Table 3**. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in **Appendix C**.

Table 3 – Existing (2022) LOS

		Weekda	y AM Pea	ak Hour		Weekday PM Peak Hour					
Location (N-S Street / E-W Street)	V/C	Doloy (a)		95% Qı	95% Queue (m)		Dolay (a)	LOS	95% Queue (m)		
	V/C	Delay (s)	LOS	Model	Storage	V/C	Delay (s)	108	Model	Storage	
Wellington Road 7 / Wellington Road 18 (signalized)	0.29	13.4	В	-	1	0.45	15.2	В	-	-	
EB	0.55	25.6	С	32	-	0.70	28.4	С	55	-	
WB	0.48	24.2	С	30	-	0.44	22.0	С	37	-	
NB	0.18	4.5	Α	18	-	0.35	7.6	Α	45	-	
SB	0.22	4.7	Α	22		0.31	7.2	Α	38	-	
Wellington Road 7 / Middlebrook Road / David Street West (unsignalized)	-	2.3	А	-	-	-	2.5	А	-	-	
EB	0.05	11.5	В	2	-	0.09	13.4	В	3	-	
WB	0.11	12.9	В	3	-	0.19	16.6	С	6	-	

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 3.1.

The anticipated queue for northbound and westbound movements at the Wellington Road 7 / Wellington Road 18 intersection extends past existing driveways to the gas station at the southeast corner of the intersection; however, the anticipated queue for each movement will be experienced for a short period of time at the end of each phase and is anticipated to clear after each cycle.

There are no other issues with the anticipated queuing in the study area.

An analysis was completed for left turn movements at the Wellington Road 7 / Middlebrook Road / David Street West intersection, based on the criteria outlined in Appendix 9A of the Ontario Ministry of Transportation Design Supplement for TAC Geometric Design Guide for Canadian Roads (dated June 2017) [MTO DS] (results are provided in **Appendix F**). For the purposes of this report, in the left turn analysis a design speed of 60 km/h (for a posted speed of 50 km/h) and 80 km/h (for a posted speed of 60 km/h) were reviewed to account for the planned increase in speed limit as noted in Section 2.2. Based on the above noted criteria, a left turn lane is not warranted at the Wellington Road 7 / Middlebrook Road / David Street West intersection.

A review of the need for additional auxiliary right turn lanes at the Wellington Road 7 / Middlebrook Road / David Street West intersection was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended in the study area.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the Wellington Road 7 / Middlebrook Road / David Street West intersection (results are provided in **Appendix G**).

No infrastructure improvements are required for the existing (2022) scenario.

3.3 Background (2027) Intersection Operation

The results of the LOS analysis under background (2027) traffic volumes during the AM and PM peak hour can be found below in **Table 4**. Existing traffic control has been utilized for this scenario.

An analysis was completed for left turn movements at the Wellington Road 7 / Middlebrook Road / David Street West intersection, based on the criteria outlined in Appendix 9A of the MTO DS (results are provided in **Appendix F**). For the purposes of this report, in the left turn analysis a design speed of 60 km/h (for a posted speed of 50 km/h) and 80 km/h (for a posted speed of 60 km/h) were reviewed to account for the planned increase in speed limit as noted in Section 2.2. Based on the above noted criteria, a southbound left turn lane for a 60 km/h design speed and a northbound and southbound left turn lane for an 80 km/h design speed is warranted at the Wellington Road 7 / Middlebrook Road / David Street West intersection. It is recommended northbound and southbound left turn lanes are constructed on Wellington Road 7 at Middlebrook Road / David Street West, to coincide with the increase in posted speed limit to 60 km/h on Wellington Road 7. The recommended configuration for the left turn lanes is provided below:

Wellington Road 7 / Middlebrook Road / David Street West

- Northbound left turn lane: 15 metre storage length, 50 metre parallel length and 65 metre taper length
- Southbound left turn lane: 25 metre storage length, 50 metre parallel length and 80 metre taper length

Detailed output of the Synchro analysis can be found in **Appendix D**.

Table 4 - Background (2027) LOS

		Weekda	y AM Pea	ak Hour		Weekday PM Peak Hour					
Location (N-S Street / E-W Street)	\//O	D - 1 (-)		95% Queue (m)		\//O	Delevi (e)	1.00	95% Queue (m)		
(= 1	V/C	Delay (s)	LOS	Model	Storage	V/C	Delay (s)	LOS	Model	Storage	
Wellington Road 7 / Wellington Road 18 (signalized)	0.37	14.4	В	-	-	0.58	17.7	В	-	-	
EB	0.63	27.2	С	40	-	0.78	32.2	С	71	-	
WB	0.54	24.2	С	38	-	0.49	21.7	С	46	-	
NB	0.24	5.6	Α	25	-	0.48	10.6	В	72	-	
SB	0.29	5.9	Α	31	-	0.41	9.8	Α	59	-	
Wellington Road 7 / Middlebrook Road / David Street West (unsignalized)	-	2.6	А	-	-	-	3.1	А	-	-	
EB	0.08	12.7	В	2	-	0.14	16.0	С	4	-	
WB	0.16	14.9	В	5	-	0.30	22.6	С	10	-	

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 3.1.

The anticipated queue for northbound and westbound movements at the Wellington Road 7 / Wellington Road 18 intersection extends past existing driveways to the gas station at the southeast corner of the intersection; however, the anticipated queue for each movement will be experienced for a short period of time at the end of each phase and is anticipated to clear after each cycle.

There are no other issues with the anticipated queuing in the study area.

A review of the need for additional auxiliary right turn lanes at the Wellington Road 7 / Middlebrook Road / David Street West intersection was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended in the study area.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the Wellington Road 7 / Middlebrook Road / David Street West intersection (results are provided in **Appendix G**).

No infrastructure improvements are required for the background (2027) scenario.

3.4 Background (2032) Intersection Operation

The results of the LOS analysis under background (2032) traffic volumes during the AM and PM peak hour can be found below in **Table 5**. It is recommended the signal timing split at the Wellington Road 7 / Wellington Road 18 intersection is adjusted to optimize the use of the existing infrastructure.

Detailed output of the Synchro analysis can be found in **Appendix D**.

Table 5 - Background (2032) LOS

		Weekda	y AM Pea	ak Hour		Weekday PM Peak Hour					
Location (N-S Street / E-W Street)	\//O	Doloy (a)	LOS	95% Qı	95% Queue (m)		Dalay (a)	1.00	95% Queue (m)		
(· · · · · · · · · · · · · · · · · · ·	V/C	Delay (s)	108	Model	Storage	V/C	Delay (s)	LOS	Model	Storage	
Wellington Road 7 / Wellington Road 18 (signalized)	0.48	16.2	В	-	1	0.74	20.4	С	-	-	
EB	0.72	30.3	C	51		0.83	31.1	С	83	-	
WB	0.59	24.7	С	46	-	0.51	18.4	В	50	-	
NB	0.32	7.2	Α	37	-	0.69	17.5	В	130	-	
SB	0.38	7.7	Α	47	-	0.60	15.3	В	94	-	
Wellington Road 7 / Middlebrook Road / David Street West (unsignalized)	-	3.1	А	-	-	-	5.1	А	-	-	
EB	0.12	14.6	В	4	-	0.22	20.8	С	7	-	
WB	0.25	19.0	С	8	-	0.55	42.4	Е	24	-	

The results of the LOS analysis indicate that the delay for the westbound direction at the Wellington Road 7 / Middlebrook Road / David Street West intersection is operating marginally outside the typical design limits noted in Section 3.1; however, there are no issues regarding the anticipated queuing for westbound movements and the delay marginally exceeds the design limits. Consequently, no further improvements are recommended. As noted in Section 2.2, the County RMAP identified a future widening of Wellington Road 7. Although no improvements are recommended based on this analysis, it is recommended that the County continue to monitor this area as development occurs to confirm the traffic growth assumptions applied in this report.

The results of the LOS analysis indicate that all other movements / intersections in the study area are operating within the typical design limits noted in Section 3.1.

The anticipated queue for northbound and westbound movements at the Wellington Road 7 / Wellington Road 18 intersection extends past existing driveways to the gas station at the southeast corner of the intersection; however, the anticipated queue for each movement will be experienced for a short period of time at the end of each phase and is anticipated to clear after each cycle.

There are no other issues with the anticipated queuing in the study area.

An analysis was completed for left turn movements at the Wellington Road 7 / Middlebrook Road / David Street West intersection, based on the criteria outlined in Appendix 9A of the MTO DS (results are provided in **Appendix F**). For the purposes of this report, in the left turn analysis a design speed of 60 km/h (for a posted speed of 50 km/h) and 80 km/h (for a posted speed of 60 km/h) on Wellington Road 7 were reviewed to account for the planned increase in speed limit as noted in Section 2.2. Based on the above noted criteria a northbound and southbound left turn lane is warranted for both the 60 km/h and 80 km/h design speeds at the Wellington Road 7 / Middlebrook Road / David Street West intersection. As outlined in Section 3.3, it is recommended northbound and southbound left turn lanes are constructed on Wellington Road 7 at Middlebrook Road / David Street West, to coincide with the increase in posted speed limit to 60 km/h on Wellington Road 7.

A review of the need for additional auxiliary right turn lanes at the Wellington Road 7 / Middlebrook Road / David Street West intersection was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended in the study area.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the Wellington Road 7 / Middlebrook Road / David Street West intersection (results are provided in **Appendix G**).

No infrastructure improvements are required for the background (2032) scenario.

4 Proposed Community

4.1 Traffic Generation

The traffic generation for the subject site has been based on the Institute of Transportation Engineers [ITE] Trip generation Manual (11th Edition) [ITE Trip Generation Manual]. The following ITE land use has been applied to estimate the traffic from the proposed community:

ITE land use 220 (Multifamily Housing (Low-Rise)) – General Urban/Suburban Setting

The AM and PM peak hour traffic generation for the proposed community do not exactly align with the AM and PM peak hour in the traffic counts; consequently, we have applied the peak hour of adjacent street traffic values provided in the ITE Trip Generation Manual. The estimated trip generation of the proposed community is illustrated below in **Table 6**.

Table 6 – Estimated Traffic Generation for the Subject Site

1	Size	Al	/I Peak Ho	ur	PM Peak Hour			
Land Use		IN	OUT	TOTAL	IN	OUT	TOTAL	
Multifamily Housing (Low-Rise) ITE Lane Use: 220	273 units	26	84	110	88	52	140	

4.2 Traffic Assignment

For the purposes of this study, it has been assumed that all traffic generated by the proposed community will be new traffic and would not be in the study area if the community was not constructed.

The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour. The distribution of traffic for the proposed community has been calculated based on the 2016 TTS data for traffic zone 8344, retrieved using the TTS IDRS (output attached as **Appendix I**). TTS data provides historical origin and destination work trip percentages for specific areas within the Township and southern Ontario.

Traffic distribution for the trips generated by the proposed community during the AM and PM peak hour is expected to generally follow commuter travel patterns. Our analysis is based on egress traffic during the AM peak hour. Logically, the distribution of ingress traffic will follow the inverse of the exiting traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming people will select their route primarily based on travel time.

The residential distribution of trips is illustrated in **Table 7** using the methodology outlined above.

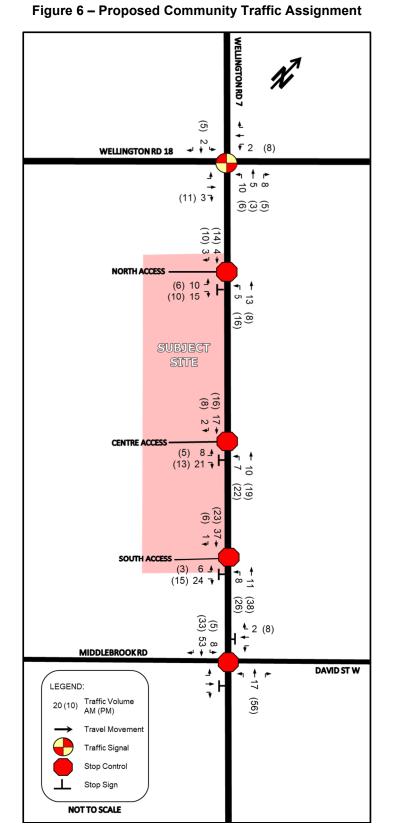


Table 7 – Proposed Community Traffic Distribution

Travel Direction (to / from)	Percentage of Total Traffic Generation
North via Wellington Road 7	6%
South via Wellington Road 7	63%
West via Wellington Road 18	13%
East via Wellington Road 18	9%
East via David Street East	9%
TOTAL	100%

Figures 6 illustrate the site traffic assignment for the proposed community, during the AM and PM peak hour.

4.3 Total Horizon Year Traffic Volumes with the Proposed Community

For the total (2027 & 2032) horizon year traffic volumes, the proposed community traffic was added to the background (2027 & 2032) traffic volumes. The resulting total (2027 & 2032) horizon year traffic volume for the AM and PM peak hour are illustrated in **Figures 7** and **8** respectively.

Figure 7 - Total (2027) Traffic Volumes

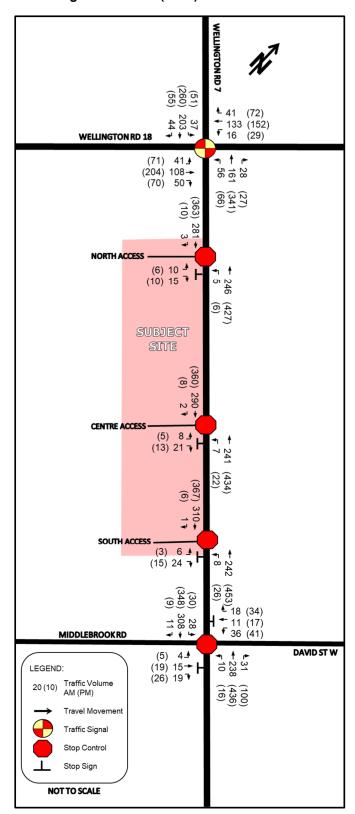
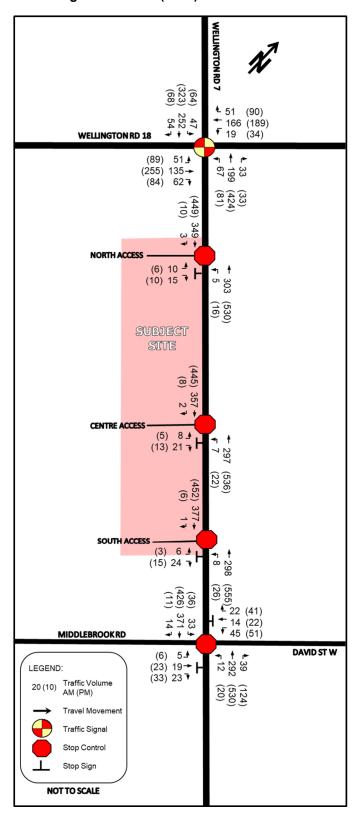



Figure 8 - Total (2032) Traffic Volumes

5 Intersection Operation with Proposed Community

5.1 Total (2027) Intersection Operation

The results of the LOS analysis under total (2027) traffic volumes during the AM and PM peak hour can be found below in **Table 8**. The intersection improvements recommended in Section 3.3 have been utilized for this scenario. Detailed output of the Synchro analysis can be found in **Appendix E**.

Table 8 - Total (2027) LOS

		Weekda	y AM Pe	ak Hour		Weekday PM Peak Hour					
Location (N-S Street / E-W Street)	V/C	D - 1 (-)	1.00	95% Q	95% Queue (m)		D-1(-)	1.00	95% Qu	eue (m)	
(N & Substit E W Substit	V/C	Delay (s)	LOS	Model	Storage	V/C	Delay (s)	LOS	Model	Storage	
Wellington Road 7 / Wellington Road 18 (signalized)	0.38	14.3	В	-	ı	0.60	18.4	В	-	-	
EB	0.63	27.2	С	41	-	0.81	33.8	С	74	-	
WB	0.55	24.2	С	38	-	0.52	22.0	С	48	-	
NB	0.27	5.8	Α	28	-	0.50	11.0	В	76	-	
SB	0.29	5.9	Α	32	-	0.42	10.0	Α	60	-	
Wellington Road 7 / Middlebrook Road / David Street West (unsignalized)	-	2.6	А	-	-	-	3.4	А	-	-	
EB	0.09	13.7	В	3	-	0.16	17.8	С	5	-	
WB	0.18	16.5	С	6	-	0.37	26.6	D	14	-	
Wellington Road 7 / North Access (unsignalized)	-	0.7	Α	-	-	-	0.5	Α	-	-	
EB	0.05	11.0	В	2	-	0.04	13.2	В	1	-	
NB	0.00	0.1	Α	1	-	0.01	0.4	Α	1	-	
Wellington Road 7 / Centre Access (unsignalized)	-	0.7	Α	-	-	-	0.6	Α	-	-	
EB	0.05	11.0	В	2	-	0.04	12.6	В	1	-	
NB	0.00	0.3	Α	1	-	0.02	0.4	Α	1	-	
Wellington Road 7 / South Access (unsignalized)	1	0.7	Α	-	-	-	0.6	Α	-	-	
EB	0.05	11.0	В	2	-	0.04	11.9	В	1	-	
NB	0.00	0.3	Α	1	-	0.02	0.7	Α	1	-	

The results of the LOS analysis indicate that all study area intersections are operating within the typical design limits noted in Section 3.1.

The anticipated queue for northbound and westbound movements at the Wellington Road 7 / Wellington Road 18 intersection extends past existing driveways to the gas station at the southeast corner of the intersection; however, the anticipated queue for each movement will be experienced for a short period of time at the end of each phase and is anticipated to clear after each cycle.

There are no other issues with the anticipated queuing in the study area.

An analysis was completed for left turn movements at the unsignalized intersections in the study area, based on the criteria outlined in Appendix 9A of the MTO DS (results are provided in **Appendix F**). For the purposes of this report, in the left turn analysis a design speed of 60 km/h (for a posted speed of 50 km/h) and 80 km/h (for a posted speed of 60 km/h) on Wellington Road 7 were reviewed to account for the planned increase in speed limit as noted in Section 2.2.

Based on the above noted criteria, a northbound left turn lane is marginally warranted on Wellington Road 7 at the North Access, Centre Access and South Access for the 80 km/h design speed; however, considering the very conservative growth that has been applied on Wellington Road 7 and no issues regarding intersection operation and queuing, a left turn lane is not recommended on Wellington Road 7 at the site access driveways.

A review of the need for additional auxiliary right turn lanes at the study area intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended in the study area.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area intersections (results are provided in **Appendix G**).

No infrastructure improvements are required for the total (2027) scenario.

5.2 Total (2032) Intersection Operation

The results of the LOS analysis under total (2032) traffic volumes during the AM and PM peak hour can be found below in **Table 9.** The intersection improvements recommended in Section 3.3 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in **Appendix E**.

Table 9 - Total (2032) LOS

		Weekda	y AM Pe	ak Hour			Weekday PM Peak Hour					
Location (N-S Street / E-W Street)	V/C	D - 1 (-)	1.00	95% Qı	ueue (m)	\//O	D-1 (-)	1.00	95% Qu	eue (m)		
(11 0 04001)	V/C	Delay (s)	LOS	Model	Storage	V/C	Delay (s)	LOS	Model	Storage		
Wellington Road 7 / Wellington Road 18 (signalized)	0.48	16.2	В	-	-	0.76	21.1	С	-	-		
EB	0.72	30.2	С	52	-	0.83	31.4	С	85	-		
WB	0.60	24.7	С	47	-	0.53	18.6	В	52	-		
NB	0.36	7.7	Α	42	-	0.71	18.8	В	138	-		
SB	0.39	7.9	Α	48	-	0.61	15.8	В	97	-		
Wellington Road 7 / Middlebrook Road / David Street West (unsignalized)	-	3.2	А	-	-	-	6.5	В	-	-		
EB	0.13	16.0	С	4	-	0.25	23.9	С	8	-		
WB	0.29	21.7	С	10	-	0.67	58.0	F	32	-		
Wellington Road 7 / North Access (unsignalized)	1	0.5	Α	-	1	-	0.5	Α	-	-		
EB	0.05	12.3	В	2	-	0.05	15.3	С	2	-		
NB	0.00	0.2	Α	1	-	0.02	0.4	Α	1	-		
Wellington Road 7 / Centre Access (unsignalized)	-	0.6	Α	-	-	-	0.6	Α	-	-		
EB	0.06	11.9	В	2	-	0.05	14.2	В	2	-		
NB	0.01	0.3	Α	1		0.02	0.6	Α	1	-		
Wellington Road 7 / South Access (unsignalized)	-	0.6	Α	-	-	-	0.6	Α	-	-		
EB	0.06	11.8	В	2	-	0.04	13.2	В	1	-		
NB	0.01	0.3	Α	1		0.03	0.7	Α	1	-		

The results of the LOS analysis indicate that the delay for the westbound direction at the Wellington Road 7 / Middlebrook Road / David Street West intersection is operating marginally outside the typical design limits noted in Section 3.1; however, there are no issues regarding the anticipated queuing for westbound movements and the delay marginally exceeds the design limits. Consequently, no further improvements are recommended. As noted in Section 2.2, the County RMAP identified a future widening of Wellington Road 7. Although no improvements are recommended based on this analysis, it is recommended that the County continue to monitor this area as development occurs to confirm the traffic growth assumptions applied in this report.

The results of the LOS analysis indicate that all other intersections in the study area are operating within the typical design limits noted in Section 3.1.

The anticipated queue for northbound and westbound movements at the Wellington Road 7 / Wellington Road 18 intersection extends past existing driveways to the gas station at the southeast corner of the intersection; however, the anticipated queue for each movement will be experienced for a short period of time at the end of each phase and is anticipated to clear after each cycle.

There are no other issues with the anticipated queuing in the study area.

An analysis was completed for left turn movements at the unsignalized intersections in the study area, based on the criteria outlined in Appendix 9A of the MTO DS (results are provided in **Appendix F**). For the purposes of this report, in the left turn analysis a design speed of 60 km/h (for a posted speed of

50 km/h) and 80 km/h (for a posted speed of 60 km/h) on Wellington Road 7 were reviewed to account for the planned increase in speed limit as noted in Section 2.2. Based on the above noted criteria, a northbound left turn lane is warranted on Wellington Road 7 at the North Access, Centre Access and South Access for both the 60 km/h and 80 km/h design speeds; however, considering the very conservative growth that has been applied on Wellington Road 7 and no issues regarding intersection operation and queuing, a left turn lane is not recommended on Wellington Road 7 at the site access driveways. As outlined above, the County RMAP identified a future widening of Wellington Road 7. Although no improvements are recommended based on this analysis, it is recommended that the County continue to monitor this area as development occurs to confirm the traffic growth assumptions applied in this report.

A review of the need for additional auxiliary right turn lanes at the study area intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended in the study area.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area intersections (results are provided in **Appendix G**).

No infrastructure improvements are required for the total (2032) scenario.

5.3 Site Access

The North Access, Centre Access and South Access will operate efficiently as full-movement accesses, with one-way stop control for eastbound movements. A single ingress and egress lane at the North Access, Centre Access and South Access will provide the necessary capacity to service the proposed community.

The proposed spacing between the North Access and South Street (139 metres—measured edge of driveway to edge of road), Centre Access and South Street (62 metres—measured edge of driveway to edge of road) and the South Access and Middlebrook Road (273 metres—measured edge of driveway to edge of road) exceeds the minimum driveway spacing requirements identified in the Transportation Association of Canada *Design Guide for Canadian Roads* (2017) [TAC Guidelines], Figure 8.8.2 – 35 metres for an arterial road at an unsignalized intersection.

The proposed spacing between the Centre Access and South Access (207 metres – measured edge to edge of driveway) are greater than the minimum driveway spacing requirements as per the TAC Guidelines – Figure 8.9.2 (Driveway Spacing Guidelines – Locals and Collectors).

Based on the Synchro analysis, there are no issues regarding the anticipated queuing on Wellington Road 7 at the site access driveways, as noted in Section 5.2.

Where feasible, driveways and roadways on opposite sides of an arterial road should be aligned. In this case, based on the preferred internal layout of the subject site, the location of the Centre Access does not align with South Street. South Street is a local road that provides access to single-family detached residential units at the south end and the existing Elora Municipal Cemetery at the north end. Based on our review of the existing and future development potential along South Street and the existing road network, there will be negligible traffic interaction between the Centre Access and South Street. Consequently, the proposed configuration of the North Access, Centre Access and South Access will not cause any operational or traffic safety issues.

5.4 Pedestrian Connectivity Review

In order to provide high-quality pedestrian access for the proposed community, it is recommended a sidewalk is constructed on the west side of Wellington Road 7 from the North Access to Middlebrook Road / David Street West.

