

Functional Servicing and Stormwater Management Design Report for:

19 East Mill Street Township of Centre Wellington (Elora)

GMBP File: 421133

Revised March 2023

GUELPH | OWEN SOUND | LISTOWEL | KITCHENER | LONDON | HAMILTON | GTA 330 TRILLIUM DRIVE, UNIT D , KITCHENER ON N2E 3J2 P: 519-748-1440 WWW.GMBLUEPLAN.CA

TABLE OF CONTENTS

1.	INT	RODUCTION	1
2.	PRO	DPOSED DEVELOPMENT	1
2	2.1	Site Grading	1
2	2.2	Water Supply	1
:	2.3	Sanitary Service	2
	2.4	Storm Service	3
3.	STO	DRMWATER MANAGEMENT DESIGN	4
:	3.1	Stormwater Management Criteria	4
;	3.2	Existing Condition Drainage Areas	5
;	3.3	Allowable Release Rates	5
	3.4	Post-Development Analysis	5
	3.4.	1 Post-Development Conditions Routing	6
4.	ERC	DSION AND SEDIMENT CONTROL PLAN	7
5.	MA	INTENANCE PLAN	7
6.	CO	NCLUSIONS	8

APPENDICES

- Appendix A: Fire Flow Demand Analysis
- Appendix B: Sanitary Sewer and Storm Sewer Design Sheets
- Appendix C: Stormwater Management Analysis

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT DESIGN REPORT

19 EAST MILL STREET

TOWNSHIP OF CENTRE WELLINGTON (ELORA)

REVISED MARCH 2023

GMBP FILE: 421133

1. INTRODUCTION

This revised functional servicing report has been prepared by GM BluePlan Engineering Limited to document the servicing requirements for the proposed development at East Mill Street in the Township of Centre Wellington (Elora), and to include a stormwater management tank rather than a stormwater management facility in the design.

The 0.30-hectare site is bound by East Mill Street to the north, existing residential development to the east and west, and Grand River to the south. The intent of the Owner at this time is to develop a proposed four (4) storey commercial and residential building, an existing two (2) storey commercial building, and a proposed singe residential building to be severed from the property.

A topographic survey of 19 East Mill Street was completed by Van Harten Surveying Inc. (dated November 30, 2020). The site plan was provided by Fryett Turner Architects (dated January 27, 2023).

2. PROPOSED DEVELOPMENT

2.1 Site Grading

The site generally slopes in a north to south direction toward Grand River. The lowest elevation of the site is 371.28 m at the southeast limit of the site along Grand River. The highest elevation on the site is 378.08 at the northeast limit of the site along East Mill Street right-of-way. The centreline road elevation along East Mill Street across the frontage of the site ranges from 378.20 m (approximately) to 377.30m (approximately).

The grade and elevations of the site, along with the internal driving aisles and finished floor elevation of each proposed building will be controlled by the existing centreline road elevation of East Mill Street, the existing Geddes Street parking lot, and the floodplain elevation. The site will be graded to match the existing elevations along the property limits.

The site currently sits within a Grand River Conservation Authority Regulated area and is partially within the Regulatory Floodplain for Grand River. All residential floors have been placed above the existing elevations on the site within the floodplain.

2.2 Water Supply

Servicing for the proposed residential and commercial building will be provided via the extension of one (1) 150mm diameter watermain from the existing 150mm diameter watermain in the East Mill Street right-of-way. A 50mm diameter water service lateral will be extended from the proposed residential and commercial building to service the existing commercial building at the rear of the property.

The proposed detached residential building is proposed to be severed as part of the applications and will be serviced from the extension of one (1) 25mm diameter watermain from the existing 150mm diameter watermain in the East Mill Street right-of-way.

Existing water services for the property will be appropriately abandoned.

The following table provides the average day and maximum day water demands for the development.

		Water Demand				
Unit Type	Population	Average Day	Maximum Day (Peaking Factor = 2)			
Building A: Commercial and Residential Building (18 residential units @ 2.5 people/unit, 350 L/cap/d; 0.024 ha of commercial space @ 0.6 L/s/ha)	45	0.197 L/s	0.394 L/s			
Building B: Commercial (0.028 ha @ 0.6 L/s/ha)	N/A	0.017 L/s	0.034 L/s			
Building C: Proposed Single Detached Residential Dwelling (1 unit, 3.5 people per unit @ 350 L/c/day)	4	0.016 L/s	0.032 L/s			
Total Domestic Water Demand	50	0.230 L/s	0.460 L/s			

Table No. 1: Water Supply Estimates

The design of the firefighting system has been based on Part II of the Water Supply for Public Fire Protection prepared by the Fire Underwriter's Survey (1999). Based on this, the minimum water supply is calculated as follows:

$$F\left(\frac{litres}{minute}\right) = 220 \ x \ C \ x \ \sqrt{A}$$

Where:

F = the required fire flow in litres per minute

C = coefficient related to the type of construction ranging from 0.6 (fire resistive) to 1.5 (very combustible) A = the total flow area in square metres (including all storeys, but excluding basements at least 50% below grade)

The estimated fire flow demand for the site is 150 L/s based on a wood construction and limited combustibility for the commercial and residential building. A copy of the fire flow analysis has been included in **Appendix A**.

2.3 Sanitary Service

Sanitary service for the proposed commercial and residential building will be provided via a 200mm diameter connection to the existing 375mm diameter sanitary sewer on East Mill Street (located in the northerly boulevard on East Mill Street). A 150mm diameter sanitary service lateral will be extended from the proposed residential and commercial building to service the existing commercial building at the rear of the property.

The proposed detached residential building is proposed to be severed as part of the applications and will be serviced from the extension of one (1) 100mm diameter sanitary sewer to the existing 375mm diameter sanitary sewer in the East Mill Street right-of-way.

Existing sanitary services for the property will be appropriately abandoned.

The capacity of the existing 375mm diameter sanitary sewer on East Mill Street has been calculated to be 0.129 m³/s (approximately), assuming a minimum grade of 0.50%.