As noted in Section 5.3, signalization is not warranted at the Wellington Road 7 / Middlebrook Road / David Street West intersection and the vehicular and pedestrian volume at this intersection do not warrant pedestrian crossing infrastructure. In the existing condition, pedestrians are required to cross Wellington Road 7 via the unmarked crosswalk at the Wellington Road 7 / Middlebrook Road / David Street West intersection.

A review for the warrant for a pedestrian crossing infrastructure was completed at the north leg of the Wellington Road 7 / Middlebrook Road / David Street West intersection, based on Ontario Traffic Manual Book 15 Pedestrian Crossing Facilities. The total (2032) traffic volumes were used in the pedestrian crossing warrant¹. Based on the OTM Book 15 criteria, a pedestrian crossing is not warranted at the north leg of the Wellington Road 7 / Middlebrook Road / David Street West intersection (warrant provided in **Appendix H**).

Notwithstanding, based on our review of the pedestrian network, and the need for a high-quality pedestrian crossing for pedestrian connectivity, it is recommended the Client install a Level 2 Type C pedestrian crossing at the north leg of the Wellington Road 7 / Middlebrook Road / David Street West intersection.

5.5 Sight Distance Review

A review of the available sight distance for the proposed site access driveways was completed as part of this analysis. The minimum sight distance requirements for a 60 km/h posted speed limit on Wellington Road 7 was reviewed to identify potential issues associated with the increased speed limit proposed as noted in Section 2.2.

The sight distance north of the North Access, south of the Centre Access and north of the South Access are greater than 200 metres and meet the minimum sight distance requirements as identified in the County's Entrance Permit Policy (2022) – 135 metres and 165 metres for a 50 km/h and 60 km/h posted speed, respectively.

The sight distance south of the North Access is 175 metres², north of the Centre Access is 185 metres² and south of the South Access is 167 metres³ which all meet the minimum sight distance requirements as identified in the County's Entrance Permit Policy – 135 metres and 165 metres for a 50 km/h and 60 km/h posted speed, respectively.

5.6 **Speed Management Review**

As noted in Section 2.2, the RMAP recommended an increase in the posted speed limit (from 50km/h to 60km/h) on Wellington Road 7 between Sideroad 11 and First Line. In order to assess the impact of that recommended change in the posted speed limit, our analysis has included a review of the posted 50km/h scenario and the posted 60km/h scenario. It is acknowledged that an increase in the posted speed may be appropriate at the north and south end of the noted corridor; however, it is our

³ Limited by the vertical curve and slight horizontal curve on Wellington Road 7.

¹ 8-hour and 4-hour pedestrian crossing warrants were reviewed.

² Limited by the vertical curve on Wellington Road 7.

recommendation to maintain the posted 50km/h speed limit within the study area included in our analysis (between Middlebrook Road / David Street West and Wellington Road 18).

It is acknowledged that the existing configuration of Wellington Road 7, in the study area, may warrant an increase in the posted speed limit; however, the following proposed changes to the study area will have a traffic calming effect:

- 1) The proposed community will add an urban edge to the west side of Wellington Road 7. The proposed community includes closely spaced street trees, sidewalk and the townhouse building face, all located within 15 metres of the edge of the existing road. The proposed community also includes building entrances and private walkways along the frontage of the subject site, which will activate the corridor.
- 2) The proposed community will include the reconstruction of the west side of Wellington Road 7 from a rural cross-section to an urban cross-section, along the frontage of the subject site and also south of the subject site to Middlebrook Road / David Street West.
- 3) The proposed community will include the construction of the North Access, Centre Access and South Access on Wellington Road 7, which will demand additional driver attention.
- 4) The construction of the proposed pedestrian crossing on Wellington Road 7, north of Middlebrook Road / David Street West (as outlined in Section 5.4), will demand additional driver attention and periodically stop traffic on Wellington Road 7.

The existing Elora Lions Park and Elora & District Community Centre at the southwest and southeast corner of the Wellington Road 7 / Middlebrook Road / David Street West intersection, also supports the need to control the speed of traffic in the study area. The County could facilitate this by permitting the Client to provide enhanced street tree plantings on both sides of the road through this area and extending the existing sidewalk from the bridge over the Grand River to Middlebrook Road. This missing pedestrian link would activate the boulevard of Wellington Road 7, which would have a traffic calming effect and also provide additional pedestrian access to the Elora Gorge Trail, facilitated by the proposed pedestrian crossing of Wellington Road 7 at Middlebrook Road / David Street West.

South of Wellington Road 18, the existing residential development on both sides of Wellington Road 7 will have a traffic calming effect and the existing 50km/h posted speed limit is appropriate for this section.

There is a section of Wellington Road 7, just north of the subject site and south of the above-noted existing residential area, where the existing vertical / horizontal road profile and the roadside characteristics are consistent with higher-speed roads (the section is approximately 250 metres in length). In order to influence driver behavior through this short section, it is recommended that a 15-metre-long, 1.5-2.5-metre-wide raised median is installed. It is recommended that the raised median include hardy landscaping (trees or shrubs), which would require minimal maintenance, but would provide a visual cue that will link the two adjacent low-speed sections on Wellington Road 7. The exact configuration and location will be confirmed through detailed design; however, based on our preliminary assessment, there is sufficient space to install the raised median without impacting existing driveways in the area.

5.7 **Parking Review**

The parking supply for the proposed community meets the minimum parking requirements specified in the Township's Zoning By-law 2009-045 [ZBL]. Each townhouse unit is proposed with two tandem parking spaces (surface driveway parking plus garage parking). The proposed parking breakdown for the proposed community is provided in **Table 12**.

Table 10 - Zoning By-law Parking Requirements

Category	Zoning By-Law Section	Parking Standard	Size	Parking (Spaces)	
				Required	Provided
Residential (Cluster Townhouse)	5.5.1	Resident: 1 space per unit plus 0.5 spaces per unit for the first 20 units and 0.25 spaces per unit for each additional unit Visitor Parking: 50% of additional parking	273 units	310 resident spaces 37 visitor spaces 347 spaces total	546 resident spaces 56 visitor spaces 602 spaces total
Barrier-Free Parking	6.4.3	15 spaces for required parking between 301 – 400 spaces	-	15 spaces	15 spaces

Although tandem parking spaces are not defined in the ZBL, the tandem parking spaces are provided in addition to the minimum visitor parking supply and supplement the minimum provision of one parking space per unit for residential parking, as identified in the zoning by-law. Consequently, the proposed tandem parking is acceptable for the proposed application and the overall parking supply is sufficient for the intended use.

6 **Summary**

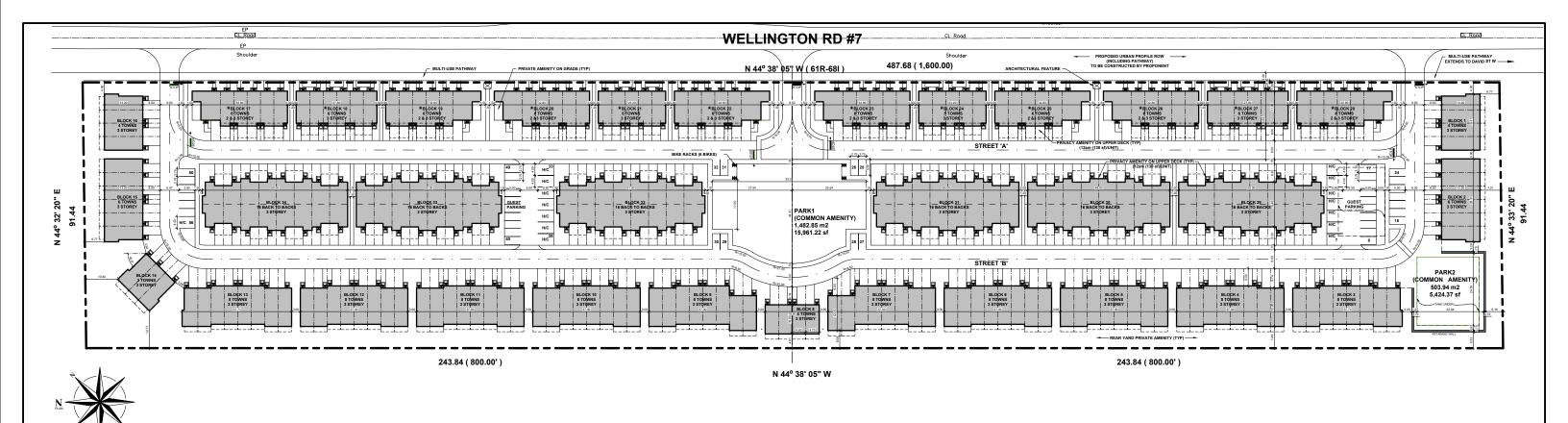
Elora 7 OP Inc. retained **JD Engineering** to prepare this traffic impact study in support of the proposed community on a site municipally known as 350 Wellington Road 7, located on the south side of Wellington Road 7, midblock between David Street West and Wellington Road 18 in the Township of Centre Wellington County of Wellington. The proposed Site Plan is shown in **Appendix A**. This chapter summarizes the conclusions and recommendations from the study.

The proposed community is anticipated to consist of 273 townhouse units.

- 1. The proposed community is expected to generate a 110 AM and 140 PM peak hour trips.
- Detailed intersection counts were conducted at the study intersection on Thursday August 4th, 2022.
- 3. An intersection operation analysis was completed at the study area intersections, using the existing (2022) and background (2027 & 2032) traffic volumes. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed community. The following improvements are recommended to coincide with the increase in posted speed limit to 80 km/h on Wellington Road 7:

Background (2027) Traffic Volumes

- Wellington Road 7 / Middlebrook Road / David Street West
 - Northbound left turn lane: 15 metre storage length, 50 metre parallel length and
 65 metre taper length
 - Southbound left turn lane: 25 metre storage length, 50 metre parallel length and
 80 metre taper length
- 4. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area street and intersection.
- 5. An intersection operation analysis was completed under total (2027 & 2032) traffic volumes with the proposed community operational at the study area intersections. No improvements are recommended within the study area with respect to intersection operations.



- 6. The proposed North Access, Centre Access and South Access will operate efficiently as full-movement accesses, with one-way stop control for eastbound movements. A single ingress and egress lane at the North Access, Centre Access and South Access will provide the necessary capacity to service the proposed community.
- 7. It is recommended the Client install a Level 2 Type C pedestrian crossing at the north leg of the Wellington Road 7 / Middlebrook Road / David Street West intersection.
- 8. It is recommended the County maintain the posted 50km/h speed limit within the study area (between Middlebrook Road / David Street West and Wellington Road 18). The following traffic calming measures are recommended to support the posted 50km/h speed limit:
 - Construct a raised median island on Wellington Road 7, north of the subject site to provide a visual cue that will link the two adjacent low-speed sections on Wellington Road 7 (to be completed by the Client);
 - Provide enhanced street tree plantings on both sides of Wellington Road 7, between Middlebrook Road / David Street West and the bridge over the Grand River (to be completed by the Client); and
 - Extend the existing sidewalk from the bridge over the Grand River to Middlebrook Road, to activate the boulevard of Wellington Road 7 and also provide additional pedestrian access to the Elora Gorge Trail (to be completed by the County).
- 9. The proposed parking supply meets the minimum requirements in the Township's Zoning Bylaw 2009-045.
- 10. In summary the proposed community will not cause any operational issues and will not add significant delay or congestion to the local roadway network.

Appendix A – Site Plan

CATEGORY	ZONING REGULATION	PROPOSED	COMPLIANCE
MINIMUM LOT AREA	700.0 m ² (7,535 ft ²)	44,500m ² (478,994.01 ft ²)	YES
MINIMUM LOT FRONTAGE	20 m (65.6 ft)	487.68m (1,600 ft)	YES
MINIMUM FRONT YARD	3 m (9.8 ft) FOR A BUILDING CONTAINING DWELLING UNITS ADJACENT TO THE STREET LINE, THE BUILDING FACE SHALL BE STEEPED BACK 2m FOR EACH STOREY ABOVE THE THIRD STOREY	3.0m (9.8 ft) 3 STOREY	YES
MINIMUM LANDSCAPE BUFFER ABUTTING STREET LINE	3 m (9.8 ft)	3.0m WITH EXCEPTION OF WALKWAYS TO LIVE / WORK UNITS	YES
RESIDENTIAL USES ON GROUND FLOOR	NOT [PERMITTED WITHIN 9m OF A STREET LINE. SHALL NOT OCCUPY MORE THAN 50% OF TOTAL GROUND FLOOR AREA OF A BUILDING WITHIN 30m OF A STREET LINE.	LIVE / WORK UNITS FRONTING ONTO WELLINGTON ROAD 7 CONTAIN LIVING AREA, WORKSPACE, WASHROOM AND GARAGE USES. TOWNHOUSE UNITS FLAKING WELLINGTON ROAD 7 (4.0m)	NO
MINIMUM REAR YARD	7.5m (24.6 ft)	4.91 m (16.1 ft)	NO
MINIMUM SIDE YARD	3 m (9.8 ft)	6.77 m (22.2 ft)	YES
MINIMUM LANDSCAPED AREA	20%	28% (12,588.6 m ²) INCLUDES 19,886.8 m ² OF COMMON PARK AREA	YES
MAXIMUM BUILDING HEIGHT	18 m BUT NO GREATER THAN 5 STOREY FOR A BUILDING CONTAINING DWELLING UNITS.	3 STOREYS 10.9 m	YES
MINIMUM BUILDING HEIGHT	7.5 m AND 2 STOREYS	7.5 m AND 2 STOREYS	YES
BUFFER STRIP	A BUFFER STRIP IS REQUIRED ALONG ANY INTERIOR SIDE LOT LINE AND REAR LOT LINE WHICH ABUTS LAND ZONED FOR RESIDENTIAL OR INSTRUCTIONAL PURPOSES. (N/A)	OK	N/A
PARKING	CLUSTER TOWNHOUSE USE 1.0 / UNIT PLUS 0.5 / UNIT FOR FIRST 20 UNITS AND 0.25 / UNIT FOR EACH ADDITIONAL UNIT. 50% OF ADDITIONAL PARKING TO BE EXCLUSIVE VISITOR PARKING	GARAGE 273 DRIVEWAY 273 VISITORS 56	NO - FOR TOWNHOUSES YES - FOR VISITORS
BARRIER FREE PARKING	PARKING SPACES REQUIRED 301 - 400 B / F SPACES . 15	15 SPACES (25% OF VISITOR SPACES)	YES
GROSS FLOOR AREA	N/A	41,574.5 M2 ± 447,519 ft ±	N/A
COVERAGE	N/A	15,034.9 M2 ± 161,840 ft ± 33%	N/A
DENSITY	N/A	61.3 UPH 24.8 UPA	N/A

| Unit Count | 15' CONVENTIONAL | 107 (172.1m² AVERAGE) | 15' LIVE / WORK CONVENTIONAL | 22' LIVE / WORK CONVENTIONAL | 20' BACK TO BACKS | 96 (134.8m² AVERAGE) | 70TAL | 273 (152.3m² AVERAGE OVERALL)

Version 3.3
Concept Site Plan
350 Wellington Rd #7 Elora ON.

Client: ELORA 7 OP INC.

Date: 10/25/22

Project number: 3287 Scale: 1:1250

Note:

*Asterik indicates a block of live/work units.

WE MERCHANDISE SPACE INC. FORREST GROUP INC.

The intent of this drawing is to provide a preliminary concept for this community, as an instrument of service. This drawing is provided by and is the property of We Merchandise Space Inc. and Forrest Group Inc. retains ownership of copyright in all of its drawings. We Merchandise Space Inc. and Forrest Group Inc. are not responsible for the accuracy of underlying information, such as the survey. This drawing is not to be scaled. All Consultants and others must verify and accept responsibility for all dimensions and conditions on site and must notify We Merchandise Space Inc. and Forrest Group Inc. of any variations from the provided information. The Client named herein is granted a license to reproduce, distribute, exhibit or otherwise use, said materials, in accordance with this agreement, which license may be revoked for cause, including but not limited to, misuse of drawings or failure to pay accounts. It is expressly understood and agreed that no action, lawsuit, or claim may be made against the employees, officers, or directors of We Merchandise Space Inc. or Forrest Group Inc. for any reason whatsoever. For greater clarity, We Merchandise Space Inc. and Forrest Group Inc. shall not be liable, directly or indirectly, in any manner whatsoever by any party by reason of the use of the drawings and materials referred to herein.

Appendix B – Traffic Count Data

Morning Peak Diagram	Specified Period From: 7:00:00 To: 9:00:00	One Hour Peak From: 8:00:00 To: 9:00:00
Municipality: Centre Wellington Site #: 2214500001 Intersection: Wellington Rd 7 & Middlebrook Rd TFR File #: 1 Count date: 4-Aug-22	Weather conditions: Person counted: Person prepared: Person checked: Major Road: Wellington	
North Entering: 230 North Peds: 0 Peds Cross: North Peds: 0 Cars 8 178 16 Totals 9 205 16 Heavys Trucks Cars Totals 3 1 22 26 Middlebrook Rd Heavys Trucks Cars Totals 1 0 2 3 12 0 0 12 12 15 1 0 2 3 15 1 0 2 3 15 1 0 2 7	Heavys 22 Trucks 12 Cars 159 Totals 193 Vellington Rd 7	East Leg Total: 104 East Entering: 51 East Peds: 0 Peds Cross: Cars Trucks Heavys Totals 12 1 0 13 3 0 1 9 27 0 2 29 47 1 3
West Peds: 0 Trucks 1 Trucks 1 West Entering: 30 Heavys 30 Heavys West Leg Total: 56 Totals 249 To	ars 6 145 21 172 cks 0 11 1 12 26 als 8 177 25	Peds Cross: ► South Peds: 0 South Entering: 210 South Leg Total: 459

Afternoon Peak Diagram	Specified Period One Hour Peak From: 16:00:00 From: 16:00:00 To: 19:00:00 To: 17:00:00
Municipality: Centre Wellington Site #: 2214500001 Intersection: Wellington Rd 7 & Middlebrook Rd TFR File #: 1 Count date: 4-Aug-22	Weather conditions: Person counted: Person prepared: Person checked:
North Entering: 280 Trucks 0 7 0 North Peds: 0 Cars 7 238 20 Peds Cross: ⋈ Totals 7 253 20	Major Road: Wellington Rd 7 runs N/S Heavys 14 Trucks 3 Cars 313 Totals 330 Peds Cross: Vellington Rd 7 Cars Trucks Heavys Totals 20 1 0 21 14 0 0 14 33 N East Leg Total: 183 East Peds: 0 Peds Cross: Vellington Rd 7 Cars Trucks Heavys Totals 20 1 0 21 14 0 0 14 33 B Cars Trucks Heavys Totals 14 0 0 1 14 33 15 16 1 1
West Peds: 0 Trucks 8 Tr West Entering: 40 Heavys 11 Heavys 11	David St W Cars Trucks Heavys Totals 114 1 0 115 The state of the s
Com	ments

Total Count Diagram

Municipality: Centre Wellington

Site #: 2214500001

Intersection: Wellington Rd 7 & Middlebrook Rd

TFR File #:

Count date: 4-Aug-22

Weather conditions:

Person counted: Person prepared: Person checked:

** Non-Signalized Intersection **

ersection ** Major Road: Wellington Rd 7 runs N/S

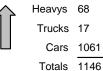
North Leg Total: 2239

North Entering: 1093

North Peds: 0

Peds Cross: ▶

✓


 Heavys
 0
 64
 1

 Trucks
 1
 18
 0

 Cars
 21
 910
 78

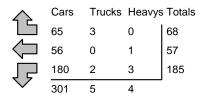
 Totals
 22
 992
 79

65 19 1009

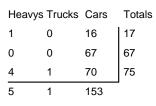
East Leg Total: 711

East Entering: 310

East Peds: 1


Peds Cross: X

Heavys Trucks Cars Totals
5 1 132 138



Middlebrook Rd

Peds Cross: X
West Peds: 1

West Entering: 159
West Leg Total: 297

Cars 1160

Trucks 21
Heavys 71
Totals 1252

 Cars
 55
 980
 248
 1283

 Trucks
 0
 14
 2
 16

 Heavys
 4
 67
 5
 76

 Totals
 59
 1061
 255

Cars Trucks Heavys Totals 393 2 6 401

Peds Cross: ►✓
South Peds: 1
South Entering: 1375
South Leg Total: 2627

Traffic Count Summary

Intersection: \	Wellingto	on Rd 7	& Middle	ebrook F	Rd Count [Date: 4-Aug-22		Munic	ipality: Ce	entre We	ellington		
			ach Tot								ach To	tals	
Hour			rucks, & F		Total	North/South	Hou	r			rucks, & F		Total
Ending				Grand	Peds	Total Approaches	Endir					Grand	Peds
7.00.00	Left	Thru	Right	Total		_ · · ·	7.00	-	Left	Thru	Right	Total	
7:00:00	0	0	0	0	0	0	7:00:		0	0	0	0	0
8:00:00 9:00:00	9 16	177 205	2 9	188 230	0 0	337 <i>44</i> 0	8:00: 9:00:		10 8	117 177	22 25	149 210	0 0
16:00:00	0	0	0	0	o	0	16:00		o l	0	0	0	0
17:00:00	20	253	7	280	0	678	17:00		13	305	80	398	o
18:00:00	16	190	2	208	Ö	563	18:00		17	262	76	355	1
19:00:00	18	167	2	187	Ō	450	19:00		11	200	52	263	Ô
Totals:			22 ach Tota		0 Total	2468 East/West	S Tota				255 ach Tot		1 Total
Ending				Grand	Peds	Total Approaches	Endir					Grand	Peds
	Left	Thru	Right	Total		- ' '		_	Left	Thru	Right	Total	
7:00:00	0	0	0	0	0	0	7:00:		0	0	0	0	0
8:00:00 9:00:00	56 29	14 9	3 13	73 51	0 0	93 81	8:00: 9:00:		3 3	6 12	11 15	20 30	1 0
16:00:00	0	0	0	0	o	0	16:00.		0	0	0	0	0
17:00:00	33	14	21	68	Ö	108	17:00		4	15	21	40	Ö
18:00:00	40	12	18	70	1	109	18:00		4	17	18	39	Ö
19:00:00	27	8	13	48	Ô	78	19:00		3	17	10	30	0
10.00.00	_ '		, 6	.0	· ·	, 6			J	•	, 6		
Totals:	185	57	68 Calc	310	1 /alues f	469 or Traffic Cr	W Tota		17	67	75	159	1
Hours Er	ndina:	7:00	8:00	9:00	16:00	or manic of	ບຣຣແຖ 17:0	_	18:00	19:00	0:00		
Crossing			73	9.00 44	0		52		62	19.00 47	0.00		
0.0001119	, valuos		, 0	ı-T			02		52	• • •			

		Passen	ger Cars -	North A	pproach			Truc	cks - Nort	h Approa	ach			Не	avys - No	rth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Rig	ght	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	1	1	35	35	0	0	0	0	0	0	0	0	0	0	3	3	0	0	0	0
7:30:00	2	1	85	50	0	0	0	0	0	0	0	0	1	1	7	4	0	0	0	0
7:45:00	3	1	127	42	1	1	0	0	0	0	0	0	1	0	11	4	0	0	0	0
8:00:00	8	5	163	36	2	1	0	0	0	0	0	0	1	0	14	3	0	0	0	0
8:15:00	12	4	202	39	3	1	0	0	0	0	0	0	1	0	22	8	0	0	0	0
8:30:00	17	5	249	47	3	0	0	0	1	1	0	0	1	0	32	10	0	0	0	0
8:45:00	20	3	294	45	10	7	0	0	1	0	1	1	1	0	36	4	0	0	0	0
9:00:00	24	4	341	47	10	0	0	0	1	0	1	0	1	0	40	4	0	0	0	0
9:15:00	24	0	341	0	10	0	0	0	1	0	1	0	1	0	40	0	0	0	0	0
16:00:00	24	0	341	0	10	0	0	0	1	0	1	0	1	0	40	0	0	0	0	0
16:15:00	30	6	406	65	12	2	0	0	4	3	1	0	1	0	41	11	0	0	0	0
16:30:00	35	5	461	55	14	2	0	0	6	2	1	0	1	0	43	2	0	0	0	0
16:45:00	37	2	519	58	14	0	0	0	7	1	1	0	1	0	48	5	0	0	0	0
17:00:00	44	7	579	60	17	3	0	0	8	11	1	0	1	0	48	0	0	0	0	0
17:15:00	45	11	631	52	18	1	0	0	9	1	1	0	1	0	50	2	0	0	0	0
17:30:00	50	5	669	38	18	0	0	0	12	3	1	0	1	0	53	3	0	0	0	0
17:45:00	56	6	709	40	18	0	0	0	14	2	1	0	1	0	54	1	0	0	0	0
18:00:00	60	4	754	45	19	1	0	0	15	11	1	0	1	0	56	2	0	0	0	0
18:15:00	63	3	801	47	19	0	0	0	16	11	1	0	1	0	59	3	0	0	0	0
18:30:00	67	4	837	36	20	1	0	0	17	11	1	0	1	0	62	3	0	0	0	0
18:45:00	72	5	870	33	21	1	0	0	17	0	1	0	1	0	62	0	0	0	0	0
19:00:00	78	6	910	40	21	0	0	0	18	1	1	0	1	0	64	2	0	0	0	0
19:15:00	78	0	910	0	21	0	0	0	18	0	1	0	1	0	64	0	0	0	0	0
19:15:15	78	0	910	0	21	0	0	0	18	0	1	0	1	0	64	0	0	0	0	0

		Passen	ger Cars	- East Ap	proach			Tru	cks - Eas	t Approa	ch			H	eavys - Ea	ast Appro	oach		Pedes	trians
Interval	Le	eft	Th	ru	Rig	jht	Le	eft	Th	ru	Ri	ght	Le	ft	Th	ru	Riç	ght	East (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	11	11	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	23	12	6	6	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45:00	38	15	10	4	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00:00	56	18	14	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15:00	66	10	14	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30:00	72	6	16	2	5	2	0	0	0	0	0	0	1	1	1	1	0	0	0	0
8:45:00	77	5	18	2	10	5	0	0	0	0	1	1	2	1	1	0	0	0	0	0
9:00:00	83	6	22	4	15	5	0	0	0	0	1	0	2	0	1	0	0	0	0	0
9:15:00	83	0	22	0	15	0	0	0	0	0	1	0	2	0	1	0	0	0	0	0
16:00:00	83	0	22	0	15	0	0	0	0	0	1	0	2	0	1	0	0	0	0	0
16:15:00	93	10	30	8	23	8	0	0	0	0	2	1	2	0	1	0	0	0	0	0
16:30:00	99	6	31	1	28	5	0	0	0	0	2	0	3	1	1	0	0	0	0	0
16:45:00	106	7	33	2	31	3	0	0	0	0	2	0	3	0	1	0	0	0	0	0
17:00:00	115	9	36	3	35	4	0	0	0	0	2	0	3	0	1	0	0	0	0	0
17:15:00	124	9	38	2	44	9	0	0	0	0	2	0	3	0	1	0	0	0	0	0
17:30:00	137	13	38	0	48	4	2	2	0	0	2	0	3	0	1	0	0	0	0	0
17:45:00	146	9	45	7	50	2	2	0	0	0	2	0	3	0	1	0	0	0	1	1
18:00:00	153	7	48	3	53	3	2	0	0	0	2	0	3	0	1	0	0	0	1	0
18:15:00	160	7	48	0	58	5	2	0	0	0	2	0	3	0	1	0	0	0	1	0
18:30:00	165	5	51	3	59	1	2	0	0	0	2	0	3	0	1	0	0	0	1	0
18:45:00	172	7	54	3	65	6	2	0	0	0	3	1	3	0	1	0	0	0	1	0
19:00:00	180	8	56	2	65	0	2	0	Ō	0	3	0	3	0	1	0	0	0	1	0
19:15:00	180	0	56	0	65	0	2	0	0	0	3	0	3	0	1	0	0	0	1	0
19:15:15	180	0	56	0	65	0	2	0	0	0	3	0	3	0	1	0	0	0	1	0
							_													

7:00:00 7:15:00 7:30:00 7:45:00 8:00:00 8:15:00	Cum 0 3 4 8		er Cars - Th Cum		pproach Rig	ıht		Truc	ks - Sout	h Approa	ach			Hea	avys - So	uth Appr	oach		Pedes	trians
7:00:00 7:15:00 7:30:00 7:45:00 8:00:00 8:15:00	0 3 4	Incr 0	Cum		Rig	ıht										Pedestrians				
7:00:00 7:15:00 7:30:00 7:45:00 8:00:00 8:15:00	0 3 4	0		Incr		,	Le	eft	Th	ru	Rig	ght	Le	ft	Th	ru	Riç	ght	South	Cross
7:15:00 7:30:00 7:45:00 8:00:00 8:15:00	3 4		_	11101	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:30:00 7:45:00 8:00:00 8:15:00	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45:00 8:00:00 8:15:00			16	16	5	5	0	0	0	0	0	0	0	0	7	7	0	0	0	0
8:00:00 8:15:00	8	1	39	23	8	3	0	0	0	0	0	0	0	0	7	0	0	0	0	0
8:15:00	-	4	67	28	14	6	0	0	0	0	0	0	0	0	12	5	2	2	0	0
	9	1	101	34	20	6	0	0	0	0	0	0	1	1	16	4	2	0	0	0
8.30.00	11	2	141	40	24	4	0	0	0	0	0	0	2	1	21	5	4	2	0	0
0.50.00	14	3	175	34	26	2	0	0	3	3	1	1	2	0	25	4	4	0	0	0
8:45:00	15	1	210	35	34	8	0	0	6	3	1	0	3	1	31	6	5	1	0	0
9:00:00	15	0	246	36	41	7	0	0	11	5	1	0	3	0	37	6	5	0	0	0
9:15:00	15	0	246	0	41	0	0	0	11	0	1	0	3	0	37	0	5	0	0	0
16:00:00	15	0	246	0	41	0	0	0	11	0	1	0	3	0	37	0	5	0	0	0
16:15:00	20	5	311	65	57	16	0	0	11	0	1	0	4	1	39	2	5	0	0	0
16:30:00	22	2	363	52	76	19	0	0	13	2	1	0	4	0	42	3	5	0	0	0
16:45:00	24	2	452	89	99	23	0	0	13	0	2	1	4	0	43	1	5	0	0	0
17:00:00	27	3	535	83	120	21	0	0	13	0	2	0	4	0	51	8	5	0	0	0
17:15:00	34	7	600	65	139	19	0	0	13	0	2	0	4	0	55	4	5	0	0	0
17:30:00	35	1	659	59	158	19	0	0	14	1	2	0	4	0	59	4	5	0	1	1
17:45:00	41	6	720	61	178	20	0	0	14	0	2	0	4	0	62	3	5	0	1	0
18:00:00	44	3	783	63	196	18	0	0	14	0	2	0	4	0	64	2	5	0	1	0
18:15:00	46	2	853	70	215	19	0	0	14	0	2	0	4	0	67	3	5	0	1	0
18:30:00	48	2	896	43	227	12	0	0	14	0	2	0	4	0	67	0	5	0	1	0
18:45:00	52	4	940	44	236	9	0	0	14	0	2	0	4	0	67	0	5	0	1	0
19:00:00	55	3	980	40	248	12	0	0	14	0	2	0	4	0	67	0	5	0	1	0
19:15:00	55	0	980	0	248	0	0	0	14	0	2	0	4	0	67	0	5	0	1	0
19:15:15	55	0	980	0	248	0	0	0	14	0	2	0	4	0	67	0	5	0	1	0

		Passen	ger Cars -	West A	oproach			Tru	cks - Wes	t Approa	ıch			Не	avys - W	est Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ght	West (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	0	0	4	4	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	1	1	5	1	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45:00	1	0	5	0	7	4	0	0	0	0	0	0	0	0	0	0	0	0	1	1
8:00:00	3	2	6	1	11	4	0	0	0	0	0	0	0	0	0	0	0	0	1	0
8:15:00	3	0	6	0	14	3	0	0	0	0	0	0	0	0	0	0	0	0	1	0
8:30:00	4	1	10	4	17	3	0	0	0	0	0	0	0	0	0	0	2	2	1	0
8:45:00	5	1	13	3	22	5	0	0	0	0	0	0	0	0	0	0	2	0	1	0
9:00:00	5	0	18	5	24	2	0	0	0	0	0	0	1	1	0	0	2	0	1	0
9:15:00	5	0	18	0	24	0	0	0	0	0	0	0	1	0	0	0	2	0	1	0
16:00:00	5	0	18	0	24	0	0	0	0	0	0	0	1	0	0	0	2	0	1	0
16:15:00	6	1	22	4	28	4	0	0	0	0	0	0	1	0	0	0	3	1	1	0
16:30:00	8	2	28	6	33	5	0	0	0	0	1	1	1	0	0	0	3	0	1	0
16:45:00	9	1	32	4	41	8	0	0	0	0	1	0	1	0	0	0	3	0	1	0
17:00:00	9	0	33	1	42	1	0	0	0	0	1	0	1	0	0	0	4	1	1	0
17:15:00	10	1	39	6	48	6	0	0	0	0	1	0	1	0	0	0	4	0	1	0
17:30:00	10	0	43	4	52	4	0	0	0	0	1	0	1	0	0	0	4	0	1	0
17:45:00	11	1	48	5	57	5	0	0	0	0	1	0	1	0	0	0	4	0	1	0
18:00:00	13	2	50	2	60	3	0	0	0	0	1	0	1	0	0	0	4	0	1	0
18:15:00	14	1	54	4	63	3	0	0	0	0	1	0	1	0	0	0	4	0	1	0
18:30:00	16	2	58	4	66	3	0	0	0	0	1	0	1	0	0	0	4	0	1	0
18:45:00	16	0	62	4	68	2	0	0	0	0	1	0	1	0	0	0	4	0	1	0
19:00:00	16	0	67	5	70	2	0	0	0	0	1	0	1	0	0	0	4	0	1	0
19:15:00	16	0	67	0	70	0	0	0	0	0	1	0	1	0	0	0	4	0	1	0
19:15:15	16	0	67	0	70	0	0	0	0	0	1	0	1	0	0	0	4	0	1	0

Site #: 2214500002 Intersection: Wellington Rd 7 & Wellington Rd 1 TFR File #: 1 Count date: 4-Aug-22 ** Signalized Intersection ** North Leg Total: 417 Heavys 5 20 0 3 3 North Entering: 226 Trucks 0 3 0 3 North Peds: 0 Cars 30 138 30 198 Peds Cross: Molecular Totals 35 161 30	Trucks 7	7 runs N/S East Leg Total: 284 East Entering: 151 East Peds: 0
North Leg Total: 417 Heavys 5 20 0 25 North Entering: 226 Trucks 0 3 0 3 North Peds: 0 Cars 30 138 30 198 Peds Cross: ⋈ Totals 35 161 30	Heavys 17 Trucks 7	East Leg Total: 284 East Entering: 151
Heavys Trucks Cars Totals 19 6 154 179 Wellington Rd 18	Cars 31 94	Peds Cross: X Trucks Heavys Totals 1
Heavys Trucks Cars Totals 3	Woolwich St Cars 122	Trucks Heavys Totals 5 6 133
West Peds: 0 Trucks 5 Trucks West Entering: 158 Heavys 26 Heavys	xs 2 5 1 8 5 5 13 0 18	Peds Cross: South Peds: 0 South Entering: 178 South Leg Total: 388

Total Count Diagram

Municipality: Centre Wellington

Site #: 2214500002

Intersection: Wellington Rd 7 & Wellington Rd 1

TFR File #:

Count date: 4-Aug-22 Weather conditions:

Person counted: Person prepared:

Person checked:

** Signalized Intersection **

North Leg Total: 2484 North Entering: 1193 North Peds: Peds Cross:

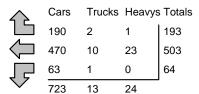
Heavys 13 60 1 Trucks 3 13 5 Cars 182 753 163 Totals 198 169

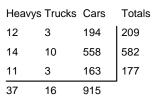
1098

Heavys 63 Trucks 31 Cars 1197 Totals 1291

Major Road: Wellington Rd 7 runs N/S

East Leg Total: 1589 760 East Entering: East Peds: X Peds Cross:


Heavys Trucks Cars Totals 17 875 53 805



Wellington Rd 7

Wellington Rd 18

74

21

Cars Trucks Heavys Totals 796 18 15

X Peds Cross: West Peds: West Entering:

West Leg Total: 1843

Cars 979 Trucks 17 Heavys 1067 Totals

Wellington Rd 7

1041 Cars 153 813 75 33 Trucks 4 26 3 Heavys 17 0 67 50 Totals 174 889 78

Peds Cross: M South Peds: South Entering: 1141 South Leg Total: 2208

829

Traffic Count Summary

	vveiiiiigi	on Rd 7	& Welli	ngton Ro	Count [Date: 4-Aug-22	22 Municipality: Centre Wellington						
	Nort	h Appro	ach Tot	als						ach To	tals		
Hour	Includ	es Cars, T	rucks, & F	leavys	Total	North/South Total	Hour			rucks, & F		Total	
Ending	Left	Thru	Right	Grand Total	Peds	Approaches	Ending	Left	Thru	Right	Grand Total	Peds	
7:00:00	0	0	0	0	0	0	7:00:00	0	0	0	0	0	
8:00:00	29	143	39	211	Ö	335	8:00:00	21	95	8	124	0	
9:00:00	27	174	28	229	Ö	421	9:00:00	41	134	17	192	Ö	
16:00:00	0	0	0	0	Ö	0	16:00:00		0	Ö	0	Ö	
17:00:00	41	205	44	290	Ö	627	17:00:00		271	18	337	Ö	
18:00:00	<i>4</i> 5	161	56	262	Ö	539	18:00:00		220	17	277	Ö	
19:00:00	27	143	31	201	Ö	412	19:00:00	1	169	18	211	Ö	
Totals:	169 Eas	826 t Appro a es Cars, T	198 ach Tota	leavys	0 Total	2334 East/West Total	S Totals:	Wes		78 ach Tot	leavys	0 Total	
Ending	Left	Thru	Right	Grand Total	Peds	Approaches	Ending	Left	Thru	Right	Grand Total	Peds	
7:00:00	0	0	0	0	0	0	7:00:00	0	0	0	0	0	
8:00:00	10	115	27	1 <i>5</i> 2	1	275	8:00:00	29	64	30	123	1	
		110										Ó	
	10	02	1 2/		ı /)	ו אמי ו	1 (3.71/1.71/1)		ı ga		151		
	10	92	34	136	0	287	9:00:00	25	89 0	37	151		
16:00:00	0	0	0	0	0	0	16:00:00	0	0	0	0	0	
16:00:00 17:00:00	0 17	0 122	0 58	0 197	0 0	0 4 65	16:00:00 17:00:00	0 57	0 164	0 47	0 268	0 0	
16:00:00 17:00:00 18:00:00	0 17 13	0 122 101	0 58 42	0 197 156	0 0 0	0 465 435	16:00:00 17:00:00 18:00:00	0 57 67	0 164 178	0 47 34	0 268 279	0 0 0	
9:00:00 16:00:00 17:00:00 18:00:00 19:00:00	0 17	0 122	0 58	0 197	0 0	0 4 65	16:00:00 17:00:00	0 57 67	0 164	0 47	0 268	0 0	
16:00:00 17:00:00 18:00:00	0 17 13	0 122 101	0 58 42	0 197 156	0 0 0	0 465 435	16:00:00 17:00:00 18:00:00	0 57 67	0 164 178	0 47 34	0 268 279	0 0 0	
16:00:00 17:00:00 18:00:00	0 17 13	0 122 101	0 58 42	0 197 156	0 0 0	0 465 435 266	16:00:00 17:00:00 18:00:00	0 57 67 31	0 164 178	0 47 34	0 268 279	0 0 0	
16:00:00 17:00:00 18:00:00 19:00:00	0 17 13 14	0 122 101 73	0 58 42 32	0 197 156 119	0 0 0 0 0	0 465 435 266	16:00:00 17:00:00 18:00:00 19:00:00 W Totals:	0 57 67 31	0 164 178 87 582	0 47 34 29	0 268 279 147	0 0 0 0	
16:00:00 17:00:00 18:00:00 19:00:00	0 17 13 14	0 122 101 73	0 58 42 32	0 197 156 119	0 0 0 0 0	0 465 435 266 1728	16:00:00 17:00:00 18:00:00 19:00:00 W Totals:	0 57 67 31	0 164 178 87 582	0 47 34 29	0 268 279 147	0 0 0 0	

Count	Date.	4-Aug-2	22	Site #:	221450	0002							T							
		Passeng	er Cars -	North A	pproach			True	cks - Nort	h Approa	ach			He	avys - No	rth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Rig	ght	Le	ft	Th	ru	Rig	ght	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	5	5	26	26	10	10	0	0	0	0	0	0	1	1	2	2	0	0	0	0
7:30:00	11	6	71	45	19	9	2	2	1	1	0	0	1	0	7	5	0	0	0	0
7:45:00	16	5	102	31	26	7	2	0	1	0	0	0	1	0	9	2	1	1	0	0
8:00:00	26	10	131	29	37	11	2	0	1	0	0	0	1	0	11	2	2	1	0	0
8:15:00	30	4	166	35	46	9	2	0	2	11	0	0	1	0	21	10	2	0	0	0
8:30:00	43	13	201	35	51	5	2	0	3	1	0	0	1	0	25	4	4	2	0	0
8:45:00	46	3	240	39	56	5	2	0	4	1	0	0	1	0	29	4	6	2	0	0
9:00:00	53	7	280	40	60	4	2	0	4	0	0	0	1	0	33	4	7	1	0	0
9:15:00	53	0	280	0	60	0	2	0	4	0	0	0	1	0	33	0	7	0	0	0
16:00:00	53	0	280	0	60	0	2	0	4	0	0	0	1	0	33	0	7	0	0	0
16:15:00	65	12	326	46	70	10	2	0	5	1	1	11	1	0	37	4	7	0	0	0
16:30:00	71	6	370	44	78	8	2	0	6	1	1	0	1	0	40	3	8	1	0	0
16:45:00	86	15	419	49	88	10	3	1	6	0	1	0	1	0	43	3	8	0	0	0
17:00:00	93	7	471	52	101	13	3	0	8	2	2	1	1	0	43	0	8	0	0	0
17:15:00 17:30:00	104	11 13	515 549	44 34	116 133	15 17	3	0	8 10	0	2	0	1	0	45	2	8 12	0	0	0
17:30:00	117 131	14	549	41	141		3	0	11	2	2	0	1	0	48 50	3	12	0	0	0
18:00:00	138	7	619	29	153	8 12	3	0	12	1	2	0	1	0	52	2	12	0	0	0
18:15:00	151	13	658	39	162	9	4	1	13	1	3	1	1	0	55	3	13	1	0	0
18:30:00	154	3	685	27	170	8	4	0	13	0	3	0	1	0	58	3	13	0	0	0
18:45:00	157	3	716	31	176	6	5	1	13	0	3	0	1	0	58	0	13	0	0	0
19:00:00	163	6	753	37	182	6	5	0	13	0	3	0	1	0	60	2	13	0	0	0
19:15:00	163	0	753	0	182	0	5	0	13	0	3	0	1	0	60	0	13	0	0	0
19:15:15	163	0	753	0	182	0	5	0	13	0	3	0	1	0	60	0	13	0	0	0

Journ	Date:		ger Cars		221450 pproach	0002		Tru	cks - Eas	t Approa	ch			He	eavys - Ea	ast Appro	nach		Pedes	trians
Interval	Le	eft	Th		i –	ht	Le		Th			ght	Le		Th			ght	East	
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	22	22	4	4	0	0	0	0	0	0	0	0	0	0	0	0	1	1
7:30:00	8	5	51	29	9	5	0	0	0	0	0	0	0	0	1	1	0	0	1	0
7:45:00	9	1	81	30	19	10	0	0	1	1	0	0	0	0	2	1	0	0	1	0
8:00:00	10	1	107	26	27	8	0	0	3	2	0	0	0	0	5	3	0	0	1	0
8:15:00	14	4	121	14	38	11	0	0	3	0	0	0	0	0	6	11	0	0	1	0
8:30:00	16	2	149	28	45	7	0	0	4	11	0	0	0	0	8	2	0	0	1	0
8:45:00	19	3	175	26	50	5	1	11	5	11	1	11	0	0	11	3	1	1	1	0
9:00:00	19	0	188	13	59	9	1	0	5	0	1	0	0	0	14	3	1	0	1	0
9:15:00	19	0	188	0	59	0	1	0	5	0	1	0	0	0	14	0	1	0	1	0
16:00:00	19	0	188	0	59	0	1	0	5	0	1	0	0	0	14	0	1	0	1	0
16:15:00	25	6	222	34	73	14	1	0	6	1	1	0	0	0	18	4	11	0	1	0
16:30:00	32	7	251	29	88	15	1	0	6	0	1	0	0	0	20	2	11	0	1	0
16:45:00	34	2	277	26	107	19	1	0	6	0	1	0	0	0	20	0	1	0	1	0
17:00:00	36	2	302	25	117	10	1	0	6	0	1	0	0	0	21	1	1	0	1	0
17:15:00	36	0	330	28	127	10	1	0	6	0	1	0	0	0	22	1	1	0	1	0
17:30:00	40	4	358	28	144	17	1	0	6	0	1	0	0	0	22	0	1	0	1	0
17:45:00	44	4	380	22	148	4	1	0	7	11	1	0	0	0	23	1	1	0	1	0
18:00:00	49	5	399	19	158	10	1	0	8	1	2	1	0	0	23	0	1	0	1	0
18:15:00	51	2	420	21	168	10	1	0	9	1	2	0	0	0	23	0	1	0	1	0
18:30:00	55	4	442	22	178	10	1	0	10	1	2	0	0	0	23	0	1	0	1	0
18:45:00	60	5	457	15	182	4	1	0	10	0	2	0	0	0	23	0	1	0	1	0
19:00:00	63	3	470	13	190	8	1	0	10	0	2	0	0	0	23	0	1	0	1	0
19:15:00	63	0	470	0	190	0	1	0	10	0	2	0	0	0	23	0	1	0	1	0
19:15:15	63	0	470	0	190	0	1	0	10	0	2	0	0	0	23	0	1	0	1	0
																	l			

Interval Time 7:00:00 7:15:00 7:30:00 7:45:00 8:00:00 8:15:00 8:30:00 8:45:00	Cum 0	eft Incr	Th	ru																
7:00:00 7:15:00 7:30:00 7:45:00 8:00:00 8:15:00 8:30:00	0	Incr			Riç	jht	Le	eft	Th	ru	Riç	ıht	Le	ft	Th	ru	Riç	ght	South	Cross
7:15:00 7:30:00 7:45:00 8:00:00 8:15:00 8:30:00			Cum	Incr	Cum	Incr														
7:30:00 7:45:00 8:00:00 8:15:00 8:30:00		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45:00 8:00:00 8:15:00 8:30:00	4	4	11	11	2	2	0	0	2	2	1	1	1	1	4	4	0	0	0	0
8:00:00 8:15:00 8:30:00	11	7	28	17	2	0	0	0	2	0	1	0	1	0	5	1	0	0	0	0
8:15:00 8:30:00	16	5	51	23	3	1	0	0	2	0	1	0	2	1	7	2	0	0	0	0
8:30:00	19	3	81	30	7	4	0	0	3	1	1	0	2	0	11	4	0	0	0	0
	34	15	106	25	8	1	0	0	3	0	1	0	4	2	13	2	0	0	0	0
8:45:00	39	5	133	27	11	3	1	1	4	1	2	1	5	1	16	3	0	0	0	0
	46	7	158	25	18	7	2	1	7	3	2	0	7	2	20	4	0	0	0	0
9:00:00	50	4	192	34	22	4	2	0	12	5	3	1	10	3	25	5	0	0	0	0
9:15:00	50	0	192	0	22	0	2	0	12	0	3	0	10	0	25	0	0	0	0	0
16:00:00	50	0	192	0	22	0	2	0	12	0	3	0	10	0	25	0	0	0	0	0
16:15:00	64	14	255	63	29	7	3	1	13	1	3	0	11	1	27	2	0	0	0	0
16:30:00	76	12	300	45	34	5	3	0	15	2	3	0	12	1	30	3	0	0	0	0
16:45:00	83	7	371	71	36	2	3	0	16	1	3	0	12	0	31	1	0	0	0	0
17:00:00	93	10	446	75	40	4	3	0	18	2	3	0	14	2	36	5	0	0	0	0
	102	9	498	52	48	8	3	0	18	0	3	0	15	1	39	3	0	0	0	0
	115	13	539	41	50	2	4	1	18	0	3	0	17	2	42	3	0	0	0	0
	121	6	602	63	54	4	4	0	19	1	3	0	17	0	44	2	0	0	0	0
	129	8	652	50	57	3	4	0	21	2	3	0	17	0	47	3	0	0	0	0
	136	7	702	50	64	7	4	0	22	1	3	0	17	0	50	3	0	0	0	0
	142	6	743	41	70	6	4	0	22	0	3	0	17	0	50	0	0	0	0	0
	153	11	780	37	70	0	4	0	25	3	3	0	17	0	50	0	0	0	0	0
	153	0	813	33	75	5	4	0	26	1	3	0	17	0	50	0	0	0	0	0
	153	0	813	0	75	0	4	0	26	0	3	0	17	0	50	0	0	0	0	0
19:15:15	153	0	813	0	75	0	4	0	26	0	3	0	17	0	50	0	0	0	0	0