The following is a summary of the anticipated sanitary design flows contributing to the existing 375mm diameter trunk sanitary sewer:

	Anticipated Sanitary Design Flow
Building A: Proposed Commercial and Residential Building (18 residential units @ 2.5 people/unit, 350 L/cap/d, Peaking Factor of 4.32; 0.024 ha of commercial space @ 0.6 L/s/ha, Peaking Factor of 2.5)	0.863 L/s
Building B: Commercial (0.028 ha @ 0.6 L/s/ha, Peaking Factor of 2.5)	0.045 L/s
Building C: Proposed Single Detached Residential Dwelling (1 unit, 3.5 people per unit @ 350 L/c/day, Peaking Factor of 4.45)	0.072 L/s
Infiltration Flows (0.30 ha @ 0.15 L/s/ha)	0.050 L/s
Total Anticipated Peak Flows	1.03 L/s
375mm diameter Sewer Capacity (assuming a minimum slope of 0.5%)	129 L/s

Table No. 2.	Anticinated Sanitary	Flows to Existing	I Trunk Sanitary	Sowar
	Anticipated Samia		i i i ulik Salillar	y Jewei

The proposed flows account for approximately 0.8% of the existing sanitary sewer's capacity. Therefore, the existing 375mm diameter sanitary sewer is expected to have sufficient capacity to convey the anticipated design flows from the development. The sanitary sewer design sheet has been included in **Appendix B**.

2.4 Storm Service

Storm service for the site will be provided via a 300mm diameter storm sewer connected to the existing 600mm diameter storm sewer in the Geddes Street Parking Lot west of the site, before ultimately discharging to the Grand River. The storm sewer design sheet has been included in **Appendix B**.

The capacity of the 600mm diameter storm sewer in the Geddes Street Parking Lot is 0.856 m³/s, based on an approximate slope of 1.8%. All post-development flows will be attenuated on-site through underground storage prior to discharge to the existing 600mm diameter storm sewer in the Geddes Street Parking Lot.

3. STORMWATER MANAGEMENT DESIGN

3.1 Stormwater Management Criteria

A summary of the stormwater management design criteria to be applied to the development are as follows:

- 1. Post-development peak flows rates are to be attenuated to existing conditions peak flow rates for the 2 to 100-year design storms.
- 2. Quality control, Enhanced level (80% TSS removal) is to be provided on-site.
- 3. The major overland flow route shall be designed to convey the 100-year storm event.

As per the Township of Centre Wellington development standards, MIDUSS modelling is required to demonstrate the performance for the 2-year to 100-year design events.

The Township of Centre Wellington (Fergus) mass rainfall data was used to model the full range of design storm events. The Chicago storm parameters and the total depth of rainfall for the 2-year up to the 100-year storm are shown in Table No. 3.

Parameter	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
a =	a = 695.047 1,459.072		2,327.596	3,701.648	5,089.418	6933.019
b =	6.387	13.690	19.500	25.500	30.000	34.669
C =	0.793	0.850	0.894	0.937	0.967	0.998
R =	0.380	0.380	0.380	0.380	0.380	0.380
td =	180	180	180	180	180	180
Rainfall depth (mm)	33.014	49.792	61.359	75.581	86.737	97.935

Table No. 3: Chicago Storm Parameters

The Horton infiltration method was used in the MIDUSS model with the parameters summarized within Table No. 4.

Table No. 4: MIDUSS Horton Parameters

Parameter	Impervious Areas	Pervious Areas
Maximum Infiltration (mm/hr)	0.0	75.0
Minimum Infiltration (mm/hr)	0.0	12.5
Lag Constant (hr)	0.05	0.25
Depression Storage (mm)	1.5	5.0

3.2 Existing Condition Drainage Areas

For the existing condition analysis, the site was analyzed as one (1) drainage catchment (see Figure No. 1).

Catchment 10 (0.30-hectares, 33% Impervious) represents the existing condition of the site, including the existing residential dwelling, buildings, existing asphalt and gravel areas, and landscaped areas. Under existing conditions, runoff generated from Catchment 10 sheetflows overland towards Grand River.

In summary, the existing condition flow rates from the site are as follows:

Table No. 5: Existing Condition Flow Rates

	10-Year	25-Year	50-Year	100-Year		
Catchment 10	0.020 m³/s	0.031 m³/s	0.048 m³/s	0.067 m³/s	0.082 m³/s	0.102 m³/s
Total	0.020 m³/s	0.031 m³/s	0.048 m³/s	0.067 m³/s	0.082 m³/s	0.102 m³/s

3.3 Allowable Release Rates

The allowable release rates from the site will be equivalent to the existing condition levels. Therefore, the allowable release rates from the 0.30-hectare drainage area under post-development conditions are as follows:

 Table No. 6:
 Allowable Release Rates

	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year		
Allowable Release Rate	0.020 m³/s	0.031 m³/s	0.048 m³/s	0.067 m³/s	0.082 m³/s	0.102 m³/s		

3.4 Post-Development Analysis

For the post-development condition analysis, the site was analyzed as two (2) drainage catchment (see Figure No. 2).

Catchment 100 (0.26-hectares, 48% impervious) represents the proposed post-development condition of the site, including buildings and landscaped and asphalt areas. Runoff generated from Catchment 100 will be directed to the proposed stormwater management tank, ultimately discharging via an existing storm sewer outlet to Grand River.

The on-site stormwater management tank will consist of a subsurface Brentwood StormTank (or approved equivalent). The on-site stormwater management (10m L x 12m W x 0.30m H) will provide approximately 49 m³ of storage, based on the manufacturer's suggested void space ratio of 97%. Discharge from the stormwater management tank will be via a 200 mm orifice plate in the downstream catchbasin, ultimately discharging to the existing storm sewer outlet to Grand River.

Catchment 200 (0.04-hectares, 0% impervious) represents the landscaped areas at the south limits of the site. Runoff generated from Catchment 200 will sheetflow overland uncontrolled to Grand River.

Quality Control for the site will not be required as the majority of the site is composed of rooftop and landscaped areas which are considered to generate "clean" runoff.

3.4.1 Post-Development Conditions Routing

The hydrologic model MIDUSS was used to create the storm runoff hydrographs and to route the hydrographs. A copy of the hydrologic modelling is included in **Appendix C**.

	Av	ailable Capa	acity	Actual Capacity Used					
	Peak Flow m³/s	StorageStorageVolumeElevatiom³m		Peak Flow m³/s	Storage Volume m ³	Storage Elevation m			
Bottom of Tank	0.000	0.0	373.15						
2-Year				0.013	12.3	373.23			
5-Year				0.022	22.5	373.29			
10-Year				0.030	31.4	37334			
25-Year				0.037	42.4	373.41			
Top of Tank	0.041	49.0	373.45						
50-Year				0.067	49.1	373.86			
T/G	0.077	49.2	374.05						
100-Year				0.078	50.5	374.08			
Weir	0.081	61.6	374.15						
Overflow	0.129	78.2	374.20						

 Table No. 7:
 Stormwater Management Tank Routing

The following table summarizes the post-development flow rates from the site.