		Passen	ger Cars -	- West Ap	proach			Tru	cks - Wes	t Approa	ch			Не	eavys - W	est Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Rig	ght	West	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	9	9	8	8	0	0	1	1	0	0	1	1	1	1	2	2	0	0
7:30:00	13	10	21	12	13	5	0	0	1	0	0	0	1	0	1	0	2	0	1	1
7:45:00	18	5	39	18	19	6	0	0	2	1	0	0	1	0	3	2	3	1	1	0
8:00:00	26	8	58	19	26	7	0	0	3	1	0	0	3	2	3	0	4	1	1	0
8:15:00	31	5	79	21	33	7	0	0	4	1	1	1	3	0	6	3	5	1	1	0
8:30:00	38	7	97	18	41	8	1	1	5	1	1	0	3	0	6	0	9	4	1	0
8:45:00	47	9	116	19	50	9	1	0	6	11	1	0	4	1	9	3	9	0	1	0
9:00:00	47	0	137	21	57	7	1	0	6	0	1	0	6	2	10	1	9	0	1	0
9:15:00	47	0	137	0	57	0	1	0	6	0	1	0	6	0	10	0	9	0	1	0
16:00:00	47	0	137	0	57	0	1	0	6	0	1	0	6	0	10	0	9	0	1	0
16:15:00	61	14	168	31	70	13	1	0	6	0	2	1	7	1	12	2	9	0	1	0
16:30:00	74	13	214	46	81	11	1	0	6	0	2	0	7	0	13	1	9	0	1	0
16:45:00	90	16	253	39	89	8	2	1	8	2	2	0	8	1	14	1	11	2	1	0
17:00:00	101	11	295	42	101	12	2	0	8	0	2	0	8	0	14	0	11	0	1	0
17:15:00	123	22	343	48	107	6	3	1	8	0	3	1	8	0	14	0	11	0	1	0
17:30:00	131	8	391	48	117	10	3	0	9	11	3	0	9	11	14	0	11	0	1	0
17:45:00	150	19	439	48	126	9	3	0	10	11	3	0	11	2	14	0	11	0	1	0
18:00:00	164	14	471	32	134	8	3	0	10	0	3	0	11	0	14	0	11	0	1	0
18:15:00	178	14	490	19	142	8	3	0	10	0	3	0	12	1	14	0	11	0	1	0
18:30:00	181	3	515	25	151	9	3	0	10	0	3	0	12	0	14	0	11	0	1	0
18:45:00	192	11	538	23	156	5	3	0	10	0	3	0	12	0	14	0	11	0	1	0
19:00:00	194	2	558	20	163	7	3	0	10	0	3	0	12	0	14	0	11	0	1	0
19:15:00	194	0	558	0	163	0	3	0	10	0	3	0	12	0	14	0	11	0	1	0
19:15:15	194	0	558	0	163	0	3	0	10	0	3	0	12	0	14	0	11	0	1	0

Morning Peak Diag	ram	1 -	m: 7:0	Perioc 0:00 0:00	i		8:00:00 9:00:00)
Municipality: Centre Wellington Site #: 2214500003 ntersection: Wellington Rd 7 & S FFR File #: 1 Count date: 4-Aug-22 ** Non-Signalized Intersection		Per Per Per	son co son pr son ch	ondition	: d: :	n Rd 7 ru	ne N/S	
		<u> </u>	or Roa			n Rd 7 ru		
North Leg Total: 409 North Entering: 222 North Peds: 0 Peds Cross: Heavys Trucks Cars Totals	27 0 3 0 189 3 219 3 W	27 3 192 Wellington N S	n Rd 7	Heavys Trucks Cars Totals	7 158 187	East Peds Cars True 2 0 0 0 0 0	Leg Total: Entering: Peds: Cross: Cks Heavy: 0 0 0	2 0 X
	Wellington	Rd 7	介			Cars True	cks Heavy	s Totals
Cars 189 Trucks 3 Heavys 27		Cars Trucks Heavys	156 7 22	0 0 0	156 7 22	Sout	c Cross: h Peds: h Entering:	⋈ 0 185

Afternoon I	Peak Dia	agran	•	ecified m: 16 19		d	-	om:	our Pea 16:00:0 17:00:0	00
	500003 ngton Rd 7 & S g-22		Per Per Per	son co son pr son ch	ounted epare necked	l: d: d:		d 7	- N/C	
North Leg Total: 616 North Entering: 280 North Peds: 0 Peds Cross: ✓	Heavys Trucks Cars Totals	10 0 5 0 259 6 274 6	10 5 265	Î	Heavys Trucks	13 6 317 336	Cars 7 2 9	East L East E East P Peds (eg Total: ntering: eds:	9 0 X
	Cars 261 Trucks 5 Heavys 10 Totals 276	Wellingto	on Rd 7 Cars Trucks Heavys	310 6 13	4 0 0	314 6 13	Cars 10	0 Peds 0 South		10 ⋈ 0

Total Count Diagram

Municipality: Centre Wellington

Site #: 2214500003

Intersection: Wellington Rd 7 & South St

TFR File #:

Count date: 4-Aug-22 Weather conditions:

Person counted: Person prepared:

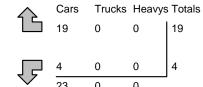
Person checked:

** Non-Signalized Intersection **

Major Road: Wellington Rd 7 runs N/S

North Leg Total: 2244 North Entering: 1093 North Peds: Peds Cross:

Heavys 69 0 Trucks 19 0 Cars 986 19 Totals 1074 19


69 19 1005

Heavys 66 Trucks 26 Cars 1059 Totals 1151 East Leg Total: 50 East Entering: East Peds: X

Peds Cross:

Wellington Rd 7

Cars 990

Heavys 69 1078 Totals

Trucks 19

Cars Trucks Heavys

1048 1040 8 26 26 0 0 66 66 Totals 1132 8

Cars Trucks Heavys Totals 27 0 0 27

> Peds Cross: M South Peds: South Entering: 1140

South Leg Total: 2218

Traffic Count Summary

Intersection:	Wellingt	on Rd 7	& South	St	Count [Date: 4-Aug-22	N	Municipality:	Centre We	ellington		
		h Appro							outh Appro		tals	
Hour		es Cars, T			Total	North/South	Hour		cludes Cars, 1			Total
Ending				Grand	Peds	Total Approaches	Ending	a \Box			Grand	Peds
	Left	Thru	Right	Total				Lef		Right	Total	
7:00:00	0	0	0	0	0	0	7:00:0			0	0	0
8:00:00	3	185	0	188	0	312	8:00:0			0	124	0
9:00:00	3	219	0	222	0	407	9:00:0			0	185	0
16:00:00	0	0	0	0	0	0	16:00:			0	0	0
17:00:00	6	274	0	280	0	613	17:00:			4	333	0
18:00:00	5	209	0	214	0	496	18:00:			1	282	0
19:00:00	2	187	0	189	0	405	19:00:	00 0	213	3	216	0
Totals:	19	1074	0 	1093	0	2233	S Tota		1132	8 	1140	0
Hour	Includ	t Appro es Cars, T	rucks. & F	leavys	Total	East/West	Hour		lest Approcludes Cars, 7	rucks. & F	leavys	Total
Ending				Grand	Peds	Total Approaches	Ending	n			Grand	Peds
	Left	Thru	Right	Total				Let		Right	Total	
7:00:00	0	0	0	0	0	0	7:00:0			0	0	0
8:00:00	0	0	0	0	0	0	8:00:0			0	0	0
9:00:00	0	0	2	2	0	2	9:00:0			0	0	0
16:00:00	0	0	0	0	0	0	16:00:			0	0	0
17:00:00	2 2	0	7	9	0	9	17:00:			0	0	0
18:00:00	0	0 0	5 5	7 5	0 0	7 5	18:00:	I .		0	0	0
19:00:00	U	U	5	5	U	5	19:00:	00 0				U
1					0	23	W Tota	als: 0	0	0		0
Totals:	4	0	19 Calc	23	<u>0</u> /alues f	•	•				0	
	-		Calc	ulated \	/alues f	or Traffic Cr	ossing	Major :	Street	•	0	
Totals: Hours E	nding:	7:00				•	•	Major	Street	0:00	1 0	0

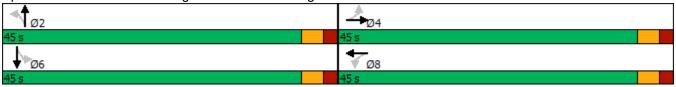
		Passenç	ger Cars -	North A	pproach			Truc	cks - Nort	h Approa	ach			He	avys - No	orth Appr	oach		Pedes	trians
Interval	L	eft	Th	ru	Riç	jht	Le	eft	Th	ru	Rig	ght	Le	ft	Th	ru	Riç	ght	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	2	2	36	36	0	0	0	0	0	0	0	0	0	0	4	4	0	0	0	0
7:30:00	2	0	87	51	0	0	0	0	1	1	0	0	0	0	9	5	0	0	0	0
7:45:00	2	0	129	42	0	0	0	0	1	0	0	0	0	0	12	3	0	0	0	0
8:00:00	3	1	168	39	0	0	0	0	2	1	0	0	0	0	15	3	0	0	0	0
8:15:00	4	1	212	44	0	0	0	0	3	1	0	0	0	0	24	9	0	0	0	0
8:30:00	5	1	258	46	0	0	0	0	4	1	0	0	0	0	34	10	0	0	0	0
8:45:00	5	0	309	51	0	0	0	0	5	1	0	0	0	0	38	4	0	0	0	0
9:00:00	6	1	357	48	0	0	0	0	5	0	0	0	0	0	42	4	0	0	0	0
9:15:00	6	0	357	0	0	0	0	0	5	0	0	0	0	0	42	0	0	0	0	0
16:00:00	6	0	357	0	0	0	0	0	5	0	0	0	0	0	42	0	0	0	0	0
16:15:00	7	1	426	69	0	0	0	0	8	3	0	0	0	0	45	3	0	0	0	0
16:30:00	9	2	488	62	0	0	0	0	9	1	0	0	0	0	47	2	0	0	0	0
16:45:00	10	1	548	60	0	0	0	0	9	0	0	0	0	0	52	5	0	0	0	0
17:00:00	12	2	616	68	0	0	0	0	10	1	0	0	0	0	52	0	0	0	0	0
17:15:00	12	0	670	54	0	0	0	0	11	1	0	0	0	0	54	2	0	0	0	0
17:30:00	14	2	715	45	0	0	0	0	13	2	0	0	0	0	57	3	0	0	0	0
17:45:00	16	2	764	49	0	0	0	0	14	1	0	0	0	0	59	2	0	0	0	0
18:00:00	17	1	811	47	0	0	0	0	15	1	0	0	0	0	61	2	0	0	0	0
18:15:00	18	1	861	50	0	0	0	0	16	1	0	0	0	0	64	3	0	0	0	0
18:30:00	18	0	901	40	0	0	0	0	17	1	0	0	0	0	67	3	0	0	0	0
18:45:00	19	1	940	39	0	0	0	0	17	0	0	0	0	0	67	0	0	0	0	0
19:00:00	19	0	986	46	0	0	0	0	19	2	0	0	0	0	69	2	0	0	0	0
19:15:00	19	0	986	0	0	0	0	0	19	0	0	0	0	0	69	0	0	0	0	0
19:15:15	19	0	986	0	0	0	0	0	19	0	0	0	0	0	69	0	0	0	0	0
				•	-	-		-						•						

		Passen	ger Cars	- East Ap	proach			Tru	cks - Eas	t Approa	ch			He	eavys - Ea	ast Appro	ach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Riç	ght	East (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15:00	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30:00	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45:00	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00:00	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15:00	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00:00	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15:00	1	11	0	0	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30:00	11	0	0	0	7	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45:00	1	0	0	0	8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00:00	2	1	0	0	9	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15:00	3	11	0	0	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30:00	3	0	0	0	11	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45:00	4	11	0	0	13	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00:00	4	0	0	0	14	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15:00	4	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30:00	4	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45:00	4	0	0	0	17	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:00:00	4	0	0	0	19	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:15:00	4	0	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:15:15	4	0	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Count	Date:	4-Aug-2	22	Site #:	221450	0003	i													
		Passeng	er Cars -	South A	pproach			Truc	ks - Sout	h Appro	ach			He	avys - So	uth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Rig	jht	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Rig	ght	South	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	0	0	17	17	0	0	0	0	2	2	0	0	0	0	7	7	0	0	0	0
7:30:00	0	0	41	24	0	0	0	0	2	0	0	0	0	0	7	0	0	0	0	0
7:45:00	0	0	70	29	0	0	0	0	2	0	0	0	0	0	11	4	0	0	0	0
8:00:00	0	0	106	36	0	0	0	0	3	11	0	0	0	0	15	4	0	0	0	0
8:15:00	0	0	146	40	0	0	0	0	3	0	0	0	0	0	20	5	0	0	0	0
8:30:00	0	0	181	35	0	0	0	0	6	3	0	0	0	0	24	4	0	0	0	0
8:45:00	0	0	221	40	0	0	0	0	10	4	0	0	0	0	30	6	0	0	0	0
9:00:00	0	0	262	41	0	0	0	0	10	0	0	0	0	0	37	7	0	0	0	0
9:15:00	0	0	262	0	0	0	0	0	10	0	0	0	0	0	37	0	0	0	0	0
16:00:00	0	0	262	0	0	0	0	0	10	0	0	0	0	0	37	0	0	0	0	0
16:15:00	0	0	338	76	0	0	0	0	11	1	0	0	0	0	39	2	0	0	0	0
16:30:00	0	0	396	58	1	1	0	0	13	2	0	0	0	0	42	3	0	0	0	0
16:45:00	0	0	487	91	3	2	0	0	14	1	0	0	0	0	43	1 7	0	0	0	0
17:00:00 17:15:00	0	0	572 642	85 70	4	1	0	0	16 16	2	0	0	0	0	50 54	7	0	0	0	0
17:15:00	0	0	701	59	4	0	0	0	18	2	0	0	0	0	54 58	4	0	0	0	0
17:30:00	0	0	770	69	5	1	0	0	19	1	0	0	0	0	61	3	0	0	0	0
18:00:00	0	0	836	66	5	0	0	0	20	1	0	0	0	0	63	2	0	0	0	0
18:15:00	0	0	905	69	6	1	0	0	21	1	0	0	0	0	66	3	0	0	0	0
18:30:00	0	0	955	50	7	1	0	0	22	1	0	0	0	0	66	0	0	0	0	0
18:45:00	0	0	1000	45	8	1	0	0	25	3	0	0	0	0	66	0	0	0	0	0
19:00:00	0	0	1040	40	8	0	0	0	26	1	0	0	0	0	66	0	ő	0	0	0
19:15:00	0	0	1040	0	8	0	0	0	26	0	0	0	0	0	66	0	0	0	0	0
19:15:15	0	0	1040	0	8	0	0	0	26	0	0	0	0	0	66	0	0	0	0	0
							_													

	Passenger Cars - West Approach Left Thru Righ Cum Incr Cum						Tru	cks - Wes	t Approa	ıch			He	avys - W	est Appr	oach		Pedes	trians	
Interval	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ght	West (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix C – Synchro Analysis Output – Existing Traffic Volumes


	۶	-	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		44	
Traffic Volume (vph)	33	87	11	107	37	125	30	161	
Future Volume (vph)	33	87	11	107	37	125	30	161	
Lane Group Flow (vph)	0	165	0	156	0	186	0	235	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0		39.0	39.0	
Total Split (s)	45.0	45.0	45.0	45.0	45.0		45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%		50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.58		0.51		0.19		0.22	
Control Delay		28.2		25.5		5.2		5.2	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		28.2		25.5		5.2		5.2	
Queue Length 50th (m)		15.4		14.5		6.8		8.6	
Queue Length 95th (m)		32.0		30.0		17.3		21.0	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		960		1053		995		1049	
Starvation Cap Reductn	l	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.17		0.15		0.19		0.22	
Intersection Summary									
Cycle Length: 90									

Cycle Length: 90 Actuated Cycle Length: 62.3

Natural Cycle: 80

Control Type: Semi Act-Uncoord

1: Wellington Road 7 & Wellington Road 18 Splits and Phases:

Synchro 11 Report JD Engineering 11-01-2022

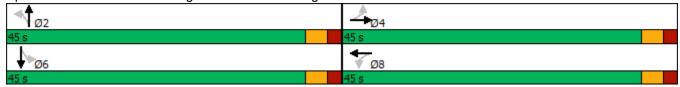
	٦	→	•	•	←	4	•	†	<i>></i>	\	Ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	33	87	38	11	107	33	37	125	16	30	161	35
Future Volume (vph)	33	87	38	11	107	33	37	125	16	30	161	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	.000
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.97			0.97			0.99			0.98	
Flt Protected		0.99			1.00			0.99			0.99	
Satd. Flow (prot)		1611			1663			1625			1648	
Flt Permitted		0.91			0.98			0.92			0.95	
Satd. Flow (perm)		1482			1628			1504			1583	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	34	91	40	11	111	34	39	130	17	31	168	36
RTOR Reduction (vph)	0	19	0	0	16	0	0	2	0	0	4	0
Lane Group Flow (vph)	0	146	0	0	140	0	0	184	0	0	231	0
Heavy Vehicles (%)	12%	11%	18%	9%	12%	6%	19%	14%	6%	0%	14%	14%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4	•		8			2	_		6		
Actuated Green, G (s)		11.1			11.1			41.2			41.2	
Effective Green, g (s)		11.1			11.1			41.2			41.2	
Actuated g/C Ratio		0.18			0.18			0.66			0.66	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		264			290			994			1046	
v/s Ratio Prot												
v/s Ratio Perm		c0.10			0.09			0.12			c0.15	
v/c Ratio		0.55			0.48			0.18			0.22	
Uniform Delay, d1		23.3			23.0			4.1			4.2	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		2.5			1.3			0.4			0.5	
Delay (s)		25.8			24.3			4.5			4.7	
Level of Service		С			С			Α			Α	
Approach Delay (s)		25.8			24.3			4.5			4.7	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Dela			13.5	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.29									
Actuated Cycle Length (62.3			ost time	` '		10.0			
Intersection Capacity Ut	ilization		40.9%	10	CU Leve	el of Sei	rvice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

JD Engineering Synchro 11 Report 11-01-2022

2. Wilder Deck Transparia Ct VV a VVCIIII gent Trada 7																
	•	→	•	•	←	•	4	†	/	>	ļ	4				
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR				
Lane Configurations		4			4		¥	ĵ»		7	ĵ»					
Traffic Volume (veh/h)	3	12	15	29	9	13	8	177	25	16	205	9				
Future Volume (Veh/h)	3	12	15	29	9	13	8	177	25	16	205	9				
Sign Control		Stop			Stop			Free			Free					
Grade		0%			0%			0%			0%					
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94				
Hourly flow rate (vph)	3	13	16	31	10	14	9	188	27	17	218	10				
Pedestrians																
Lane Width (m)																
Walking Speed (m/s)																
Percent Blockage																
Right turn flare (veh)																
Median type								None			None					
Median storage veh)								110110			110110					
Upstream signal (m)																
pX, platoon unblocked																
vC, conflicting volume	482	490	223	494	482	202	228			215						
vC1, stage 1 conf vol																
vC2, stage 2 conf vol																
vCu, unblocked vol	482	490	223	494	482	202	228			215						
tC, single (s)	7.4	6.5	6.3	7.2	6.6	6.3	4.3			4.1						
tC, 2 stage (s)		0.0	0.0		0.0	0.0										
tF (s)	3.8	4.0	3.4	3.6	4.1	3.4	2.4			2.2						
p0 queue free %	99	97	98	93	98	98	99			99						
cM capacity (veh/h)	426	472	790	451	462	824	1216			1367						
	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2										
Direction, Lane # Volume Total																
	32	55	9	215	17	228										
Volume Left	3	31	9	0	17	0										
Volume Right	16	14	0	27	0	10										
cSH	584	512	1216	1700	1367	1700										
Volume to Capacity	0.05	0.11	0.01	0.13	0.01	0.13										
Queue Length 95th (m)	1.4	2.9	0.2	0.0	0.3	0.0										
Control Delay (s)	11.5	12.9	8.0	0.0	7.7	0.0										
Lane LOS	В	В	Α		A											
Approach Delay (s)	11.5	12.9	0.3		0.5											
Approach LOS	В	В														
Intersection Summary																
Average Delay			2.3													
Intersection Capacity Uti	ilization		29.5%	[0	CU Leve	el of Ser	vice		Α							
Analysis Period (min)			15													

JD Engineering Synchro 11 Report 11-01-2022

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	57	164	17	122	48	271	41	205	
Future Volume (vph)	57	164	17	122	48	271	41	205	
Lane Group Flow (vph)	0	279	0	205	0	351	0	303	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.72		0.48		0.35		0.31	
Control Delay		32.4		21.7		8.7		8.0	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		32.4		21.7		8.7		8.0	
Queue Length 50th (m)		31.2		19.1		19.6		15.7	
Queue Length 95th (m)		54.9		36.4		44.3		36.9	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		952		1031		994		982	
Starvation Cap Reductr	1	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.29		0.20		0.35		0.31	
Intersection Summary									
Cycle Length: 90									


Cycle Length: 90

Actuated Cycle Length: 66.3

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Splits and Phases: 1: Wellington Road 7 & Wellington Road 18

JD Engineering Synchro 11 Report 11-01-2022

	۶	→	•	•	←	4	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	57	164	47	17	122	58	48	271	18	41	205	44
Future Volume (vph)	57	164	47	17	122	58	48	271	18	41	205	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.98			0.96			0.99			0.98	
Flt Protected		0.99			1.00			0.99			0.99	
Satd. Flow (prot)		1755			1741			1763			1739	
Flt Permitted		0.88			0.96			0.92			0.92	
Satd. Flow (perm)		1562			1684			1639			1612	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	59	171	49	18	127	60	50	282	19	43	214	46
RTOR Reduction (vph)	0	11	0	0	23	0	0	2	0	0	5	0
Lane Group Flow (vph)	0	268	0	0	182	0	0	349	0	0	298	0
Heavy Vehicles (%)	5%	4%	6%	0%	7%	0%	10%	6%	0%	2%	7%	7%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		16.1			16.1			40.2			40.2	
Effective Green, g (s)		16.1			16.1			40.2			40.2	
Actuated g/C Ratio		0.24			0.24			0.61			0.61	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		379			408			993			977	
v/s Ratio Prot												
v/s Ratio Perm		c0.17			0.11			c0.21			0.18	
v/c Ratio		0.71			0.45			0.35			0.30	
Uniform Delay, d1		22.9			21.3			6.5			6.3	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		5.9			0.8			1.0			0.8	
Delay (s)		28.8			22.1			7.5			7.1	
Level of Service		С			С			_ A			A	
Approach Delay (s)		28.8			22.1			7.5			7.1	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Dela	,		15.3	F	ICM 20	00 Leve	l of Ser	vice	В			
HCM 2000 Volume to C		ratio	0.45				()		40.0			
Actuated Cycle Length (66.3			ost time	` '		10.0			
Intersection Capacity Ut	ilization		60.1%	10	JU Leve	el of Sei	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

JD Engineering Synchro 11 Report 11-01-2022

	۶	→	•	•	←	4	4	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	f)		7	f)	
Traffic Volume (veh/h)	4	15	21	33	14	21	13	305	80	20	253	7
Future Volume (Veh/h)	4	15	21	33	14	21	13	305	80	20	253	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	4	16	22	35	15	22	14	321	84	21	266	7
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	690	744	270	729	706	363	273			405		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	690	744	270	729	706	363	273			405		
tC, single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	99	95	97	89	96	97	99			98		
cM capacity (veh/h)	331	335	741	308	352	675	1256			1165		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	42	72	14	405	21	273						
Volume Left	4	35	14	0	21	0						
Volume Right	22	22	0	84	0	7						
cSH	469	382	1256	1700	1165	1700						
Volume to Capacity	0.09	0.19	0.01	0.24	0.02	0.16						
Queue Length 95th (m)	2.3	5.5	0.3	0.0	0.4	0.0						
Control Delay (s)	13.4	16.6	7.9	0.0	8.1	0.0						
Lane LOS	В	С	Α		Α							
Approach Delay (s)	13.4	16.6	0.3		0.6							
Approach LOS	В	С										
Intersection Summary												
Average Delay			2.5									
Intersection Capacity Uti	ilization		38.1%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

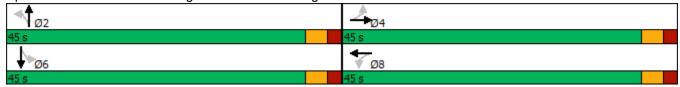
JD Engineering Synchro 11 Report 11-01-2022

Appendix D – Synchro Analysis Output – Background Traffic Volumes

1: Wellington Road 7 & Wellington Road 18

	•	-	•	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	41	108	14	133	46	156	37	201	
Future Volume (vph)	41	108	14	133	46	156	37	201	
Lane Group Flow (vph)	0	205	0	197	0	232	0	294	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.65		0.56		0.25		0.29	
Control Delay		30.5		26.5		6.4		6.6	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		30.5		26.5		6.4		6.6	
Queue Length 50th (m)		20.4		19.5		10.0		12.9	
Queue Length 95th (m)		39.9		37.4		24.7		30.8	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		923		1038		940		999	
Starvation Cap Reductn	1	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.22		0.19		0.25		0.29	
Intersection Cummers									

Intersection Summary


Cycle Length: 90

Actuated Cycle Length: 63.2

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Splits and Phases: 1: Wellington Road 7 & Wellington Road 18

JD Engineering Synchro 11 Report 11-01-2022

	٠	→	•	•	←	•	4	†	<i>></i>	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	41	108	47	14	133	41	46	156	20	37	201	44
Future Volume (vph)	41	108	47	14	133	41	46	156	20	37	201	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.97			0.97			0.99			0.98	
Flt Protected		0.99			1.00			0.99			0.99	
Satd. Flow (prot)		1612			1663			1625			1648	
Flt Permitted		0.88			0.97			0.90			0.94	
Satd. Flow (perm)		1439			1623			1476			1565	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	43	112	49	15	139	43	48	162	21	39	209	46
RTOR Reduction (vph)	0	18	0	0	16	0	0	3	0	0	5	0
Lane Group Flow (vph)	0	187	0	0	181	0	0	229	0	0	289	0
Heavy Vehicles (%)	12%	11%	18%	9%	12%	6%	19%	14%	6%	0%	14%	14%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		13.0			13.0			40.1			40.1	
Effective Green, g (s)		13.0			13.0			40.1			40.1	
Actuated g/C Ratio		0.21			0.21			0.64			0.64	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		296			334			937			994	
v/s Ratio Prot												
v/s Ratio Perm		c0.13			0.11			0.16			c0.18	
v/c Ratio		0.63			0.54			0.24			0.29	
Uniform Delay, d1		22.9			22.4			5.0			5.1	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		4.3			1.8			0.6			0.7	
Delay (s)		27.2			24.2			5.6			5.9	
Level of Service		С			С			Α			Α	
Approach Delay (s)		27.2			24.2			5.6			5.9	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Dela	у		14.4	H	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.37									
Actuated Cycle Length (63.1			ost time			10.0			
Intersection Capacity Ut	ilization		48.7%	[0	CU Leve	el of Sei	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

JD Engineering Synchro 11 Report 11-01-2022

	٠	→	•	•	←	4	•	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	f)		7	f)	
Traffic Volume (veh/h)	4	15	19	36	11	16	10	221	31	20	255	11
Future Volume (Veh/h)	4	15	19	36	11	16	10	221	31	20	255	11
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	4	16	20	38	12	17	11	235	33	21	271	12
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)								110110			110110	
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	599	609	277	614	598	252	283			268		
vC1, stage 1 conf vol	000	000	211	014	000	202	200			200		
vC2, stage 2 conf vol												
vCu, unblocked vol	599	609	277	614	598	252	283			268		
tC, single (s)	7.4	6.5	6.3	7.2	6.6	6.3	4.3			4.1		
tC, 2 stage (s)	7.7	0.0	0.0	1.2	0.0	0.5	7.0			7.1		
tF (s)	3.8	4.0	3.4	3.6	4.1	3.4	2.4			2.2		
p0 queue free %	99	96	97	90	97	98	99			98		
cM capacity (veh/h)	348	402	736	367	393	773	1158			1307		
							1130			1307		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	40	67	11	268	21	283						
Volume Left	4	38	11	0	21	0						
Volume Right	20	17	0	33	0	12						
cSH	510	429	1158	1700	1307	1700						
Volume to Capacity	0.08	0.16	0.01	0.16	0.02	0.17						
Queue Length 95th (m)	2.0	4.4	0.2	0.0	0.4	0.0						
Control Delay (s)	12.7	14.9	8.1	0.0	7.8	0.0						
Lane LOS	В	В	Α		Α							
Approach Delay (s)	12.7	14.9	0.3		0.5							
Approach LOS	В	В										
Intersection Summary												
Average Delay			2.6									
Intersection Capacity Uti	lization		33.5%	[(CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									
. ,												

1: Wellington Road 7 & Wellington Road 18

	•	-	•	•	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	71	204	21	152	60	338	51	255	
Future Volume (vph)	71	204	21	152	60	338	51	255	
Lane Group Flow (vph)	0	348	0	255	0	438	0	376	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.79		0.51		0.48		0.41	
Control Delay		35.7		21.8		12.3		11.2	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		35.7		21.8		12.3		11.2	
Queue Length 50th (m)		42.1		25.5		31.7		25.1	
Queue Length 95th (m)		70.7		45.2		71.4		58.1	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		868		969		918		907	
Starvation Cap Reductn	1	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.40		0.26		0.48		0.41	
Intersection Cummens									

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 70.4

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Splits and Phases: 1: Wellington Road 7 & Wellington Road 18

JD Engineering Synchro 11 Report

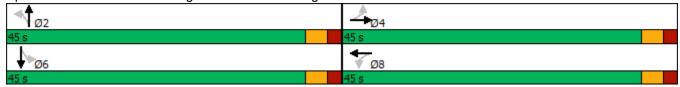
	۶	→	•	•	+	•	•	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	71	204	59	21	152	72	60	338	22	51	255	55
Future Volume (vph)	71	204	59	21	152	72	60	338	22	51	255	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.98			0.96			0.99			0.98	
Flt Protected		0.99			1.00			0.99			0.99	
Satd. Flow (prot)		1755			1741			1763			1739	
Flt Permitted		0.85			0.96			0.90			0.90	
Satd. Flow (perm)		1507			1673			1604			1576	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	74	212	61	22	158	75	62	352	23	53	266	57
RTOR Reduction (vph)	0	11	0	0	21	0	0	2	0	0	6	0
Lane Group Flow (vph)	0	337	0	0	234	0	0	436	0	0	370	0
Heavy Vehicles (%)	5%	4%	6%	0%	7%	0%	10%	6%	0%	2%	7%	7%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		20.1			20.1			40.3			40.3	
Effective Green, g (s)		20.1			20.1			40.3			40.3	
Actuated g/C Ratio		0.29			0.29			0.57			0.57	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		430			477			918			902	
v/s Ratio Prot												
v/s Ratio Perm		c0.22			0.14			c0.27			0.24	
v/c Ratio		0.78			0.49			0.48			0.41	
Uniform Delay, d1		23.2			20.9			8.8			8.4	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		9.1			8.0			1.8			1.4	
Delay (s)		32.2			21.7			10.6			9.8	
Level of Service		С			С			В			Α	
Approach Delay (s)		32.2			21.7			10.6			9.8	
Approach LOS		С			С			В			Α	
Intersection Summary												
HCM 2000 Control Dela	,		17.7	H	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.58									
Actuated Cycle Length (,		70.4			ost time			10.0			
Intersection Capacity Ut	ilization		73.0%	10	CU Leve	el of Ser	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												

2. Middle Strott Car Partia St. Tr. d. Trollington Tread T												
	۶	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ĵ»		ሻ	^	
Traffic Volume (veh/h)	5	19	26	41	17	26	16	380	100	25	315	9
Future Volume (Veh/h)	5	19	26	41	17	26	16	380	100	25	315	9
Sign Control `		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	5	20	27	43	18	27	17	400	105	26	332	9
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	858	928	336	908	880	452	341			505		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	858	928	336	908	880	452	341			505		
tC, single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	98	92	96	81	94	96	99			98		
cM capacity (veh/h)	246	260	679	224	277	601	1185			1070		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	52	88	17	505	26	341						
Volume Left	5	43	17	0	26	0						
Volume Right	27	27	0	105	0	9						
cSH	379	292	1185	1700	1070	1700						
Volume to Capacity	0.14	0.30	0.01	0.30	0.02	0.20						
Queue Length 95th (m)	3.8	9.9	0.3	0.0	0.6	0.0						
Control Delay (s)	16.0	22.6	8.1	0.0	8.4	0.0						
Lane LOS	С	С	Α		Α							
Approach Delay (s)	16.0	22.6	0.3		0.6							
Approach LOS	С	С										
Intersection Summary												
Average Delay			3.1									
Intersection Capacity Uti	ilization		44.2%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

1: Wellington Road 7 & Wellington Road 18

	•	-	•	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	51	135	17	166	57	194	47	250	
Future Volume (vph)	51	135	17	166	57	194	47	250	
Lane Group Flow (vph)	0	255	0	244	0	287	0	365	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.73		0.61		0.33		0.39	
Control Delay		33.8		27.0		8.4		8.8	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		33.8		27.0		8.4		8.8	
Queue Length 50th (m)		27.5		25.5		15.2		19.9	
Queue Length 95th (m)		50.4		46.0		36.9		46.8	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		856		995		880		945	
Starvation Cap Reductn	1	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.30		0.25		0.33		0.39	
Intersection Cummery									

Intersection Summary


Cycle Length: 90

Actuated Cycle Length: 65.9

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Splits and Phases: 1: Wellington Road 7 & Wellington Road 18

JD Engineering Synchro 11 Report

	۶	→	•	•	←	•	4	†	~	/		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	51	135	59	17	166	51	57	194	25	47	250	54
Future Volume (vph)	51	135	59	17	166	51	57	194	25	47	250	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.97			0.97			0.99			0.98	
Flt Protected		0.99			1.00			0.99			0.99	
Satd. Flow (prot)		1612			1663			1625			1648	
Flt Permitted		0.85			0.97			0.88			0.93	
Satd. Flow (perm)		1391			1619			1439			1544	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	53	141	61	18	173	53	59	202	26	49	260	56
RTOR Reduction (vph)	0	18	0	0	15	0	0	3	0	0	5	0
Lane Group Flow (vph)	0	237	0	0	229	0	0	284	0	0	360	0
Heavy Vehicles (%)	12%	11%	18%	9%	12%	6%	19%	14%	6%	0%	14%	14%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		15.7			15.7			40.2			40.2	
Effective Green, g (s)		15.7			15.7			40.2			40.2	
Actuated g/C Ratio		0.24			0.24			0.61			0.61	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		331			385			877			941	
v/s Ratio Prot												
v/s Ratio Perm		c0.17			0.14			0.20			c0.23	
v/c Ratio		0.72			0.59			0.32			0.38	
Uniform Delay, d1		23.1			22.3			6.2			6.5	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		7.2			2.5			1.0			1.2	
Delay (s)		30.3			24.7			7.2			7.7	
Level of Service		С			С			Α			Α	
Approach Delay (s)		30.3			24.7			7.2			7.7	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Dela	,		16.2	H	ICM 20	00 Leve	of Ser	/ice	В			
HCM 2000 Volume to C		ratio	0.48	_			, ,					
Actuated Cycle Length (65.9			ost time	` '		10.0			
Intersection Capacity Ut	ilization		58.6%	[(CU Leve	el of Se	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

2. Wildiestock Haybaria of Wa Wollington Hoad												
	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ች	f)		ሻ	f)	
Traffic Volume (veh/h)	5	19	23	45	14	20	12	275	39	25	318	14
Future Volume (Veh/h)	5	19	23	45	14	20	12	275	39	25	318	14
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	5	20	24	48	15	21	13	293	41	27	338	15
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	747	760	346	766	746	314	353			334		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	747	760	346	766	746	314	353			334		
tC, single (s)	7.4	6.5	6.3	7.2	6.6	6.3	4.3			4.1		
tC, 2 stage (s)												
tF (s)	3.8	4.0	3.4	3.6	4.1	3.4	2.4			2.2		
p0 queue free %	98	94	96	83	95	97	99			98		
cM capacity (veh/h)	267	327	673	281	320	713	1089			1237		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	49	84	13	334	27	353						
Volume Left	5	48	13	0	27	0						
Volume Right	24	21	0	41	0	15						
cSH	424	340	1089	1700	1237	1700						
Volume to Capacity	0.12	0.25	0.01	0.20	0.02	0.21						
Queue Length 95th (m)	3.1	7.6	0.3	0.0	0.5	0.0						
Control Delay (s)	14.6	19.0	8.3	0.0	8.0	0.0						
Lane LOS	В	С	Α		Α							
Approach Delay (s)	14.6	19.0	0.3		0.6							
Approach LOS	В	С										
Intersection Summary												
Average Delay			3.1									
Intersection Capacity Uti	ilization		38.6%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

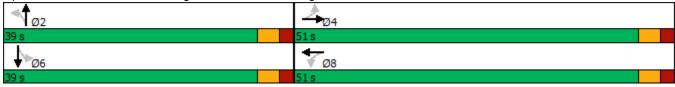
1: Wellington Road 7 & Wellington Road 18

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT Lane Configurations 4 4 4 4 4 4 4 4 4 4 318 75 421 64 318 318 18 18 75 421 64 318 318 18 18 18 75 421 64 318 318 18 18 75 421 64 318 318 2 6 6 6 6 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78		ᄼ	-	•	←	4	†	-	↓	
Traffic Volume (vph) 89 255 26 189 75 421 64 318 Future Volume (vph) 89 255 26 189 75 421 64 318 Lane Group Flow (vph) 0 435 0 318 0 546 0 469 Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 4 8 2 6 6 Detector Phase 4 4 8 2 6 6 Switch Phase 4 4 8 8 2 2 6 6 Switch Phase 4 4 8 8 2 2 6 6 Switch Phase 4 4 8 8 2 2 6 6 Switch Phase 4 4 8 8 2 2 6 6 Switch Phase 50<	Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Traffic Volume (vph) 89 255 26 189 75 421 64 318 Future Volume (vph) 89 255 26 189 75 421 64 318 Lane Group Flow (vph) 0 435 0 318 0 546 0 469 Turn Type Perm NA Perm NA Perm NA Perm NA Permitted Phases 4 8 2 6 6 Detector Phase 4 4 8 2 2 6 Switch Phase 4 4 8 8 2 2 6 Minimum Initial (s) 5.0	Lane Configurations		43-		4		4		- 43-	
Future Volume (vph) 89 255 26 189 75 421 64 318 Lane Group Flow (vph) 0 435 0 318 0 546 0 469 Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 4 8 2 6 6 Permitted Phases 4 4 8 2 6 6 Switch Phase Minimum Initial (s) 5.0 5.	Traffic Volume (vph)	89		26		75		64		
Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 4 8 2 6 Permitted Phases 4 8 2 6 Detector Phase 4 4 8 8 2 2 6 Switch Phase 8 2 2 6 6 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 39.0		89	255	26	189	75	421	64	318	
Protected Phases	Lane Group Flow (vph)	0	435	0	318	0	546	0	469	
Permitted Phases	Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Detector Phase 4	Protected Phases		4		8		2		6	
Switch Phase Minimum Initial (s) 5.0 39.0 30.0 30.0 30.0 30.0 30.0	Permitted Phases	4		8		2		6		
Minimum Initial (s) 5.0 39.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 <td>Detector Phase</td> <td>4</td> <td>4</td> <td>8</td> <td>8</td> <td>2</td> <td>2</td> <td>6</td> <td>6</td> <td></td>	Detector Phase	4	4	8	8	2	2	6	6	
Minimum Split (s) 39.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 <td>Switch Phase</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Switch Phase									
Minimum Split (s) 39.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 <td>Minimum Initial (s)</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td></td>	Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Total Split (%) 56.7% 56.7% 56.7% 56.7% 43.3% 43.3% 43.3% 43.3% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	` ,	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (%) 56.7% 56.7% 56.7% 56.7% 43.3% 43.3% 43.3% 43.3% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Total Split (s)	51.0	51.0	51.0	51.0	39.0	39.0	39.0	39.0	
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0		56.7%	56.7%	56.7%	56.7%	43.3%	43.3%	43.3%	43.3%	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Recall Mode None None None None None None None Non	Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Recall Mode None None None None Max Max Max V/c Ratio 0.84 0.53 0.69 0.60 Control Delay 34.2 18.7 20.7 17.5 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 34.2 18.7 20.7 17.5 Queue Length 50th (m) 49.8 29.2 50.2 39.7 Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) 8ase Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Volume Call Mode None None None None Max Max <t< td=""><td>Lost Time Adjust (s)</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td></t<>	Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Lead-Lag Optimize? Recall Mode None None None Max Max Max Max v/c Ratio 0.84 0.53 0.69 0.60 Control Delay 34.2 18.7 20.7 17.5 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 34.2 18.7 20.7 17.5 Queue Length 50th (m) 49.8 29.2 50.2 39.7 Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0			5.0		5.0		5.0		5.0	
Recall Mode None None None Max Max Max Max v/c Ratio 0.84 0.53 0.69 0.60 Control Delay 34.2 18.7 20.7 17.5 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 34.2 18.7 20.7 17.5 Queue Length 50th (m) 49.8 29.2 50.2 39.7 Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Lead/Lag									
v/c Ratio 0.84 0.53 0.69 0.60 Control Delay 34.2 18.7 20.7 17.5 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 34.2 18.7 20.7 17.5 Queue Length 50th (m) 49.8 29.2 50.2 39.7 Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Lead-Lag Optimize?									
Control Delay 34.2 18.7 20.7 17.5 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 34.2 18.7 20.7 17.5 Queue Length 50th (m) 49.8 29.2 50.2 39.7 Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Recall Mode	None	None	None	None	Max	Max	Max	Max	
Queue Delay 0.0 0.0 0.0 0.0 Total Delay 34.2 18.7 20.7 17.5 Queue Length 50th (m) 49.8 29.2 50.2 39.7 Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	v/c Ratio		0.84		0.53		0.69		0.60	
Total Delay 34.2 18.7 20.7 17.5 Queue Length 50th (m) 49.8 29.2 50.2 39.7 Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Control Delay		34.2		18.7		20.7		17.5	
Queue Length 50th (m) 49.8 29.2 50.2 39.7 Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Queue Delay		0.0		0.0		0.0		0.0	
Queue Length 95th (m) 82.7 49.8 #128.8 92.7 Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Total Delay		34.2		18.7		20.7		17.5	
Internal Link Dist (m) 549.0 565.6 505.0 454.0 Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Queue Length 50th (m)		49.8		29.2		50.2		39.7	
Turn Bay Length (m) Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Queue Length 95th (m)		82.7		49.8		#128.8		92.7	
Base Capacity (vph) 1013 1146 795 782 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0	Turn Bay Length (m)									
Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0	Base Capacity (vph)		1013		1146		795		782	
Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0	Starvation Cap Reductr	1	0		0		0		0	
	Spillback Cap Reductn		0		0		0		0	
Reduced v/c Ratio 0.43 0.28 0.69 0.60	Storage Cap Reductn		0		0		0		0	
	Reduced v/c Ratio		0.43		0.28		0.69		0.60	

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 68


Natural Cycle: 80

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Wellington Road 7 & Wellington Road 18

JD Engineering Synchro 11 Report

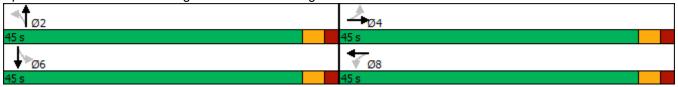
	۶	→	•	•	←	4	4	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	89	255	73	26	189	90	75	421	28	64	318	68
Future Volume (vph)	89	255	73	26	189	90	75	421	28	64	318	68
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.98			0.96			0.99			0.98	
Flt Protected		0.99			1.00			0.99			0.99	
Satd. Flow (prot)		1755			1741			1763			1739	
Flt Permitted		0.83			0.95			0.88			0.88	
Satd. Flow (perm)		1474			1661			1570			1537	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	93	266	76	27	197	94	78	439	29	67	331	71
RTOR Reduction (vph)	0	11	0	0	22	0	0	2	0	0	5	0
Lane Group Flow (vph)	0	424	0	0	296	0	0	544	0	0	464	0
Heavy Vehicles (%)	5%	4%	6%	0%	7%	0%	10%	6%	0%	2%	7%	7%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		23.5			23.5			34.4			34.4	
Effective Green, g (s)		23.5			23.5			34.4			34.4	
Actuated g/C Ratio		0.35			0.35			0.51			0.51	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		510			574			795			778	
v/s Ratio Prot												
v/s Ratio Perm		c0.29			0.18			c0.35			0.30	
v/c Ratio		0.83			0.52			0.68			0.60	
Uniform Delay, d1		20.4			17.7			12.6			11.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		11.0			8.0			4.7			3.3	
Delay (s)		31.4			18.5			17.4			15.2	
Level of Service		С			В			В			В	
Approach Delay (s)		31.4			18.5			17.4			15.2	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM 2000 Control Dela	,		20.5	H	ICM 20	00 Leve	l of Ser	vice	С			
HCM 2000 Volume to C		ratio	0.74									
Actuated Cycle Length (67.9		Sum of l				10.0			
Intersection Capacity Ut	ilization		89.2%	[(CU Leve	el of Sei	rvice		Е			
Analysis Period (min)			15									
c Critical Lane Group												

E: Middlebreck rtd/B	todd 7					,						
	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	1>		ሻ	f)	
Traffic Volume (veh/h)	6	23	33	51	22	33	20	474	124	31	393	11
Future Volume (Veh/h)	6	23	33	51	22	33	20	474	124	31	393	11
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	6	24	35	54	23	35	21	499	131	33	414	12
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1074	1158	420	1134	1098	564	426			630		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1074	1158	420	1134	1098	564	426			630		
tC, single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	96	87	94	63	89	93	98			97		
cM capacity (veh/h)	163	187	608	146	203	519	1102			962		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2	_	_	_		_	
Volume Total	65	112	21	630	33	426						
Volume Left	6	54	21	0	33	0						
Volume Right	35	35	0	131	0	12						
cSH	292	204	1102	1700	962	1700						
Volume to Capacity	0.22	0.55	0.02	0.37	0.03	0.25						
Queue Length 95th (m)	6.7	23.4	0.5	0.0	0.9	0.0						
Control Delay (s)	20.8	42.4	8.3	0.0	8.9	0.0						
Lane LOS	20.0 C	E	Α	0.0	Α.5	0.0						
Approach Delay (s)	20.8	42.4	0.3		0.6							
Approach LOS	20.0 C	72.7 E	0.5		0.0							
Intersection Summary												
Average Delay			5.1		011:							
Intersection Capacity Uti	ılızation		51.8%	Į(CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

Appendix E – Synchro Analysis Output – Total Traffic Volumes

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	41	108	16	133	56	161	37	203	
Future Volume (vph)	41	108	16	133	56	161	37	203	
Lane Group Flow (vph)	0	208	0	199	0	255	0	296	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.66		0.57		0.28		0.30	
Control Delay		30.5		26.6		6.7		6.7	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		30.5		26.6		6.7		6.7	
Queue Length 50th (m)		20.7		19.7		11.3		13.2	
Queue Length 95th (m)		40.3		37.6		27.7		31.3	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		920		1032		920		994	
Starvation Cap Reductn	1	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.23		0.19		0.28		0.30	
Intonocation Commons									

Intersection Summary


Cycle Length: 90

Actuated Cycle Length: 63.3

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Splits and Phases: 1: Wellington Road 7 & Wellington Road 18

	۶	→	`	•	←	4	•	†	<i>></i>	\	Ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	41	108	50	16	133	41	56	161	28	37	203	44
Future Volume (vph)	41	108	50	16	133	41	56	161	28	37	203	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	.000
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.97			0.97			0.98			0.98	
Flt Protected		0.99			1.00			0.99			0.99	
Satd. Flow (prot)		1609			1663			1619			1648	
Flt Permitted		0.88			0.97			0.88			0.94	
Satd. Flow (perm)		1438			1617			1446			1561	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	43	112	52	17	139	43	58	168	29	39	211	46
RTOR Reduction (vph)	0	19	0	0	16	0	0	3	0	0	5	0
Lane Group Flow (vph)	0	189	0	0	183	0	0	252	0	0	291	0
Heavy Vehicles (%)	12%	11%	18%	9%	12%	6%	19%	14%	6%	0%	14%	14%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		13.1			13.1			40.1			40.1	
Effective Green, g (s)		13.1			13.1			40.1			40.1	
Actuated g/C Ratio		0.21			0.21			0.63			0.63	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		298			335			917			990	
v/s Ratio Prot												
v/s Ratio Perm		c0.13			0.11			0.17			c0.19	
v/c Ratio		0.63			0.55			0.27			0.29	
Uniform Delay, d1		22.9			22.4			5.1			5.2	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		4.4			1.8			0.7			8.0	
Delay (s)		27.2			24.2			5.9			5.9	
Level of Service		С			С			Α			Α	
Approach Delay (s)		27.2			24.2			5.9			5.9	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Dela	•		14.3	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.38									
Actuated Cycle Length (63.2			ost time	` '		10.0			
Intersection Capacity Ut	ilization		51.0%	10	CU Leve	el of Sei	rvice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	—	•	•	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	f)		7	ĵ.	
Traffic Volume (veh/h)	4	15	19	36	11	18	10	238	31	28	308	11
Future Volume (Veh/h)	4	15	19	36	11	18	10	238	31	28	308	11
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	4	16	20	38	12	19	11	253	33	30	328	12
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	694	702	334	708	692	270	340			286		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	694	702	334	708	692	270	340			286		
tC, single (s)	7.4	6.5	6.3	7.2	6.6	6.3	4.3			4.1		
tC, 2 stage (s)												
tF (s)	3.8	4.0	3.4	3.6	4.1	3.4	2.4			2.2		
p0 queue free %	99	95	97	88	97	97	99			98		
cM capacity (veh/h)	295	353	683	314	345	755	1101			1288		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	40	69	11	286	30	340						
Volume Left	4	38	11	0	30	0						
Volume Right	20	19	0	33	0	12						
cSH	454	381	1101	1700	1288	1700						
Volume to Capacity	0.09	0.18	0.01	0.17	0.02	0.20						
Queue Length 95th (m)	2.3	5.2	0.2	0.0	0.6	0.0						
Control Delay (s)	13.7	16.5	8.3	0.0	7.9	0.0						
Lane LOS	В	С	Α		Α							
Approach Delay (s)	13.7	16.5	0.3		0.6							
Approach LOS	В	С										
Intersection Summary												
Average Delay			2.6									
Intersection Capacity Uti	lization		40.3%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