 Table No. 8:
 Post-Development Condition Flow Rates

	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	
Catchment 100 (controlled)	0.013 m³/s	0.022 m³/s	0.030 m³/s	0.037 m³/s	0.067 m³/s	0.078 m³/s	
Catchment 200 (uncontrolled)	0.000 m³/s	0.005 m³/s	0.007 m³/s	0.010 m³/s	0.012 m³/s	0.015 m³/s	
Total Post- Development Flow Rate	0.013 m³/s	0.026 m³/s	0.034 m³/s	0.043 m³/s	0.074 m³/s	0.090 m³/s	

The following table compares the post-development flow rates from the site to the allowable release rates.

	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
Allowable Release Rate	0.020 m³/s	0.031 m³/s	0.048 m³/s	0.067 m³/s	0.082 m³/s	0.102 m³/s
Total Post- Development Flow Rate	0.013 m³/s	0.026 m³/s	0.034 m³/s	0.043 m³/s	0.074 m³/s	0.090 m³/s

Table No. 9: Comparison of Flow Rates

Therefore, the post-development flow rates from the site have been attenuated to less than the allowable release rates.

4. EROSION AND SEDIMENT CONTROL PLAN

A silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. The silt fence will serve to minimize the opportunity for water borne sediments to be washed on to the adjacent properties.

Upon completion of the grading, any area not subject to active construction within 30 days will be topsoiled and hydroseeded as per OPSS 572.

Once manholes, catchbasins or inlet risers have been installed, the grates will be wrapped in woven geotextile filter cloth. This feature will be maintained until all building and landscaping has been completed.

Inspection and maintenance of all silt fencing will start after installation is complete. The fence will be inspected on a weekly basis during active construction or after a rainfall event of 13 mm or greater. Maintenance will be carried out, within 48 hours, on any part of the facility found to need repair.

Once construction and landscaping has been substantially completed, the silt fence will be removed, any accumulated sediment will be removed and the landscaping will be completed.

After construction of the complete development, erosion will not occur and sediment transport will be minimal.

5. MAINTENANCE PLAN

To ensure that the stormwater management system continues to function as designed and constructed, we recommend that the following inspections and maintenance activities be completed on an annual basis:

- 1. Is there any noticeable damage to the asphalt and grassed areas (i.e. erosion, blockages)? If yes, complete any necessary repairs.
- 2. Inspect all roof drains and associated piping. Remove and dispose of any accumulated sediment trash/litter debris (i.e. leaves).
- 3. Inspect the oil/grit structure and complete any necessary maintenance/repair activities as identified by the manufacturer.
- 4. Inspect all catchbasins and manholes. Remove and dispose of any accumulated sediment, trash/litter, debris (i.e. sediment, garbage, leaves, etc.).
- 5. Inspect all overflow locations. Remove and dispose of any accumulated sediment trash/litter, debris (i.e. sediment, garbage, leaves, etc.).

Please note that any structures identified during the annual inspection to be worn, missing or damaged are to be repaired or replaced within 48 hours.

6. CONCLUSIONS

In summary:

- Water supply for the residential and commercial building will be provided via the extension of one (1) 150mm diameter watermain from the existing 150mm watermain in the East Mill Street right-of-way. A 50mm diameter water service lateral will be extended from the proposed residential and commercial building to service the existing commercial building. A 25mm diameter water service will be extended from the existing 150mm diameter water service will be extended residential property. All existing services for the property will be abandoned.
- Sanitary services for the commercial and residential building will be provided via the extension of a 200mm diameter sanitary sewer to the existing 375mm diameter sanitary sewer in the East Mill Street right-of-way. A 150mm diameter sanitary service lateral will be extended from the proposed commercial and residential building to service the existing commercial building at the rear of the property. A 100mm diameter sanitary sewer service lateral will be extended from the detached residential dwelling to the existing 375mm diameter sanitary sewer in the East Mill Street right-of-way.
- Storm service will be provided via the construction of on-site storm sewers to direct runoff to the proposed on-site stormwater management facility, ultimately discharging via an existing storm sewer outlet to Grand River.
- All post-development flows generated from the development will be attenuated to the existing condition levels prior to discharge from the site.
- Quality control measures will not be required as the proposed development consists mainly of rooftop and landscaped areas which are considered to generate "clean" runoff.
- Prior to construction, a silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. This will minimize the transport of sediment off-site during the construction period.

All of which is respectfully submitted.

GM BLUEPLAN ENGINEERING LIMITED

Reviewed By:

Sarah Primmer, P.Eng.

\lgamsby.local\gmprojects\Kitchener\421-2021\421133 - 19 Mill St E Elora\GMBP Reports - SWM, FSR, Design Brief, etc\421133 - Functional Servicing Report-revised_2023-03-02.docx

APPENDIX A: Fire Flow Demand Analysis

Project No:	421	33	FIRE UNDERWRITERS SURVEY CALCULATIONS											Date:		3/2/2023			
Designed By:	P٧	V						19 East N	Aill Street,										
Checked By:	SI	5					Townsh	ip of Centr	e Wellingto	on (Elora)								
Parameters fro	om Water S	upple for F	Public Fire Protect	ction, Fire Underw	riters Surve	y (1999)										Proximity	to closest	structure (m)	
																0 to 3		25%	
Type of Const	ruction				Fire Hazard	1				Sprinklers						3 to 10		20%	
Wood		1.5			Non-Comb	ustible	-0.25			No			0			10 to 20		15%	
Ordinary		1.0			Limited Co	mbustibility	-0.15			System			-30%			20 to 30		10%	
Non-Combusti	ible	0.8			Combustib	le	0			Standard \	Vater Su	ipply	-40%			30 to 40		5%	
Fire-Resistive		0.6			Free Burnir	ng	0.15			Fully Supe	rvised		-50%			None		0%	
					Rapid Burn	ing	0.25									Fire Wall		10%	
									Exposure Coeff		efficient								
Building	Floor Area (m2)	# Floors	Gross Floor Area (m2)	Construction Coefficient	NFF 220*C*(A) **0.5	Rounded NFF (to nearest 1000L/min)	Occupancy Factor	NFF adjusted for occupancy	Sprinkler Adjustment	Sprinkler Credit	N	S	E	w	Total (max 0.75)	Exposure Flow Debit	RFF	Rounded RFF (to nearest 1000L/min)	Required Fire Flow (L/s)
0																			
& Residential Building	859	4	3436	1	12896	13000	-0.15	11050	-0.4	-4420	0	0	0.2	0	0.2	2210	8840	9000	150
Existing Commercial Building	112	2	224	1	3293	3000	0	3000	0	0	0.15	0	0	0.2	0.35	1050	4050	4000	67
Detached Residential	137	2	274	1.5	5462	5000	-0.15	4250	0	0	0	0.15	0.15	0.2	0.5	2125	6375	6000	100
Building																			

APPENDIX B: Storm Sewer and Sanitary Sewer Design Sheets

STORM SEWER DESIGN

5-Year Design Storm

Township of Centre Wellington (Elora)

Intensity = $A / (t + B) \wedge C$	2
5-Year	

Chicago Storm Parameters

A = 1459.1 B = 13.69

C = 0.85

			Durati		Our lation A		Intensity (mm/hr)	Flow			F	Proposed S	Sewer		
From	То	Area (ha)	Coefficient	A x C	x C	TC (min.)	5-Year	(m ³ /s)	Length (m)	Pipe Size (mm)	Type of Pipe	Grade %	Capacity (m ³ /s)	Full Flow Velocity (m/s)	Time of Flow (min.)
Stub	CBMH.2	0.09	0.9	0.08	0.08	10.00	99.01	0.022	1.2	300	0.013	0.83	0.09	1.25	0.02
CBMH.2	MH.4	0.05	0.4	0.02	0.10	10.02	98.96	0.028	20.7	300	0.013	0.50	0.07	0.97	0.36
Trench Drain	MH.4	0.02	0.9	0.02	0.02	10.00	99.01	0.005	4.2	300	0.013	1.00	0.10	1.37	0.05
MH.4	Tank Inlet	0.00	0	0.00	0.12	10.37	97.71	0.032	12.7	300	0.013	0.50	0.07	0.97	0.22
CB.4/Tank	STM	0.00	0	0.00	0.08	10.00	99.01	0.022	9.1	250	0.013	0.44	0.04	0.80	0.19
Cumulative A x C for CB.4 to STM has been adjusted to calculate				Date:	March 3, 202	23		Project:	19 East	Mill Stree	t		<u>.</u>	<u> </u>	
the 5-year controlled outflow resulting from the stormwater				Designed By: PW				Township of Centre Wellington (Elora)							
management tank of 0.022 m ³ /s.					Checked By: SJP				File: 421133						

PROJECT:	19 East Mill Street																	
	Township of Centre	Wellingto	n (Elora)						SΔ	ΝΙΤΔ	RY	SF		FR	DES	IGN		
DATE:	September 2, 2022								UA			UL	_ ~ ~ !					
DESIGNED BY:	PW								Τον	vnehi	n o'	F C c	ontr	o W	allin	aton		
CHECKED BY:	SJP								100	113111	μυ		711LI	C 11	CIIIII	gion		
	Q(i) = Cum. Area (h	a) * Infiltra	ation Rate /	1000			Manning	Equation:	Full Cap.	.= (D/2/100	0)^2*Pi	*(D/4/1	000)^0	.667*(1/	n)*(S/100)^0.5		
	Infiltra	tion Rate:	0.15	L/s/ha					D = Diam	neter (mm)								
		S = Slope (%)																
	Peakir	ng Factor :	F = 1 + (1	4/(4+P^0.5)))	P = Populat	tion/1000		n = 0.013	3 (PVC & C	oncrete	e), 0101	16 (Vitri	ified Cla	у)			
			R	ESIDENTIAL			ON		Com	mercial	Indus	tustrial	Instit	tutional	C+I+I			Γ
From	То	Area	No. of	Population	Cun	nulative	Peak	Peak Flow	Area	Cum. Area	Area	Cum. Area	Area	Cum. Area	Peak Flow	Infiltration	Total Flow	[
		(ha)	Units		Area (ha)	Population	Factor	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	Q(i) = (L/s)	(L/s)	
Ex. Commercial Building	Commercial & Residential Building								0.03	0.03					0.045	0.0045	0.0495	
Commercial & Residential Building	SAN	0.21	18	45	0.21	45	4.324	0.7882	0.02	0.05					0.075	0.0390	0.9022	
																		_
Detached Residential Building	SAN	0.04	1	4	0.04	4	4.446	0.0720							0.000	0.0060	0.0780	
4		1	1	1	1	1	1	1			1	1	1		1	1		1

Average Daily Flow													
	Re	esidential:	350	L/c/d									
	Co	mmercial:	0.6	L/s/ha									
		n =	0.013										
			0.010										
Min	Minimum Full Velocity = 0.80 m/s												
	Minimum Full velocity = 0.80 m/s												
Pipe													
)istance	Diameter	Slope	Capacity	Ve	locity								
	Diamoto	0.000	(Full)	F	, A . t I								
(m)	(mm)	(%)	(m ³ /s)	Full (m/s)	Actual (m/s)								
				(11//0)	(11//0)								
5 50	150	0.50	0.0108	0.611	0 1/1								
5.50	150	0.50	0.0100	0.011	0.141								
16 50	200	0.50	0 0000	0 7 2 0	0.262								
10.50	200	0.50	0.0232	0.730	0.302								
15.20	100	0.50	0.0037	0.471	0.155								
	1		1	1									

APPENDIX C: Stormwater Management Analysis

"		MIDUSS Output		>"
"		MIDUSS version	Vers	ion 2.25 rev. 473"
"		MIDUSS created	Sunday,	February 07, 2010"
"	10	Units used:	-	ie METRIC"
"		Job folder:	W:\K	itchener 421-2021
"		421133 - 19 Mill 9	St E Elora\Design Da	ta\Modelling Files"
"		Output filename:	4	21133 - Ex 2yr.out"
"		Licensee name:		gmbp"
"		Company		gmbp"
"		Date & Time last used:	9/2/2	022 at 12:21:39 PM"
"	31 T	IME PARAMETERS"		
"	5.000	Time Step"		
"	180.000	Max. Storm length"		
"	1500.000	Max. Hydrograph"		
"	32 S	TORM Chicago storm"		
	1	Chicago storm"		
"	695.047	Coefficient A"		
	6.387	Constant B"		
	0.507	Exponent ("		
	0,755	Expension R"		
	180 000	Duration"		
	1 000	Time sten multinlier"		
	1.000 M	avimum intensity	93 292 mm/hr"	
	Т	otal denth	33 014 mm"	
	6	002byd Hydrograph exter	sion used in this f	ilo"
	33 (ATCHMENT 10"		IIC
	1	Triangulan SCS"		
	1	Faual length"		
	1	Honton equation"		
	10	Cotchmont 10"		
	33 000	% Impenvious"		
	22.000			
	45 000	Flow longth"		
	45.000	Piow length Overland Slene"		
	10.000	Dopuious Apop"		
	45 000	Pervious Area		
	45.000	Pervious tengen		
	10.000	Pervious slope		
	0.099	Impervious Area		
	45.000	Impervious length		
	10.000	Impervious slope		
	0.250	Pervious Manning n		
	/5.000	Pervious Max.infiltration	1" "	
	12.500	Pervious Min.infiltration	1" \"	
	0.250	Pervious Lag constant (no	ours)	
	5.000	Pervious Depression stora	age	
	0.015	Impervious Manning 'n'"	• "	
	0.000	Impervious Max.intiltrat	10n"	
	0.000	Impervious Min.intiltrat	10n"	
	0.050	Impervious Lag constant ((nours)"	
	1.500	Impervious Depression sto	orage"	