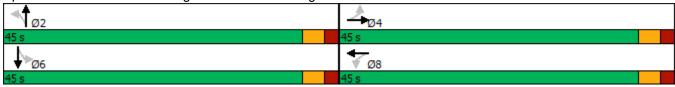
	۶	•	1	†	ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	¥			4	ĵ.			
Traffic Volume (veh/h)	10	15	5	246	281	3		
Future Volume (Veh/h)	10	15	5	246	281	3		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	11	16	5	267	305	3		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	584	306	308					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	584	306	308					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	98	98	100					
cM capacity (veh/h)	476	738	1264					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	27	272	308				 	
Volume Left	11	5	0					
Volume Right	16	0	3					
cSH	603	1264	1700					
Volume to Capacity	0.04	0.00	0.18					
Queue Length 95th (m)	1.1	0.1	0.0					
Control Delay (s)	11.3	0.2	0.0					
Lane LOS	В	Α						
Approach Delay (s)	11.3	0.2	0.0					
Approach LOS	В							
Intersection Summary								
Average Delay			0.6					
Intersection Capacity Uti	ilization		27.0%	I	CU Leve	of Service	Α	
Analysis Period (min)			15					

	۶	•	4	†	ļ	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	W			4	f)				
Traffic Volume (veh/h)	8	21	7	241	290	2			
Future Volume (Veh/h)	8	21	7	241	290	2			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	9	23	8	262	315	2			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	594	316	317						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	594	316	317						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	98	97	99						
cM capacity (veh/h)	468	729	1255						
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total	32	270	317						
Volume Left	9	8	0						
Volume Right	23	0	2						
cSH	630	1255	1700						
Volume to Capacity	0.05	0.01	0.19						
Queue Length 95th (m)	1.3	0.2	0.0						
Control Delay (s)	11.0	0.3	0.0						
Lane LOS	В	Α							
Approach Delay (s)	11.0	0.3	0.0						
Approach LOS	В								
Intersection Summary									
Average Delay			0.7						
Intersection Capacity Uti	ilization		28.3%	I	CU Leve	el of Service)	Α	
Analysis Period (min)			15						

	۶	•	4	†	ţ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	, M			ર્ન	f)			
Traffic Volume (veh/h)	6	24	8	242	310	1		
Future Volume (Veh/h)	6	24	8	242	310	1		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	7	26	9	263	337	1		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	618	338	338					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	618	338	338					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	98	96	99					
cM capacity (veh/h)	452	709	1232					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	33	272	338					
Volume Left	7	9	0					
Volume Right	26	0	1					
cSH	633	1232	1700					
Volume to Capacity	0.05	0.01	0.20					
Queue Length 95th (m)	1.3	0.2	0.0					
Control Delay (s)	11.0	0.3	0.0					
Lane LOS	В	Α.	3.3					
Approach Delay (s)	11.0	0.3	0.0					
Approach LOS	В	3.0	3.5					
Intersection Summary								
Average Delay			0.7					
Intersection Capacity Uti	lization		29.2%	I.	CILLAV	el of Service	Α	
	ııı∠atı∪∏			l'	CO Leve	a of Service	Α	
Analysis Period (min)			15					

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	71	204	29	152	66	341	51	260	
Future Volume (vph)	71	204	29	152	66	341	51	260	
Lane Group Flow (vph)	0	360	0	263	0	452	0	381	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.80		0.53		0.50		0.42	
Control Delay		35.7		22.3		13.1		11.6	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		35.7		22.3		13.1		11.6	
Queue Length 50th (m)		43.7		26.9		34.0		26.3	
Queue Length 95th (m)		72.8		47.0		76.7		60.6	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		862		938		901		898	
Starvation Cap Reductn	1	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.42		0.28		0.50		0.42	
Intonocation Commons									

Intersection Summary


Cycle Length: 90

Actuated Cycle Length: 71

Natural Cycle: 80

Control Type: Semi Act-Uncoord

1: Wellington Road 7 & Wellington Road 18 Splits and Phases:

JD Engineering Synchro 11 Report

	٠	→	`	•	←	4	•	<u>†</u>	<i>></i>	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	71	204	70	29	152	72	66	341	27	51	260	55
Future Volume (vph)	71	204	70	29	152	72	66	341	27	51	260	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.97			0.96			0.99			0.98	
Flt Protected		0.99			0.99			0.99			0.99	
Satd. Flow (prot)		1749			1743			1760			1739	
Flt Permitted		0.85			0.93			0.89			0.90	
Satd. Flow (perm)		1507			1632			1586			1574	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	74	212	73	30	158	75	69	355	28	53	271	57
RTOR Reduction (vph)	0	13	0	0	21	0	0	2	0	0	6	0
Lane Group Flow (vph)	0	347	0	0	242	0	0	450	0	0	375	0
Heavy Vehicles (%)	5%	4%	6%	0%	7%	0%	10%	6%	0%	2%	7%	7%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		20.7			20.7			40.3			40.3	
Effective Green, g (s)		20.7			20.7			40.3			40.3	
Actuated g/C Ratio		0.29			0.29			0.57			0.57	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		439			475			900			893	_
v/s Ratio Prot												
v/s Ratio Perm		c0.23			0.15			c0.28			0.24	
v/c Ratio		0.79			0.51			0.50			0.42	
Uniform Delay, d1		23.2			20.9			9.3			8.7	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		9.4			0.9			2.0			1.5	
Delay (s)		32.6			21.9			11.2			10.2	
Level of Service		С			С			В			В	
Approach Delay (s)		32.6			21.9			11.2			10.2	
Approach LOS		С			С			В			В	
Intersection Summary									_			
HCM 2000 Control Dela			18.2		ICM 20	00 Leve	l of Ser	vice	В			
HCM 2000 Volume to C		ratio	0.60	_								
Actuated Cycle Length (,		71.0			ost time	` '		10.0			
Intersection Capacity Ut	ilization		71.7%	10	JU Leve	el of Sei	rvice		С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	<i>></i>	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	f)		7	f)	
Traffic Volume (veh/h)	5	19	26	41	17	34	16	436	100	30	348	9
Future Volume (Veh/h)	5	19	26	41	17	34	16	436	100	30	348	9
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	5	20	27	43	18	36	17	459	105	32	366	9
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	972	1032	370	1012	984	512	375			564		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	972	1032	370	1012	984	512	375			564		
tC, single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	97	91	96	77	92	94	99			97		
cM capacity (veh/h)	199	224	649	187	239	556	1151			1018		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	52	97	17	564	32	375						
Volume Left	5	43	17	0	32	0						
Volume Right	27	36	0	105	0	9						
cSH	333	262	1151	1700	1018	1700						
Volume to Capacity	0.16	0.37	0.01	0.33	0.03	0.22						
Queue Length 95th (m)	4.4	13.1	0.4	0.0	0.8	0.0						
Control Delay (s)	17.8	26.6	8.2	0.0	8.7	0.0						
Lane LOS	C	D	Α	0.0	Α	0.0						
Approach Delay (s)	17.8	26.6	0.2		0.7							
Approach LOS	C	D	0.2		0.7							
Intersection Summary												
Average Delay			3.4									
	lization		47.6%	1/		el of Ser	vice		۸			
Intersection Capacity Uti	ıı∠alıon			10	SO Leve	ei oi ser	vice		Α			
Analysis Period (min)			15									

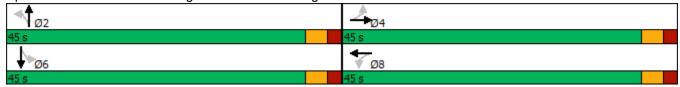
	۶	•	4	†	↓	✓		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	W			4	ĵ.			
Traffic Volume (veh/h)	6	10	16	427	363	10		
Future Volume (Veh/h)	6	10	16	427	363	10		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	7	11	17	464	395	11		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	898	400	406					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	898	400	406					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	98	98	99					
cM capacity (veh/h)	308	654	1164					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	18	481	406					
Volume Left	7	17	0					
Volume Right	11	0	11					
cSH	455	1164	1700					
Volume to Capacity	0.04	0.01	0.24					
Queue Length 95th (m)	1.0	0.4	0.0					
Control Delay (s)	13.2	0.4	0.0					
Lane LOS	В	A						
Approach Delay (s)	13.2	0.4	0.0					
Approach LOS	В	3 .,	5.5					
Intersection Summary								
Average Delay			0.5					
Intersection Capacity Uti	ilization		45.4%	I	CULeve	el of Service	Α	
Analysis Period (min)			15	•		2. 2300		

•	1	†	+	4	
	NBL	NBT	SBT	SBR	
		र्स	(Î		
5 13	22	434	360	8	
5 13	22	434	360	8	
)		Free	Free		
)		0%	0%		
0.92	0.92	0.92	0.92	0.92	
5 14	24	472	391	9	
		None	None		
396	400				
6.2	4.1				
658	1170				
NB 1	SB 1				
	400				
	9				
	1700				
	0.0				
	0.0				
A					
0.6	0.0				
}					
	0.6				
n	50.8%	I	CU Leve	of Service	се
	15				
	6 13 6 13 6 13 6 2 0.92 6 14 6 3.3 8 98 9 658 1 NB 1 9 496 5 24 1 0.02 9 0.5 0.6 3 A	5 13 22 5 13 22 6 2 0.92 0.92 6 396 400 6 396 400 6 396 400 6 3.3 2.2 8 98 98 9 658 1170 1 NB 1 SB 1 9 496 400 5 24 0 1 170 1700 4 0.02 0.24 9 0.5 0.0 6 0.6 0.0 8 0.6 0.0 8 0.6 0.0	None None	13 22 434 360 5 13 22 434 360 6 13 22 434 360 7 Free Free	1

	۶	•	4	†	ţ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	**			र्स	f)			
Traffic Volume (veh/h)	3	15	26	453	367	6		
Future Volume (Veh/h)	3	15	26	453	367	6		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	3	16	28	492	399	7		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	950	402	406					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	950	402	406					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	99	98	98					
cM capacity (veh/h)	284	652	1164					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	19	520	406					
Volume Left	3	28	0					
Volume Right	16	0	7					
cSH	541	1164	1700					
Volume to Capacity	0.04	0.02	0.24					
Queue Length 95th (m)	0.9	0.6	0.0					
Control Delay (s)	11.9	0.7	0.0					
Lane LOS	В	A	3.3					
Approach Delay (s)	11.9	0.7	0.0					
Approach LOS	В	5.7	3.5					
Intersection Summary								
Average Delay			0.6					
Intersection Capacity Uti	lization		55.1%	I.	CILLAVO	el of Service	В	
	ıızatıdlı			l'	CO LEVE	ei oi seivice	D	
Analysis Period (min)			15					

	•	→	•	←	4	†	>	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	51	135	19	166	67	199	47	252	
Future Volume (vph)	51	135	19	166	67	199	47	252	
Lane Group Flow (vph)	0	259	0	246	0	311	0	368	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.74		0.61		0.36		0.39	
Control Delay		33.7		27.1		8.9		9.0	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		33.7		27.1		8.9		9.0	
Queue Length 50th (m)		27.8		25.7		17.0		20.3	
Queue Length 95th (m)		51.2		46.4		41.3		48.0	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		855		988		858		939	
Starvation Cap Reductn]	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.30		0.25		0.36		0.39	
Intersection Summary									

Intersection Summary


Cycle Length: 90

Actuated Cycle Length: 66.1

Natural Cycle: 80

Control Type: Semi Act-Uncoord

1: Wellington Road 7 & Wellington Road 18 Splits and Phases:

JD Engineering Synchro 11 Report

	٠	→	•	•	←	•	•	†	~	/	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	51	135	62	19	166	51	67	199	33	47	252	54
Future Volume (vph)	51	135	62	19	166	51	67	199	33	47	252	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.97			0.97			0.99			0.98	
Flt Protected		0.99			1.00			0.99			0.99	
Satd. Flow (prot)		1609			1663			1620			1649	
Flt Permitted		0.86			0.97			0.86			0.93	
Satd. Flow (perm)		1393			1613			1407			1539	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	53	141	65	20	173	53	70	207	34	49	262	56
RTOR Reduction (vph)	0	18	0	0	15	0	0	4	0	0	5	0
Lane Group Flow (vph)	0	241	0	0	231	0	0	307	0	0	363	0
Heavy Vehicles (%)	12%	11%	18%	9%	12%	6%	19%	14%	6%	0%	14%	14%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		15.9			15.9			40.2			40.2	
Effective Green, g (s)		15.9			15.9			40.2			40.2	
Actuated g/C Ratio		0.24			0.24			0.61			0.61	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		335			387			855			935	
v/s Ratio Prot												
v/s Ratio Perm		c0.17			0.14			0.22			c0.24	
v/c Ratio		0.72			0.60			0.36			0.39	
Uniform Delay, d1		23.0			22.3			6.5			6.6	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		7.2			2.5			1.2			1.2	
Delay (s)		30.2			24.7			7.7			7.9	
Level of Service		С			С			Α			Α	
Approach Delay (s)		30.2			24.7			7.7			7.9	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Dela	,		16.2	H	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.48									
Actuated Cycle Length (66.1			ost time	` '		10.0			
Intersection Capacity Ut	ilization		60.8%	10	CU Leve	el of Sei	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	4	•	†	<i>></i>	\	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ř	ĵ»		ř	ĵ»	
Traffic Volume (veh/h)	5	19	23	45	14	22	12	292	39	33	371	14
Future Volume (Veh/h)	5	19	23	45	14	22	12	292	39	33	371	14
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	5	20	24	48	15	23	13	311	41	35	395	15
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	840	850	402	856	838	332	410			352		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	840	850	402	856	838	332	410			352		
tC, single (s)	7.4	6.5	6.3	7.2	6.6	6.3	4.3			4.1		
tC, 2 stage (s)												
tF (s)	3.8	4.0	3.4	3.6	4.1	3.4	2.4			2.2		
p0 queue free %	98	93	96	80	95	97	99			97		
cM capacity (veh/h)	227	287	625	240	281	697	1035			1218		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	49	86	13	352	35	410						
Volume Left	5	48	13	0	35	0						
Volume Right	24	23	0	41	0	15						
cSH	377	300	1035	1700	1218	1700						
Volume to Capacity	0.13	0.29	0.01	0.21	0.03	0.24						
Queue Length 95th (m)	3.5	9.2	0.3	0.0	0.7	0.0						
Control Delay (s)	16.0	21.7	8.5	0.0	8.0	0.0						
Lane LOS	С	С	Α		Α							
Approach Delay (s)	16.0	21.7	0.3		0.6							
Approach LOS	С	С										
Intersection Summary												
Average Delay			3.2									
Intersection Capacity Uti	lization		44.9%	[(CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

	۶	•	4	†	ļ	✓	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			र्स	f)		
Traffic Volume (veh/h)	10	15	5	303	349	3	
Future Volume (Veh/h)	10	15	5	303	349	3	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	11	16	5	329	379	3	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	720	380	382				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	720	380	382				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	97	98	100				
cM capacity (veh/h)	396	671	1188				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	27	334	382				
Volume Left	11	5	0				
Volume Right	16	0	3				
cSH	523	1188	1700				
Volume to Capacity	0.05	0.00	0.22				
Queue Length 95th (m)	1.3	0.1	0.0				
Control Delay (s)	12.3	0.2	0.0				
Lane LOS	В	Α					
Approach Delay (s)	12.3	0.2	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Uti	ilization		29.9%	I	CU Leve	of Service	
Analysis Period (min)			15				

	ၨ	•	•	†	ļ	✓			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	¥			र्स	f)				
Traffic Volume (veh/h)	8	21	7	297	357	2			
Future Volume (Veh/h)	8	21	7	297	357	2			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	9	23	8	323	388	2			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	728	389	390						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	728	389	390						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	98	97	99						
cM capacity (veh/h)	391	664	1180						
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total	32	331	390						
Volume Left	9	8	0						
Volume Right	23	0	2						
cSH	555	1180	1700						
Volume to Capacity	0.06	0.01	0.23						
Queue Length 95th (m)	1.5	0.2	0.0						
Control Delay (s)	11.9	0.3	0.0						
Lane LOS	В	Α							
Approach Delay (s)	11.9	0.3	0.0						
Approach LOS	В								
Intersection Summary									
Average Delay			0.6						
Intersection Capacity Uti	lization		31.3%	I	CU Leve	el of Servi	се	Α	
Analysis Period (min)			15						

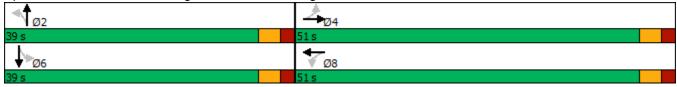
	۶	•	4	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स	f)	
Traffic Volume (veh/h)	6	24	8	298	377	1
Future Volume (Veh/h)	6	24	8	298	377	1
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	26	9	324	410	1
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	752	410	411			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	750	440	444			
vCu, unblocked vol	752	410	411			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.5	0.0	0.0			
tF (s)	3.5	3.3	2.2			
p0 queue free %	98	96	99			
cM capacity (veh/h)	378	646	1159			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	33	333	411			
Volume Left	7	9	0			
Volume Right	26	0	1			
cSH	561	1159	1700			
Volume to Capacity	0.06	0.01	0.24			
Queue Length 95th (m)	1.5	0.2	0.0			
Control Delay (s)	11.8	0.3	0.0			
Lane LOS	В	Α				
Approach Delay (s)	11.8	0.3	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Uti	lization		32.1%	I	CU Leve	of Service
Analysis Period (min)			15			
,						

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	89	255	34	189	81	424	64	323	
Future Volume (vph)	89	255	34	189	81	424	64	323	
Lane Group Flow (vph)	0	447	0	326	0	560	0	474	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	
Total Split (s)	51.0	51.0	51.0	51.0	39.0	39.0	39.0	39.0	
Total Split (%)	56.7%	56.7%	56.7%	56.7%	43.3%	43.3%	43.3%	43.3%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.84		0.55		0.72		0.61	
Control Delay		34.0		19.1		22.3		18.3	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		34.0		19.1		22.3		18.3	
Queue Length 50th (m)		51.3		30.4		53.8		41.4	
Queue Length 95th (m)		85.0		51.8		#138.0		96.5	
Internal Link Dist (m)		549.0		565.6		505.0		454.0	
Turn Bay Length (m)									
Base Capacity (vph)		1006		1112		782		775	
Starvation Cap Reductr)	0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.44		0.29		0.72		0.61	

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 68.7


Natural Cycle: 80

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

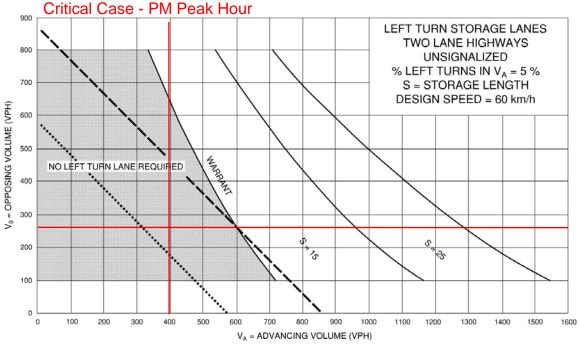
1: Wellington Road 7 & Wellington Road 18 Splits and Phases:

JD Engineering Synchro 11 Report

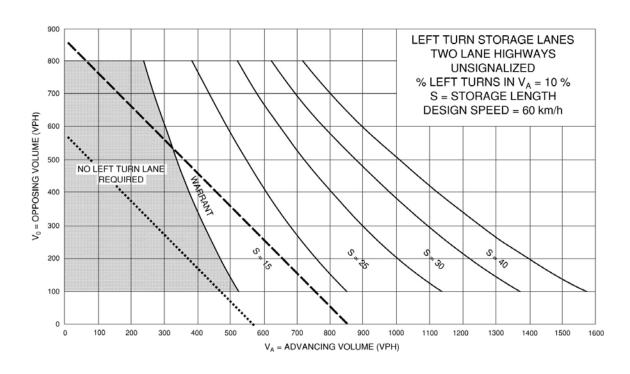
	۶	→	•	•	←	•	1	†	~	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	89	255	84	34	189	90	81	424	33	64	323	68
Future Volume (vph)	89	255	84	34	189	90	81	424	33	64	323	68
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.97			0.96			0.99			0.98	
Flt Protected		0.99			0.99			0.99			0.99	
Satd. Flow (prot)		1750			1743			1761			1739	
Flt Permitted		0.83			0.93			0.88			0.88	
Satd. Flow (perm)		1476			1628			1559			1537	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	93	266	88	35	197	94	84	442	34	67	336	71
RTOR Reduction (vph)	0	13	0	0	21	0	0	2	0	0	5	0
Lane Group Flow (vph)	0	434	0	0	305	0	0	558	0	0	469	0
Heavy Vehicles (%)	5%	4%	6%	0%	7%	0%	10%	6%	0%	2%	7%	7%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		24.2			24.2			34.4			34.4	
Effective Green, g (s)		24.2			24.2			34.4			34.4	
Actuated g/C Ratio		0.35			0.35			0.50			0.50	
Clearance Time (s)		5.0			5.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		520			574			781			770	
v/s Ratio Prot												
v/s Ratio Perm		c0.29			0.19			c0.36			0.30	
v/c Ratio		0.83			0.53			0.71			0.61	
Uniform Delay, d1		20.4			17.7			13.3			12.3	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		11.1			0.9			5.5			3.6	
Delay (s)		31.4			18.6			18.8			15.8	
Level of Service		С			В			В			В	
Approach Delay (s)		31.4			18.6			18.8			15.8	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM 2000 Control Dela			21.1	H	ICM 20	00 Leve	l of Ser	vice	С			
HCM 2000 Volume to C		ratio	0.76									
Actuated Cycle Length (68.6			ost time			10.0			
Intersection Capacity Ut	ilization		87.6%	[(CU Leve	el of Sei	rvice		E			
Analysis Period (min)			15									
c Critical Lane Group												

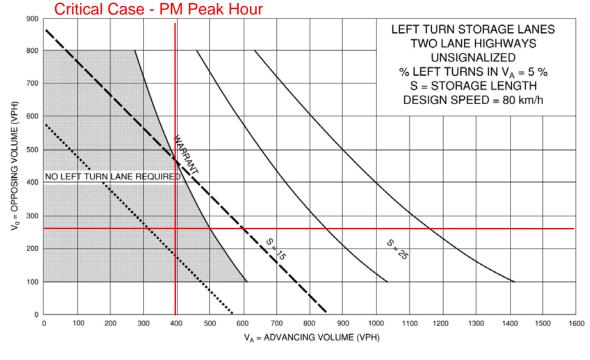
E: Middle Brook 1 (d) B	or that c		****	9.0								
	۶	→	•	•	←	•	4	†	/	>	ļ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		, j	ĵ»		ň	f)	
Traffic Volume (veh/h)	6	23	33	51	22	41	20	530	124	36	426	11
Future Volume (Veh/h)	6	23	33	51	22	41	20	530	124	36	426	11
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	6	24	35	54	23	43	21	558	131	38	448	12
Pedestrians												-
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)								110110			110110	
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1184	1261	454	1236	1202	624	460			689		
vC1, stage 1 conf vol	1101	1201	101	1200	1202	021	100			000		
vC2, stage 2 conf vol												
vCu, unblocked vol	1184	1261	454	1236	1202	624	460			689		
tC, single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)		0.0	0.0		0.0	0.2						
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	95	85	94	55	87	91	98			96		
cM capacity (veh/h)	131	161	582	121	175	480	1070			915		
							.0.0			0.0		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	65	120	21	689	38	460						
Volume Left	6	54	21	0	38	0						
Volume Right	35	43	0	131	0	12						
cSH	255	180	1070	1700	915	1700						
Volume to Capacity	0.25	0.67	0.02	0.41	0.04	0.27						
Queue Length 95th (m)	7.9	31.5	0.5	0.0	1.0	0.0						
Control Delay (s)	23.9	58.0	8.4	0.0	9.1	0.0						
Lane LOS	С	F	A		Α							
Approach Delay (s)	23.9	58.0	0.2		0.7							
Approach LOS	С	F										
Intersection Summary												
Average Delay			6.5									
Intersection Capacity Ut	ilization		55.2%	I	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									