п	0.020	0.000	0.000	0.000 0	.m/sec"	
п	Catchment 10		Pervious	Impervious	Total Ar	ea "
п	Surface Area		0.201	0.099	0.300	hectare"
п	Time of concentrat	ion	21.942	1.795	3.041	minutes"
п	Time to Centroid		91.588	86.112	86.451	minutes"
п	Rainfall depth		33.014	33.014	33.014	mm"
п	Rainfall volume		66.36	32.68	99.04	c.m"
п	Rainfall losses		32.004	1.935	22.081	mm"
п	Runoff depth		1.010	31.079	10.933	mm"
п	Runoff volume		2.03	30.77	32.80	c.m"
п	Runoff coefficient		0.031	0.941	0.331	н
п	Maximum flow		0.002	0.020	0.020	c.m/sec"
" 40	HYDROGRAPH Add Run	off '	•			
п	4 Add Runoff "					
п	0.020	0.020	0.000	0.000"		
" 38	START/RE-START TOT	ALS 1	L0"			
п	3 Runoff Totals o	n EXI	LT.			
II	Total Catchment ar	ea		0.	.300 h	ectare"
"	Total Impervious a	rea		0.	.099 h	ectare"
"	Total % impervious			33.	.000"	
" 19	EXIT"					

"		MIDUSS Output		>"
"		MIDUSS version	Vers	ion 2.25 rev. 473"
"		MIDUSS created	Sunday,	February 07, 2010"
"	10	Units used:	-	ie METRIC"
"		Job folder:	W:\K	itchener 421-2021
"		421133 - 19 Mill St	t E Elora\Design Da	ta\Modelling Files"
"		Output filename:	4	21133 - Ex 5yr.out"
"		Licensee name:		gmbp"
"		Company		gmbp"
"		Date & Time last used:	9/2/2	022 at 12:23:13 PM"
"	31 T	IME PARAMETERS"		
"	5.000	Time Step"		
"	180.000	Max. Storm length"		
"	1500.000	Max. Hvdrograph"		
"	32 S	TORM Chicago storm"		
"	1	Chicago storm"		
	1459.072	Coefficient A"		
	13,690	Constant B"		
	0 850	Exponent ("		
	0.390	Exponence C Fraction B"		
	180 000	Duration"		
	1 000	Time sten multinlier"		
	1.000 M	aximum intensity	113 586 mm/hr"	
	Т	otal denth	19.900 mm/m	
	6	005hvd Hydrograph extens	sion used in this f	ilo"
	33 0	ATCHMENT 10"	STOIL USED THE CHTS I	IIC
	1	Triangulan SCS"		
	1	Faual length"		
	1	Honton equation"		
	10	Catchmont 10"		
	33 000	% Impenyious"		
	22.000	Total Apoa"		
	45 000	Flow longth"		
	45.000	Filow Teligen Overland Slene"		
	10.000	Dopyious Apos"		
	45 000	Pervious Area		
	45.000	Pervious religin		
	10.000	Tenonuious Stope		
	0.099	Impervious Area		
	45.000	Impervious length		
	10.000	Impervious slope		
	0.250	Pervious Manning n		
	/5.000	Pervious Max.infiltration		
	12.500	Pervious Min.infiltration		
	0.250	Pervious Lag constant (hou	urs)"	
	5.000	Pervious Depression storag	ge	
	0.015	Impervious Manning 'n'"		
	0.000	Impervious Max.intiltratio	on"	
	0.000	Impervious Min.infiltratio	on"	
	0.050	Impervious Lag constant (nours)"	
"	1.500	Impervious Depression sto	rage"	

"			0.031	0.000	0.000	0.000	c.m/sec"	
"		Catchmer	nt 10		Pervious	Impervious	Total A	rea "
"		Surface	Area		0.201	0.099	0.300	hectare"
"		Time of	concentrat	tion	11.827	1.659	4.861	minutes"
"		Time to	Centroid		89.158	85.059	86.350	minutes"
"		Rainfall	l depth		49.792	49.792	49.792	mm"
"		Rainfall	l volume		100.08	49.29	149.38	c.m"
"		Rainfall	l losses		39.012	2.180	26.857	mm"
"		Runoff d	lepth		10.780	47.612	22.935	mm"
"		Runoff \	/olume		21.67	47.14	68.80	c.m"
"		Runoff d	coefficient	t	0.217	0.956	0.461	п
"		Maximum	flow		0.016	0.026	0.031	c.m/sec"
"	40	HYDROGRA	APH Add Rur	noff '	1			
"		4 Add F	Runoff "					
"			0.031	0.031	L 0.000	0.000"		
"	38	START/RE	E-START TO	TALS 1	L0"			
"		3 Runof	ff Totals o	on EXI	ET"			
"		Total Ca	atchment ar	rea		0	. 300	hectare"
"		Total In	npervious a	area		0	.099	hectare"
"		Total %	impervious	5		33	.000"	
"	19	EXIT"						