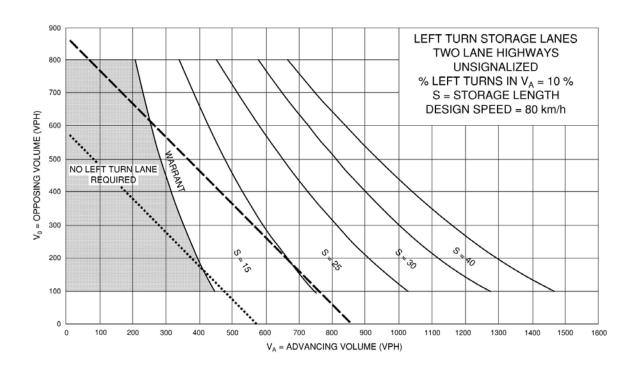
	۶	•	4	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	f)	
Traffic Volume (veh/h)	6	10	16	530	449	10
Future Volume (Veh/h)	6	10	16	530	449	10
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	11	17	576	488	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1104	494	499			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1104	494	499			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	97	98	98			
cM capacity (veh/h)	232	580	1075			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	18	593	499			
Volume Left	7	17	0			
Volume Right	11	0	11			
cSH	366	1075	1700			
Volume to Capacity	0.05	0.02	0.29			
Queue Length 95th (m)	1.2	0.4	0.0			
Control Delay (s)	15.3	0.4	0.0			
Lane LOS	С	Α				
Approach Delay (s)	15.3	0.4	0.0			
Approach LOS	С					
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Uti	ilization		50.8%	I	CU Leve	el of Servi
Analysis Period (min)			15			
, 5.15 1 51.154 (171111)						


	۶	•	4	†	+	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			ર્ન	f)		
Traffic Volume (veh/h)	5	13	22	536	445	8	
Future Volume (Veh/h)	5	13	22	536	445	8	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	5	14	24	583	484	9	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1120	488	493				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1120	488	493				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	98	98	98				
cM capacity (veh/h)	226	583	1081				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	19	607	493				
Volume Left	5	24	0				
Volume Right	14	0	9				
cSH	412	1081	1700				
Volume to Capacity	0.05	0.02	0.29				
Queue Length 95th (m)	1.2	0.5	0.0				
Control Delay (s)	14.2	0.6	0.0				
Lane LOS	В	Α					
Approach Delay (s)	14.2	0.6	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			0.6				
Intersection Capacity Ut	ilization		56.0%	I	CU Leve	el of Servic	9
Analysis Period (min)			15				
Analysis Fellou (IIIII)			13				

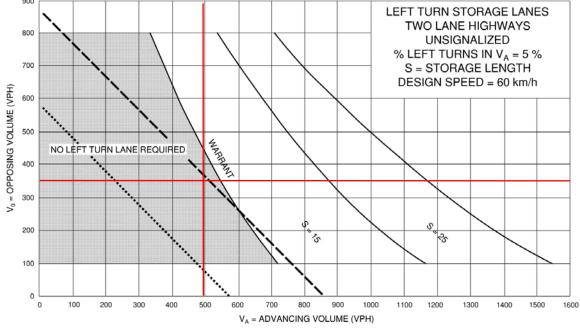
	۶	•	1	†	ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Υ			4	f)			
Traffic Volume (veh/h)	3	15	26	555	452	6		
Future Volume (Veh/h)	3	15	26	555	452	6		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	3	16	28	603	491	7		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	1154	494	498					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1154	494	498					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF(s)	3.5	3.3	2.2					
p0 queue free %	99	97	97					
cM capacity (veh/h)	214	579	1076					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	19	631	498					
Volume Left	3	28	0					
Volume Right	16	0	7					
cSH	456	1076	1700					
Volume to Capacity	0.04	0.03	0.29					
Queue Length 95th (m)	1.0	0.6	0.0					
Control Delay (s)	13.2	0.7	0.0					
Lane LOS	В	Α						
Approach Delay (s)	13.2	0.7	0.0					
Approach LOS	В							
Intersection Summary								
Average Delay			0.6					
Intersection Capacity Uti	lization		60.4%	I	CU Leve	of Service	В	
Analysis Period (min)			15					
, ,								


Appendix F – MTO Left Turn Analysis

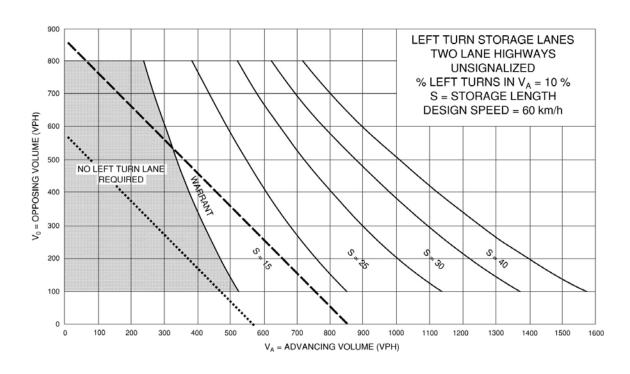

2022 Existing - Northbound Exhibit 9A-6


TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

2022 Existing - Northbound Exhibit 9A-14

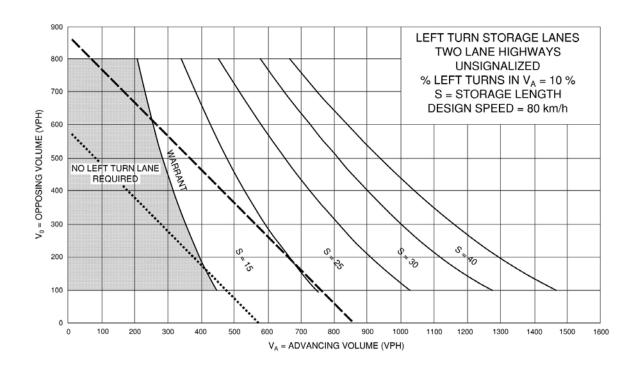


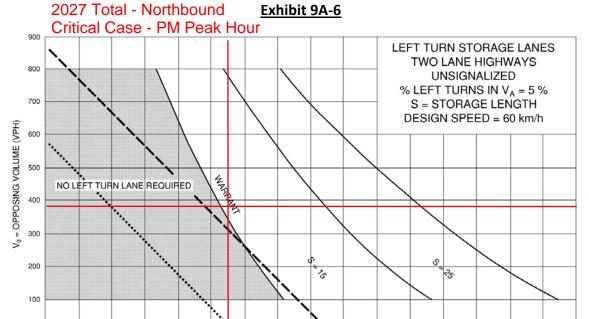
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW



2027 Background - Northbound Exhibit 9A-6

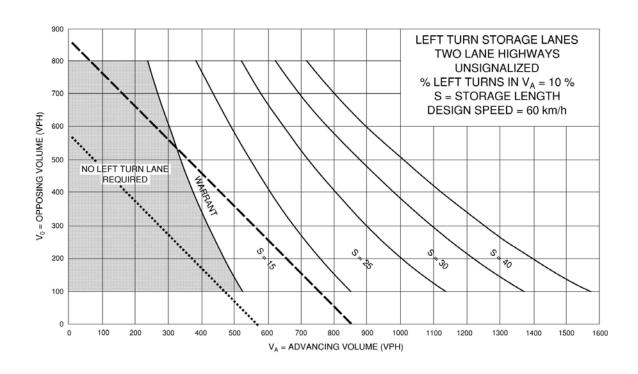

Critical Case - PM Peak Hour UNSIGNALIZED

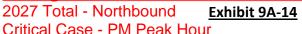

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW

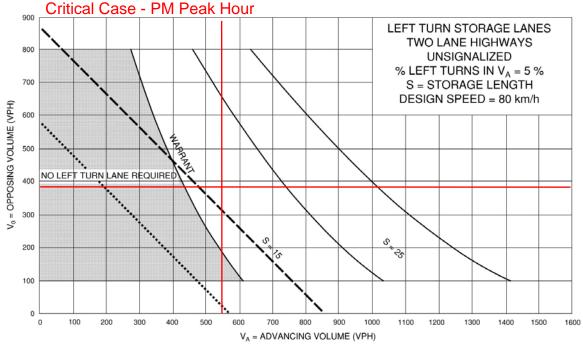


2027 Background - Northbound Exhibit 9A-14

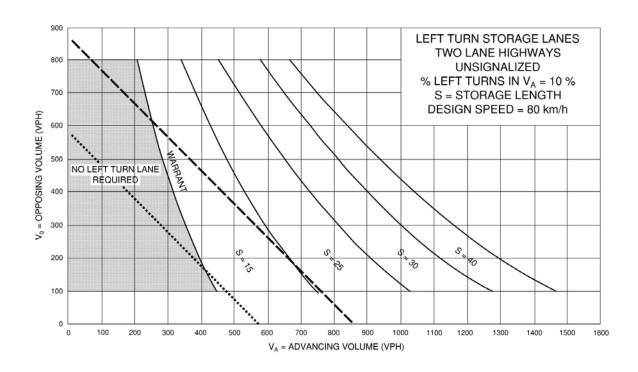
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW

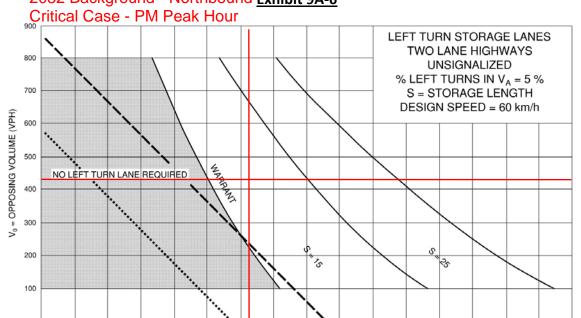




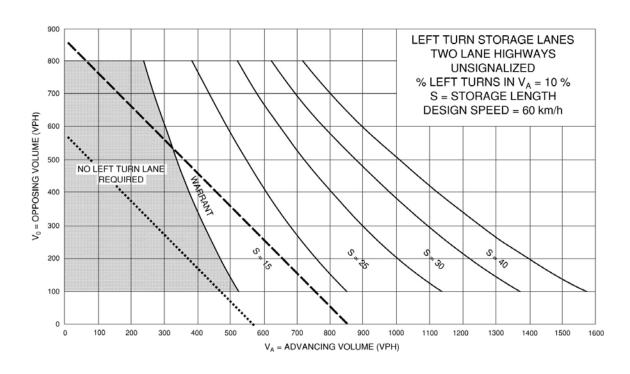

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

V_A = ADVANCING VOLUME (VPH)

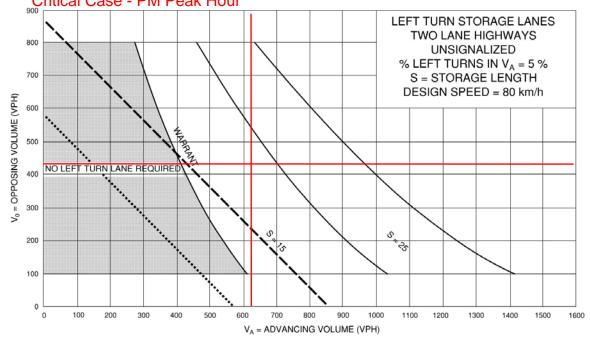

TRAFFIC SIGNALS MAY BE WARRANTED IN
"FREE FLOW" URBAN AREAS



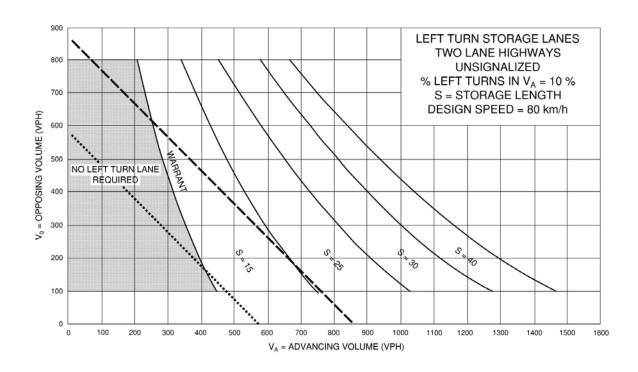
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

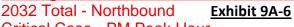

2032 Background - Northbound Exhibit 9A-6

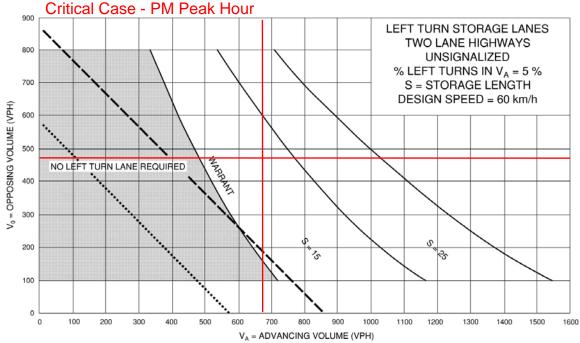
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

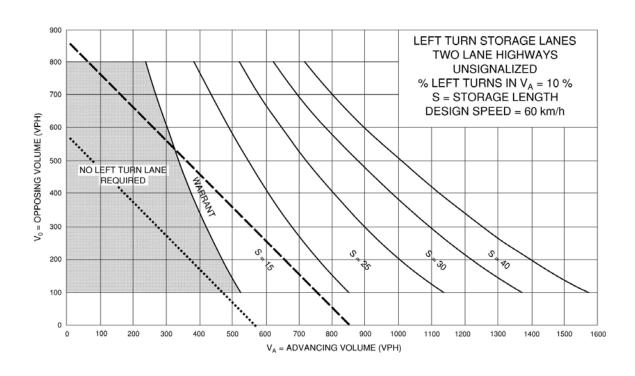

V_A = ADVANCING VOLUME (VPH)

TRAFFIC SIGNALS MAY BE WARRANTED IN
"FREE FLOW" URBAN AREAS

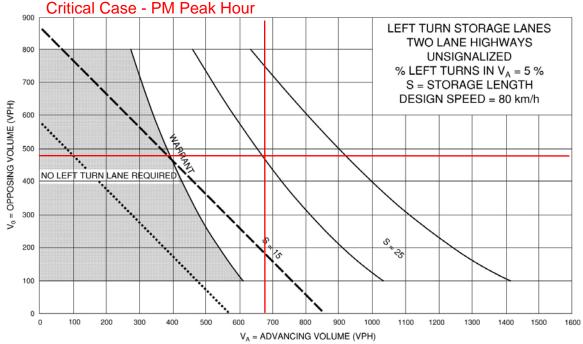


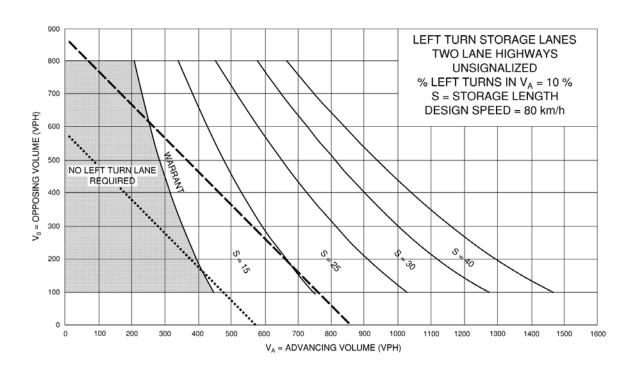

2032 Background - Northbound Exhibit 9A-14

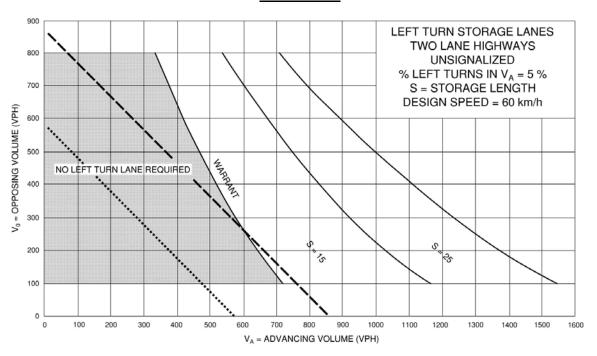

Critical Case - PM Peak Hour

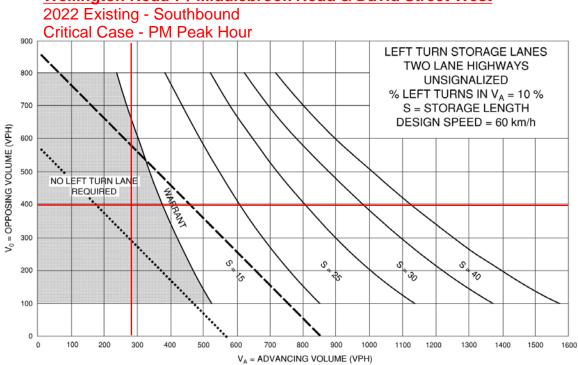

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

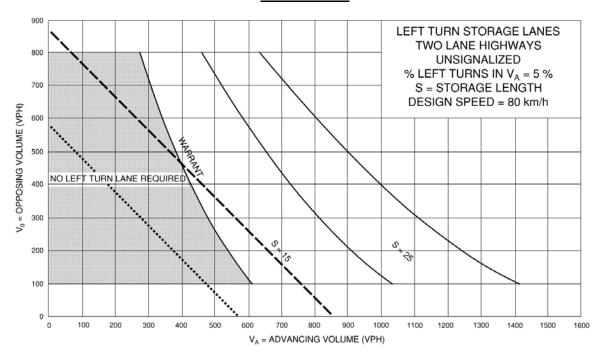




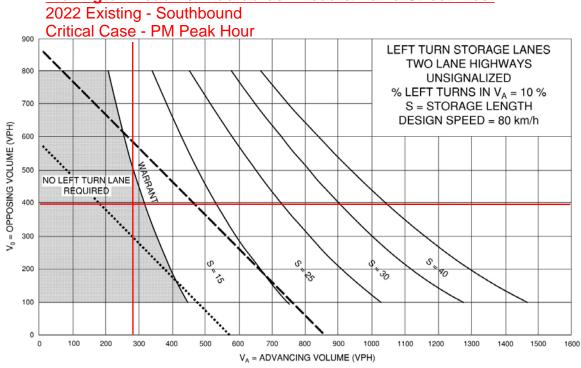

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

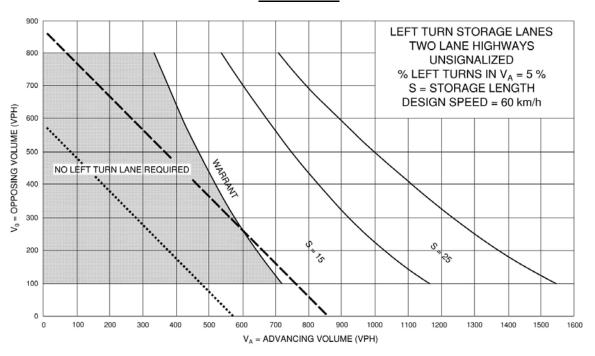



TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

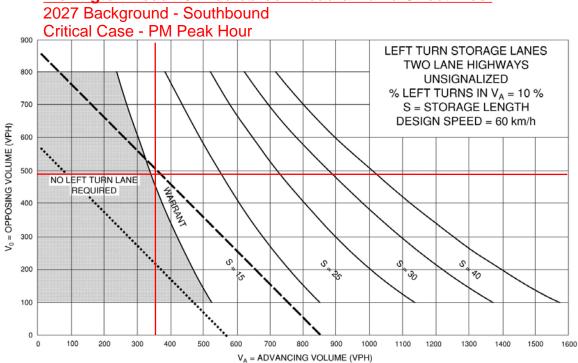


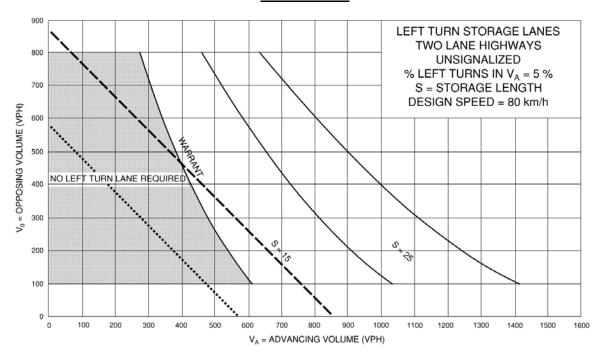
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW


TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS

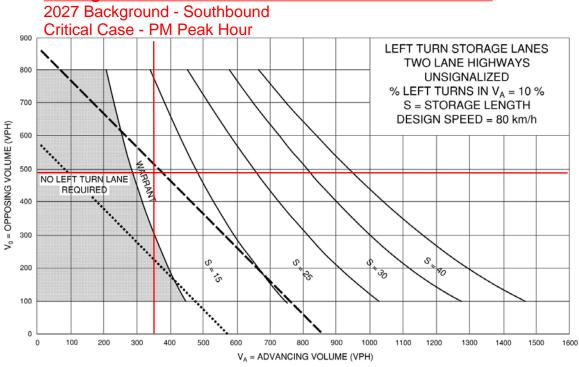


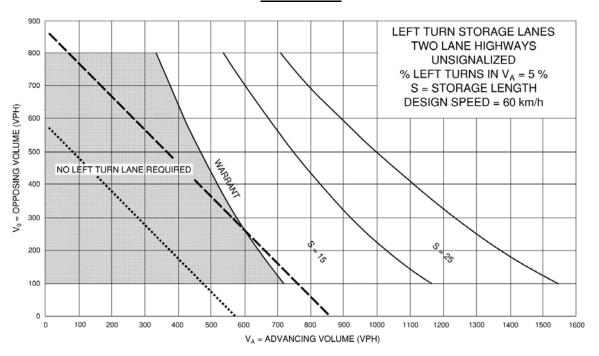
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW


TRAFFIC SIGNALS MAY BE WARRANTED IN

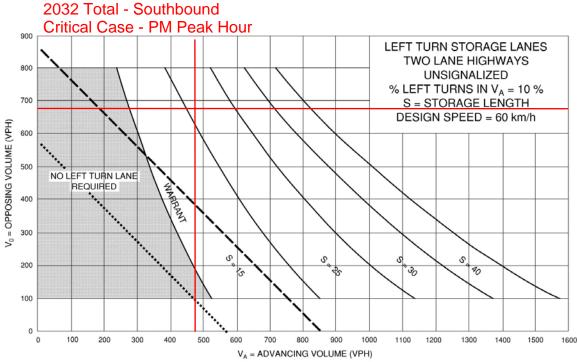


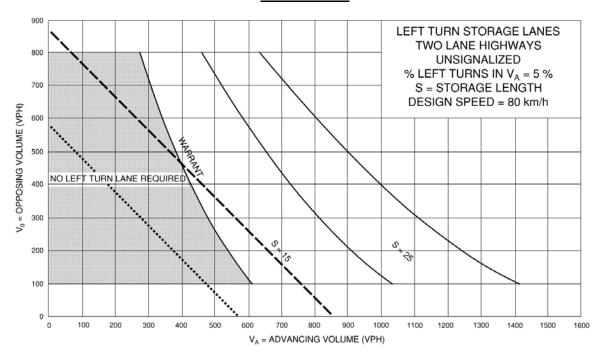
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW


TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS

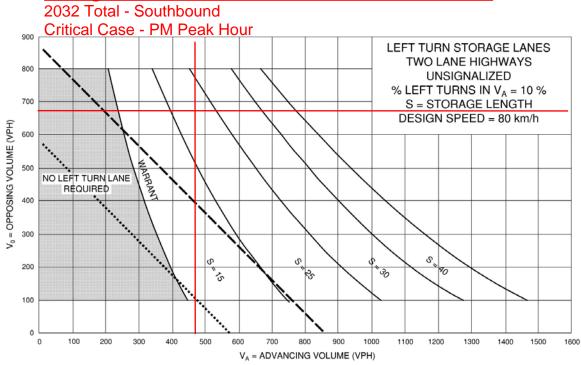


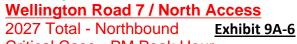
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