"		MIDUSS Output		>"
"		MIDUSS version	Vers	ion 2.25 rev. 473"
"		MIDUSS created	Sunday,	February 07, 2010"
"	10	Units used:	-	ie METRIC"
"		Job folder:	W:\K	itchener 421-2021
"		421133 - 19 Mill S [.]	t E Elora\Design Da	ta\Modelling Files"
"		Output filename:	42	1133 - Ex 10yr.out"
"		Licensee name:		gmbp"
"		Company		gmbp"
"		Date & Time last used:	9/2/2	022 at 12:24:26 PM"
"	31 T	IME PARAMETERS"		
"	5.000	Time Step"		
"	180.000	Max. Storm length"		
"	1500.000	Max. Hvdrograph"		
"	32 S	TORM Chicago storm"		
"	1	Chicago storm"		
	2327.596	Coefficient A"		
	19,500	Constant B"		
	0.894	Exponent C"		
	0.380	Eraction R"		
	180 000	Duration"		
	1 000	Time sten multinlier"		
	±.000	aximum intensity	126 171 mm/hr"	
	Т	otal denth	61 359 mm"	
	6	010hvd Hydrograph exten	sion used in this f	ilo"
	33 0	ATCHMENT 10"		IIE
	1	Triangular SCS"		
	1	Faual length"		
	2	Honton equation"		
	10	Catchment 10"		
п	33 000	% Impenyious"		
	0 300	Total Apoa"		
	45 000	Flow longth"		
	10 000	Ovenland Slope"		
	10.000	Bonvious Anos"		
	45 000	Pervious Area		
	43.000	Pervious clope"		
	10.000	Tenonuious Anos"		
	0.099	Impervious Area		
	45.000	Impervious length		
	10.000	Impervious stope		
	0.250	Pervious Manning n		
	/5.000	Pervious Max.infiltration		
	12.500	Pervious Min.inflitration		
	0.250	Pervious Lag constant (no	urs)	
	5.000	Tervious Depression stora	ge	
	0.015	Impervious Manning 'n'"	11	
	0.000	Impervious Max.intiltration	on 	
	0.000	Impervious Min.intiltration		
	0.050	Impervious Lag constant (nours)"	
	1.500	Impervious Depression sto	rage"	

"			0.048	0.000	0.000	0.000 (.m/sec"	
"		Catchmer	nt 10		Pervious	Impervious	Total Ar	rea "
"		Surface	Area		0.201	0.099	0.300	hectare"
"		Time of	concentrat	ion	10.575	1.591	5.216	minutes"
"		Time to	Centroid		89.162	84.627	86.457	minutes"
"		Rainfall	l depth		61.359	61.359	61.359	mm"
"		Rainfall	l volume		123.33	60.75	184.08	c.m"
"		Rainfall	losses		41.696	2.333	28.706	mm"
II.		Runoff d	lepth		19.663	59.026	32.653	mm"
"		Runoff v	/olume		39.52	58.44	97.96	c.m"
"		Runoff d	coefficient	Ξ	0.320	0.962	0.532	
"		Maximum	flow		0.028	0.030	0.048	c.m/sec"
"	40	HYDROGRA	APH Add Rur	off '	I			
"	2	4 Add F	Runoff "					
"			0.048	0.048	3 0.000	0.000"		
"	38	START/RE	-START TOT	TALS 1	L0"			
"		3 Runof	f Totals c	on EXI	[T"			
"		Total Ca	atchment ar	rea		0.	.300 ł	nectare"
"		Total In	npervious a	area		0.	.099 ł	nectare"
"		Total %	impervious	5		33.	.000"	
"	19	EXIT"						

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	W:\Kitchener\421-2021\"
"		421133 - 19 Mill St E E	<pre>lora\Design Data\Modelling Files"</pre>
"		Output filename:	421133 - Ex 25yr.out"
"		Licensee name:	gmbp"
"		Company	gmbp"
"		Date & Time last used:	9/2/2022 at 12:25:22 PM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 S	STORM Chicago storm"	
"	1	Chicago storm"	
	3701.648	Coefficient A"	
	25.500	Constant B"	
"	0.937	Exponent C"	
"	0.380	Fraction R"	
	180,000	Duration"	
	1,000	Time sten multinlier"	
"	M	laximum intensity 143.3	71 mm/hr"
"	Т	otal denth 75.5	81 mm"
	6	025hvd Hydrograph extension	used in this file"
	33 C	ATCHMENT 10"	
"	1	Triangular SCS"	
"	- 1	Faual length"	
	- 2	Horton equation"	
"	10	Catchment 10"	
"	33,000	% Impervious"	
"	0.300	Total Area"	
"	45.000	Flow length"	
	10,000	Overland Slope"	
	0.201	Pervious Area"	
	45,000	Pervious length"	
	10,000	Pervious slope"	
	0.000	Impervious Area"	
	45 000	Impervious length"	
	10,000	Impervious slope"	
	0 250	Pervious Manning 'n'"	
	75 000	Pervious Max infiltration"	
	12 500	Pervious Min infiltration"	
	A 250	Pervious lag constant (hours)"	
	5 000	Pervious Denression storage"	
	0 015	Tmnervious Manning 'n'"	
	0.010	Impervious Max infiltration"	
	0.000 0 000	Impervious Min infiltration"	
	0.000 0 050	Impervious Lag constant (bours	\ "
	1,500	Impervious Depression storage"	/
	2.500		

"			0.067	0.000	0.000	0.000	c.m/sec"	1
"		Catchmer	it 10		Pervious	Impervious	Total A	rea "
"		Surface	Area		0.201	0.099	0.300	hectare"
"		Time of	concentrat	ion	9.001	1.512	4.997	minutes"
"		Time to	Centroid		89.198	84.255	86.555	minutes"
"		Rainfall	. depth		75.581	75.581	75.581	mm"
"		Rainfall	volume		151.92	74.83	226.74	c.m"
"		Rainfall	losses		44.275	2.559	30.509	mm"
"		Runoff d	lepth		31.305	73.021	45.072	mm"
"		Runoff v	olume		62.92	72.29	135.22	c.m"
"		Runoff c	oefficient	2	0.414	0.966	0.596	"
"		Maximum	flow		0.044	0.035	0.067	c.m/sec"
"	40	HYDROGRA	PH Add Rur	off '	1			
"	4	Add R	lunoff "					
"			0.067	0.067	0.000	0.000"		
"	38	START/RE	-START TOT	TALS 1	L0"			
"	3	Runof	f Totals o	on EXI	[T"			
"		Total Ca	itchment ar	rea		0	.300	hectare"
"		Total Im	npervious a	area		0	.099	hectare"
"		Total %	impervious	5		33	.000"	
"	19	EXIT"						

"		MIDUSS Output		>"
"		MIDUSS version	Versi	on 2.25 rev. 473"
"		MIDUSS created	Sunday,	February 07, 2010"
"	10	Units used:	-	ie METRIC"
"		Job folder:	W:\Ki	tchener\421-2021\"
"		421133 - 19 Mill St	E Elora\Design Dat	a\Modelling Files"
"		Output filename:	421	.133 - Ex_50yr.out"
"		Licensee name:		gmbp"
"		Company		gmbp"
"		Date & Time last used:	9/2/20	22 at 12:26:12 PM"
"	31 T	IME PARAMETERS"		
"	5.000	Time Step"		
"	180.000	Max. Storm length"		
"	1500.000	Max. Hvdrograph"		
"	32 S	STORM Chicago storm"		
"	1	Chicago storm"		
"	5089.418	Coefficient A"		
	30.000	Constant B"		
	0.967	Exponent C"		
	0.380	Fraction R"		
"	180.000	Duration"		
"	1.000	Time step multiplier"		
"		Maximum intensity 15	6.350 mm/hr"	
	T	Total depth 8	6.737 mm"	
"	6	050hvd Hvdrograph extensi	on used in this fi	le"
	33 0	CATCHMENT 10"		
	1	Triangular SCS"		
"	1	Equal length"		
	2	Horton equation"		
"	10	Catchment 10"		
"	33.000	% Impervious"		
"	0.300	Total Area"		
"	45.000	Flow length"		
	10.000	Overland Slope"		
"	0.201	Pervious Area"		
"	45.000	Pervious length"		
	10.000	Pervious slope"		
"	0.099	Impervious Area"		
"	45.000	Impervious length"		
	10.000	Impervious slope"		
"	0.250	Pervious Manning 'n'"		
	75.000	Pervious Max.infiltration"		
"	12.500	Pervious Min.infiltration"		
"	0.250	Pervious Lag constant (hour	s)"	
	5.000	Pervious Depression storage	- /	
	0.015	Impervious Manning 'n'"		
"	0.000	Impervious Max.infiltration	п	
"	0.000	Impervious Min.infiltration	п	
"	0.050	Impervious Lag constant (ho	urs)"	
"	1.500	Impervious Depression stora	ge"	

"	0	.082 0	.000	0.000	0.000 c	.m/sec"	
"	Catchment	10	Р	ervious	Impervious	Total Are	ea "
"	Surface A	rea	0	.201	0.099	0.300	hectare"
"	Time of co	oncentratio	on 8	.405	1.460	4.915	minutes"
"	Time to Ce	entroid	8	9.539	84.074	86.793	minutes"
"	Rainfall (depth	8	6.737	86.737	86.737	mm"
"	Rainfall	volume	1	74.34	85.87	260.21	c.m"
"	Rainfall :	losses	4	5.784	2.751	31.583	mm"
"	Runoff de	oth	4	0.953	83.986	55.154	mm"
"	Runoff vo	lume	8	2.32	83.15	165.46	c.m"
"	Runoff coe	efficient	0	.472	0.968	0.636	
"	Maximum f	low	0	.055	0.038	0.082	c.m/sec"
" 4(HYDROGRAPI	H Add Runo [.]	ff "				
"	4 Add Rui	noff "					
"	0	.082 0	.082	0.000	0.000"		
" 38	3 START/RE-S	START TOTA	LS 10	, ii			
"	3 Runoff	Totals on	EXIT	• 11			
"	Total Cate	chment area	а		0.	300 he	ectare"
"	Total Impe	ervious ar	ea		0.	099 he	ectare"
"	Total % in	npervious			33.	000"	
" 19	Ə EXIT"						

"		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
"		Job folder: W:\Kitchener\421-2021\"
"		421133 - 19 Mill St E Elora\Design Data\Modelling Files"
"		Output filename: 421133 - Ex 100yr.out"
"		Licensee name:gmbp"
"		Company gmbp"
"		Date & Time last used: 9/2/2022 at 12:27:14 PM"
"	31	IME PARAMETERS"
"	5.000	Time Step"
"	180.000	Max. Storm length"
"	1500.000	Max. Hvdrograph"
"	32	TORM Chicago storm"
"	1	Chicago storm"
	6933.019	Coefficient A"
	34,669	Constant B"
	0,998	Exponent C"
	0.380	Eraction R"
	180,000	Duration"
	1,000	Time step multiplier"
	1.000	aximum intensity 168.900 mm/hr"
		otal depth 97,935 mm"
	6	100hvd Hvdrograph extension used in this file"
	33 (ATCHMENT 10"
	1	Triangular SCS"
	1	Foual length"
	2	Horton equation"
	10	Catchment 10"
	33,000	% Impervious"
	0.300	Total Area"
	45,000	Flow length"
	10,000	Overland Slone"
	0,201	Pervious Area"
	45,000	Pervious length"
	10 000	Pervious slope"
	0.099	Impervious Area"
	45,000	Impervious length"
	10,000	Impervious slope"
	A 250	Pervious Manning 'n'"
	75 000	Pervious Max infiltration"
	12 500	Pervious Min infiltration"
	a 250	Pervious Lag constant (hours)"
	5 000	Pervious Depression storage"
	0 015	Tmnervious Manning 'n'"
	0.013	Impervious Max infiltration"
	0.000 0 000	Impervious Min infiltration"
	0.000 0 050	Impervious Lag constant (hours)"
	1.500	Impervious Depression storage"
	2.500	r

"			0.102	0.000	0.000	0.000 (c.m/sec"	
"		Catchmer	nt 10		Pervious	Impervious	Total A	rea "
"		Surface	Area		0.201	0.099	0.300	hectare"
"		Time of	concentrat	tion	8.075	1.416	4.884	minutes"
"		Time to	Centroid		89.683	83.931	86.927	minutes"
"		Rainfall	l depth		97.935	97.935	97.935	mm"
"		Rainfall	l volume		196.85	96.96	293.80	c.m"
"		Rainfall	l losses		47.099	2.954	32.531	mm"
"		Runoff d	lepth		50.836	94.981	65.404	mm"
"		Runoff \	/olume		102.18	94.03	196.21	c.m"
"		Runoff d	coefficient	t	0.519	0.970	0.668	
"		Maximum	flow		0.066	0.042	0.102	c.m/sec"
"	40	HYDROGRA	APH Add Rur	noff '	1			
"		4 Add F	Runoff "					
"			0.102	0.102	2 0.000	0.000"		
"	38	START/RE	START TO	TALS 1	L0"			
"		3 Runof	ff Totals o	on EXI	[Т"			
"		Total Ca	atchment ar	rea		0.	.300 l	nectare"
"		Total In	npervious a	area		0.	.099 l	nectare"
"		Total %	impervious	5		33.	.000"	
"	19	EXIT"						