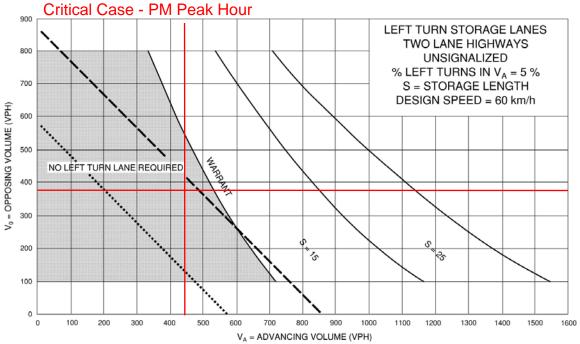

TRAFFIC SIGNALS MAY BE WARRANTED IN
"FREE FLOW" URBAN AREAS

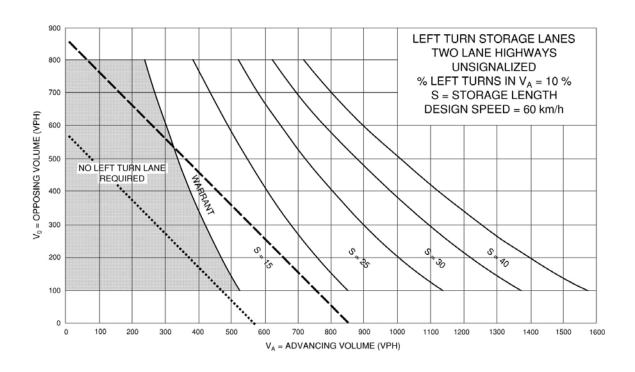


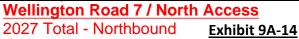
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

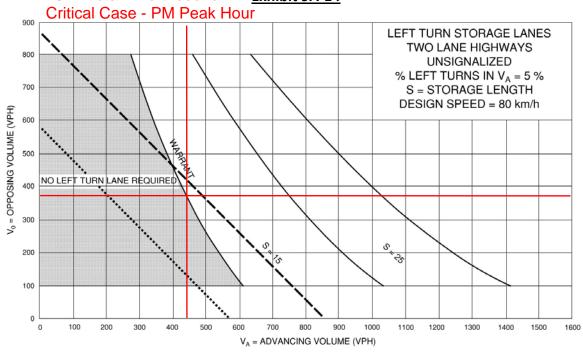

TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS

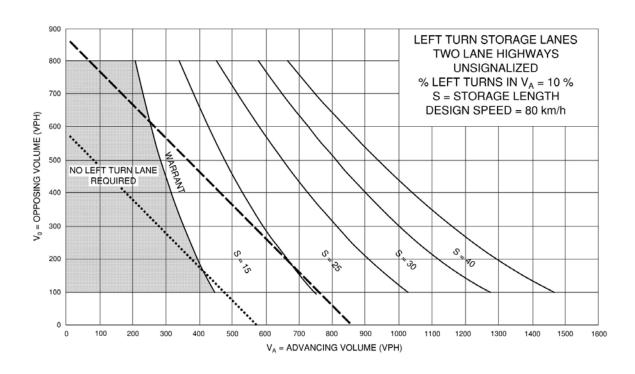


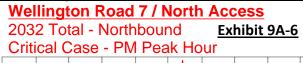


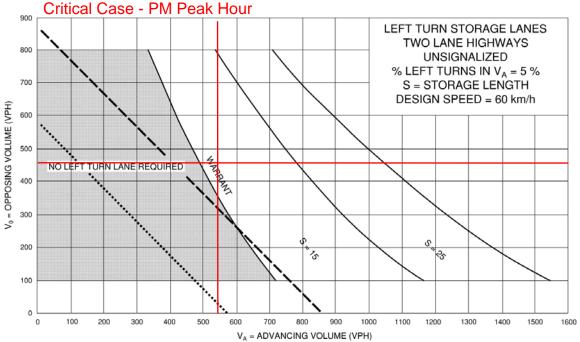

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW

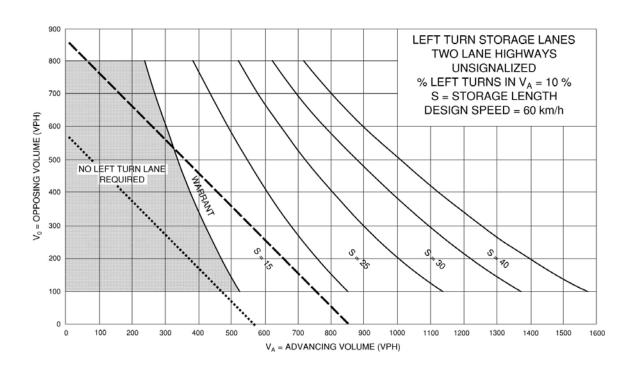

TRAFFIC SIGNALS MAY BE WARRANTED IN
"FREE FLOW" URBAN AREAS

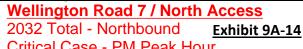


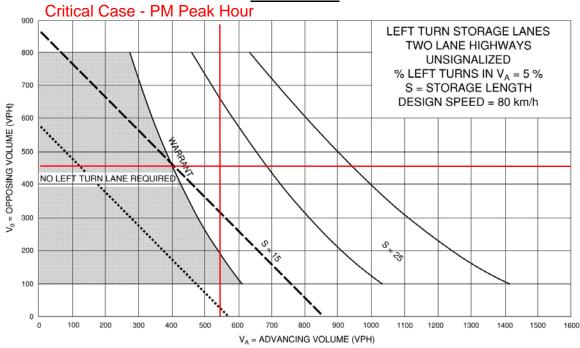


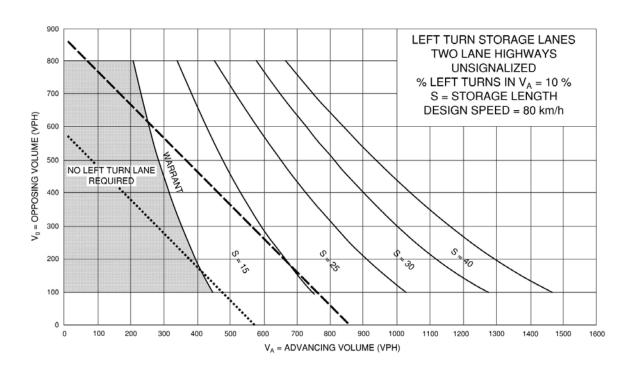


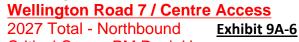


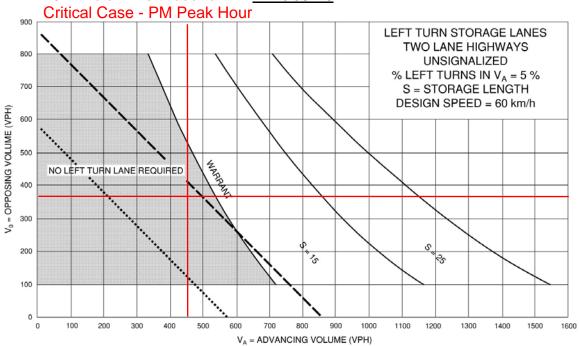


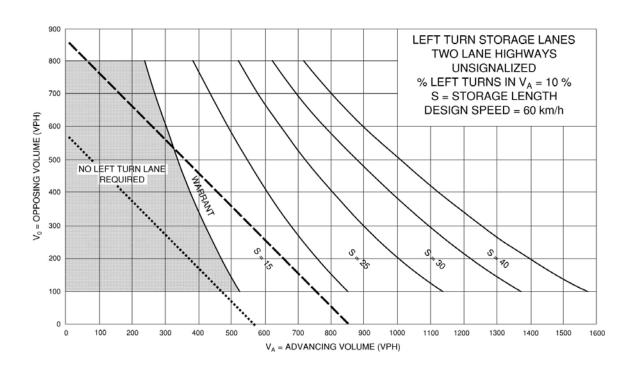


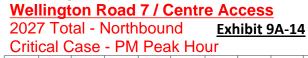


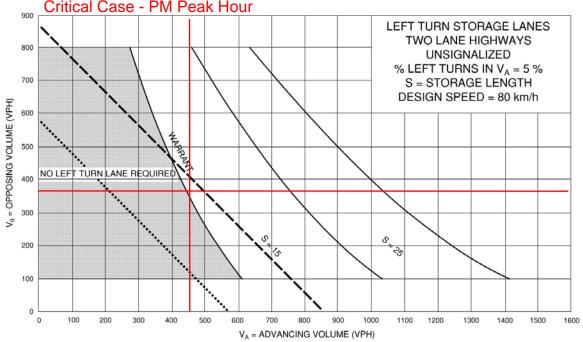


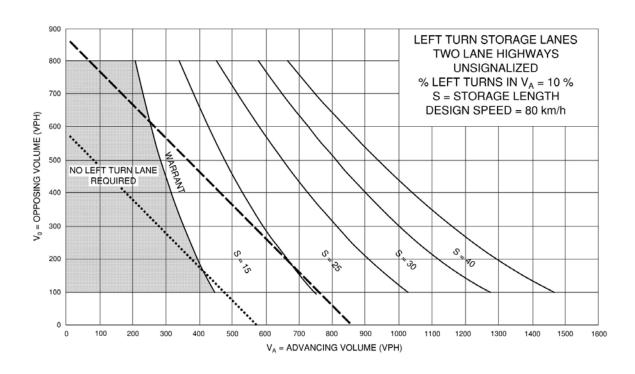


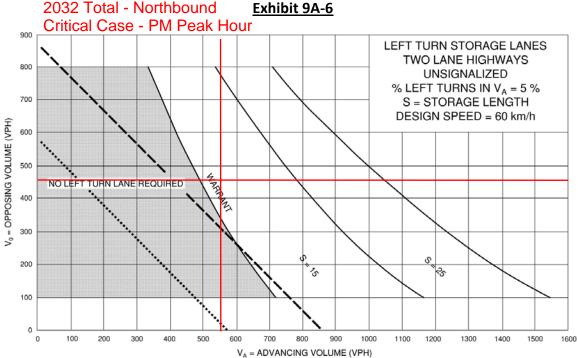


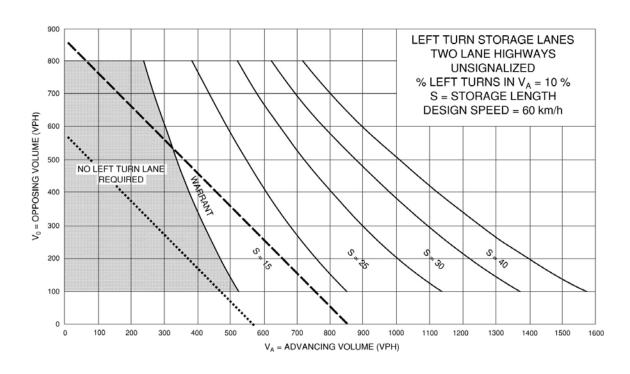


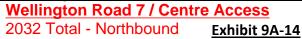


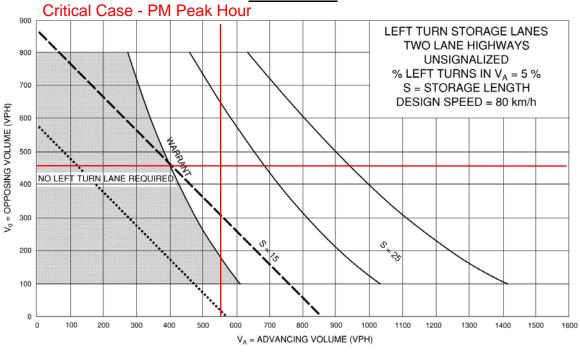


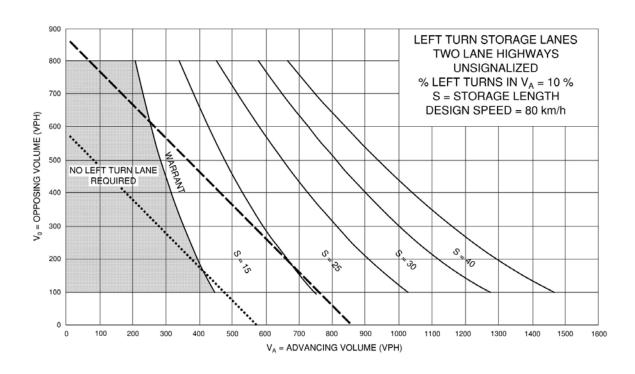


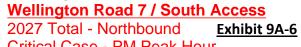


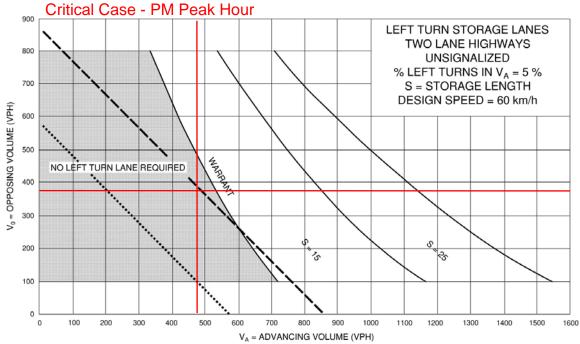


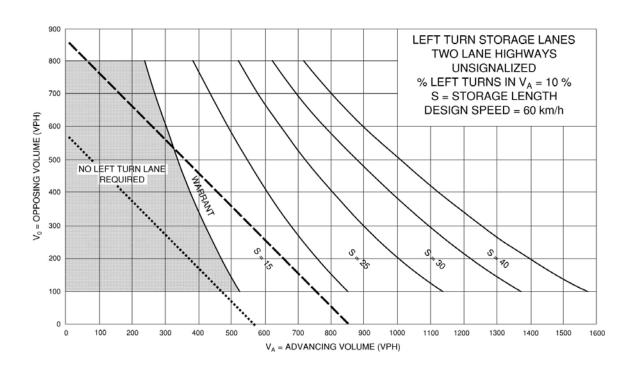


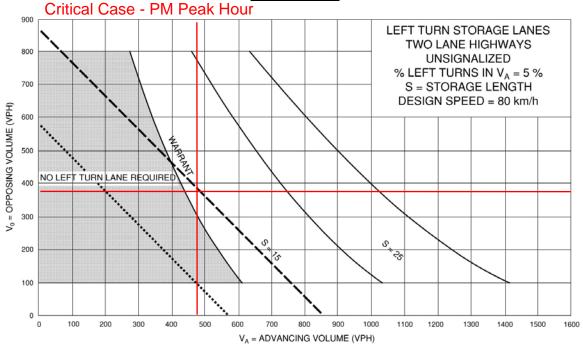


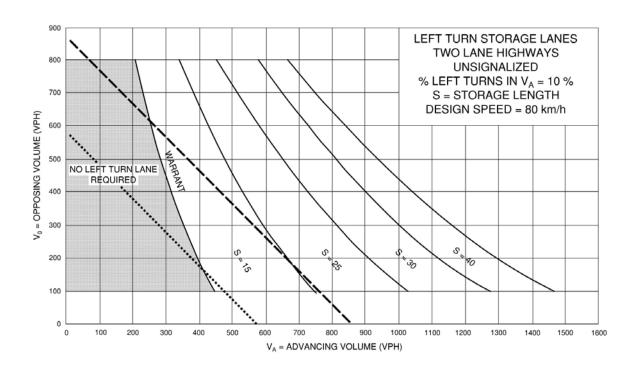


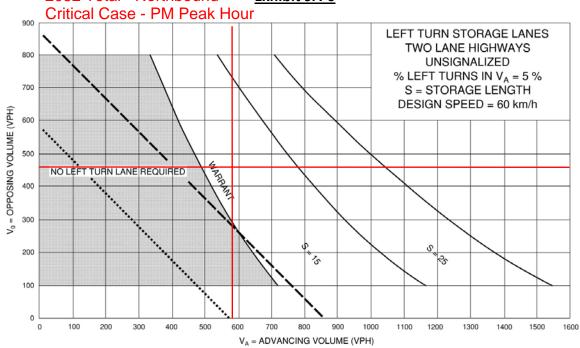


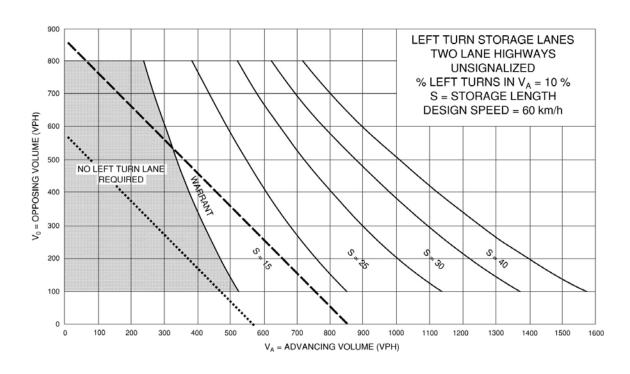






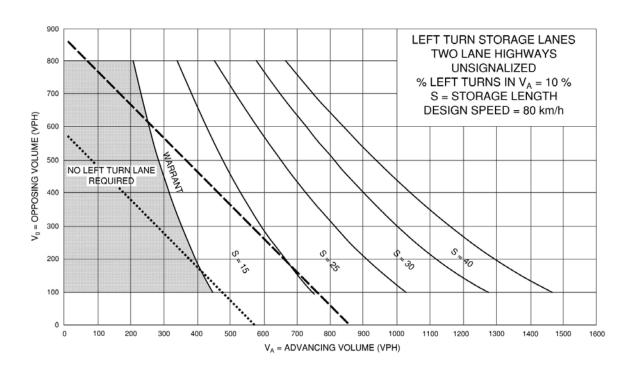



2027 Total - Northbound Exhibit 9A-14



TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW





Appendix G – OTM Signal Justification Sheets

			(Compliance)	Signal	Underground
Justification	Description	Sectional Entire %	Warrant	Provisions			
		Rest. Flow	Numerical	%	Little 70	vvarrant	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	720	553	77%	37%	NO	NO
	B. Vehicle volume, along minor streets				3/70		
	(average hour)	170	76	45%		NO	NO
2. Delay to cross traffic	A. Vehicle volume, major street						
	(average hour)	720	430	60%		NO	NO
	B. Combined vehicle and pedestrian				41%		
	volume crossing artery from minor						
	streets (average hour)	75	37	50%		NO	NO

Wellington Road 7 / North Access

			(Sidnal	Underground		
Justification	Description	Sectional	Entire %	Warrant	Provisions		
		Rest. Flow	Numerical	%	Littlic 70	warrant	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	720	426	59%	3%	NO	NO
	B. Vehicle volume, along minor streets				3%		
	(average hour)	255	10	4%		NO	NO
Delay to cross traffic	A. Vehicle volume, major street						
	(average hour)	720	413	57%		NO	NO
	B. Combined vehicle and pedestrian				4%		
	volume crossing artery from minor						
	streets (average hour)	75	4	5%		NO	NO

Wellington Road 7 / Centre Access

					Signal	Underground	
Justification	Description				Entire %	Warrant	Provisions
		Rest. Flow	Numerical	%	Littlic 70	warrant	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	720	430	60%	3%	NO	NO
	B. Vehicle volume, along minor streets				3%		
	(average hour)	255	12	5%		NO	NO
	A. Vehicle volume, major street						
	(average hour)	720	416	58%		NO	NO
	B. Combined vehicle and pedestrian				3%		
	volume crossing artery from minor						
	streets (average hour)	75	3	4%		NO	NO

Wellington Road 7 / South Access

			Compliance			Signal	Underground
Justification	Description		Sectional		Entire %	Warrant	Provisions
		Rest. Flow	Numerical	%	Ellille %	vvairant	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches				Ĭ		
	(average hour)	720	443	61%	3%	NO	NO
	B. Vehicle volume, along minor streets						
	(average hour)	255	12	5%		NO	NO
	A. Vehicle volume, major street						
	(average hour)	720	429	60%		NO	NO
	B. Combined vehicle and pedestrian				2%		
	volume crossing artery from minor						
	streets (average hour)	75	2	3%		NO	NO

Appendix H – Pedestrian Crossing Warrant

Wellington Road 7 / Middlebrook Road / David Street West Total 2032 - Southbound

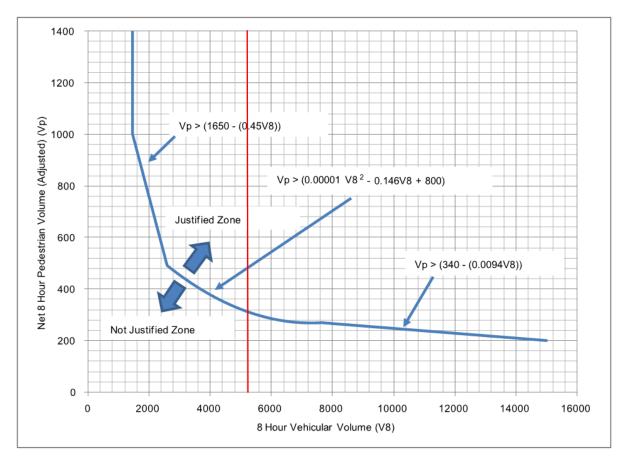
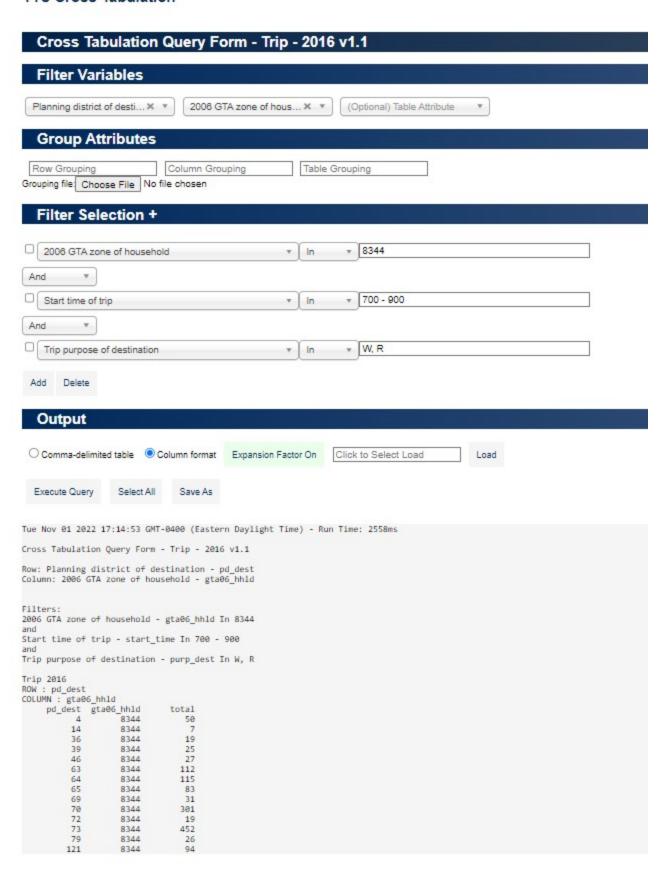


Figure 3: OTM Book 12 Justification 6 - Pedestrian Volume

Wellington Road 7 / Middlebrook Road / David Street West Total 2032 - Southbound


Figure 5: 4-Hour Pedestrian Volume Criterion for Communities of Population Less than 10,000

Appendix I – 2016 Transportation Tomorrow Survey Output

Fri Oct 14 2022 18:46:52 GMT-0400 (Eastern Daylight Time) - Run Time: 2990ms Fri Oct 14 2022 18:48:57 GMT-0400 (Eastern Daylight Time) - Run Time: 2650ms Cross Tabulation Query Form - Trip - 2016 v1.1 Cross Tabulation Query Form - Trip - 2016 v1.1 Row: Planning district of destination - pd_dest Row: 2006 GTA zone of destination - gta06_dest Column: 2006 GTA zone of household - gta06_hhld Column: 2006 GTA zone of household - gta06_hhld Filters: Filters: (2006 GTA zone of household - gta06_hhld In 8344); and (2006 GTA zone of household - gta06_hhld In 8344); and (Start time of trip - start_time In 700 - 900); and (Start time of trip - start_time In 700 - 900); and (Trip purpose of destination - purp_dest In W, R) (Trip purpose of destination - purp_dest In W); and (Planning district of destination - pd_dest In 73) Trip 2016 ROW : pd_dest ROW : gta06_dest COLUMN : gta06_hhld COLUMN : gta06_hhld

TTS Cross Tabulation

TTS Cross Tabulation

Cross Tabulation Query Form - Trip - 2016 v1.1 Filter Variables 2006 GTA zone of desti... × * 2006 GTA zone of hous... × * (Optional) Table Attribute **Group Attributes** Row Grouping Column Grouping Table Grouping Grouping file: Choose File No file chosen Filter Selection + + 8344 2006 GTA zone of household Start time of trip 700 - 900 And w W, R ☐ Trip purpose of destination w In And Planning district of destination 73, Add Delete Output Click to Select Load Load Execute Query Select All Save As Tue Nov 01 2022 17:16:43 GMT-0400 (Eastern Daylight Time) - Run Time: 2377ms Cross Tabulation Query Form - Trip - 2016 v1.1 Row: 2006 GTA zone of destination - gta06_dest Column: 2006 GTA zone of household - gta06_hhld Filters: 2006 GTA zone of household - gta06_hhld In 8344 Start time of trip - start_time In 700 - 900 Trip purpose of destination - purp_dest In W, R Planning district of destination - pd_dest In 73, Trip 2016 Table: ,8344 8344,136 8346,60 8350,18 8351,206 8354,16 8355,16