19 EAST MILL STREET TOWNSHIP OF CENTRE WELLINGTON (ELORA) Our File: 421133 March 2, 2023

ELEV	INC. DEPTH	PONDING AREA	INCREASE ACTIVE VOLUME	ACCUM STORAGE VOL	
(m)	(m)	(m²)	(m ³)	(m ³)	
373.15	0.00	163.32	0.00	0.00	Bottom of Tank
373.25	0.10	163.32	16.33	16.33	
373.35	0.20	163.32	16.33	32.66	
373.45	0.30	163.32	16.33	49.00	Top of Tank
373.60	0.45	0.36	0.05	49.05	
373.75	0.60	0.36	0.05	49.10	
373.90	0.75	0.36	0.05	49.15	
374.05	0.90	0.36	0.05	49.21	T/G
374.10	0.95	85.84	2.16	51.36	
374.15	1.00	323.76	10.24	61.60	Weir
374.20	1.05	340.00	16.59	78.20	Overflow

Catchment 100: Proposed Stormwater Management Tank

MINOR CONTROL

Invert =	373.11	m
Q =	0.081	m ³ /s
Cd =	0.6	
H =	0.94	m
2g =	19.62	
A =	0.031	m²
D=	0.200	m

OVERFLOW WEIR

Q =	0.046	cu m/s
d1 =	1.050	m
h =	1.000	m
Η =	0.050	m
2g =	19.620	
L =	3.000	m

Stormwater Management Tank (continued)

ELEVATION	STAGE (m)	STORAGE (cu m)	MINOR CONTROL	WEIR DISCHARGE	TOTAL DISCHARGE	
			(cu m/s)	(cu m/s)	(cu m/s)	-
373.15	0.000	0.00	0.000	0.000	0.000	Bottom of Tank
373.25	0.100	16.33	0.017	0.000	0.017	
373.35	0.200	32.66	0.031	0.000	0.031	
373.45	0.300	49.00	0.041	0.000	0.041	Top of Tank
373.60	0.450	49.05	0.052	0.000	0.052	
373.75	0.600	49.10	0.061	0.000	0.061	
373.90	0.750	49.15	0.069	0.000	0.069	
374.05	0.900	49.21	0.077	0.000	0.077	T/G
374.10	0.950	51.36	0.079	0.000	0.079	
374.15	1.000	61.60	0.081	0.000	0.081	Weir
374.20	1.050	78.20	0.083	0.046	0.129	Overflow

"			MIDUSS Output		>"
"			MIDUSS version		Version 2.25 rev. 473"
"			MIDUSS created		Sunday, February 07, 2010"
"		10	Units used:		ie METRIC"
"			Job folder:		C:\MIDUSS\421133"
"			Output filename:		421133 - Post 2vr R3.out"
"			Licensee name:		gmbp"
"			Company		
"			Date & Time last used:		3/2/2023 at 10:31:29 AM"
"	31	TI	ME PARAMETERS"		-, ,
"		5.000	Time Step"		
"		180.000	Max. Storm length"		
"		1500.000	Max. Hydrograph"		
	32	ST	ORM Chicago storm"		
	-	1	Chicago storm"		
		695.047	Coefficient A"		
"		6.387	Constant B"		
		0.793	Exponent C"		
		0.380	Eraction R"		
"		180.000	Duration"		
		1,000	Time sten multiplier"		
		2.000 Ma	ximum intensity 93	292	mm/hr"
		To	tal denth 33	.014	mm"
		6	002hvd Hydrograph extensio	n used ·	in this file"
	22	ČA	TCHMENT 100"	in useu .	
	55	1	Triangular SCS"		
		1	Faual length"		
		2	Horton equation"		
		100	Catchment 100"		
		16 000	% Impenvious"		
		40.000	Total Apea"		
		20.200	Flow length"		
		5 000	Ovenland Slope"		
		0 140	Bonvious Anos"		
		20.000	Pervious Area Donvious longth"		
		20.000	Pervious religin		
		5.000	Tenonyious Anon"		
		0.120	Impervious Area		
		20.000	Impervious length		
		5.000	Impervious slope		
		0.250	Pervious Manning n Denvious Max infiltration"		
		12 500	Pervious Max. Infiltration		
		12.500	Pervious Min.inflitration	\ II	
		0.250	Pervious Lag constant (nours)	
		5.000	Terrorious Depression storage		
		0.015	Impervious Manning n		
		0.000	Impervious Max.intiltration		
		0.000	Impervious Min.infiltration"		
		0.050	Impervious Lag constant (hou	r'S)"	
		1.500	Impervious Depression storag	e"	0.000
			0.025 0.000 0.0	00 00	0.000 C.M/SEC

"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.140	0.120	0.260	hectare"
"	Time of concentratio	on 16.607	1.358	1.921	minutes"
"	Time to Centroid	87.776	85.601	85.681	minutes"
"	Rainfall depth	33.014	33.014	33.014	mm"
"	Rainfall volume	46.35	39.48	85.84	c.m"
"	Rainfall losses	32.006	2.110	18.254	mm"
"	Runoff depth	1.008	30.904	14.760	mm"
"	Runoff volume	1.42	36.96	38.38	c.m"
"	Runoff coefficient	0.031	0.936	0.447	
"	Maximum flow	0.001	0.025	0.025	c.m/sec"
	40 HYDROGRAPH Add Runof	f"			
"	4 Add Runoff "				
	0.025 0.	025 0.000	0.000"		
"	54 POND DESIGN"	01000	0.000		
	0.025 Current peak flow	c.m/sec"			
"	0.016 Target outflow	c.m/sec"			
	38.4 Hydrograph volume	c.m"			
	11. Number of stages"				
	373.150 Minimum water lev	vel metre"			
	375.000 Maximum water lev	vel metre"			
	373.150 Starting water le	vel metre"			
	0 Keen Design Data:	1 = True: 0 =	= False"		
	Level Discharge	Volume"	1 4150		
	373,150 0.000	0.000"			
	373,250 0.01700	16.330"			
	373.350 0.03100	32,660"			
	373,450 0.04100	49,000"			
	373 600 0 05200	49 050"			
	373.750 0.06100	49.000			
	373,900 0,06900	49,150"			
	373.500 0.00500	49.150			
	374.100 0.07900	51 360"			
п	374.100 0.07500	61 600"			
	374.150 0.00100	78 200"			
	Peak outflow	0 0°	13 c.m/se	•د"	
	Maximum level	373 2	25 metre		
	Maximum storage	12 2	90 cm"		
	Centroidal lag	1 6	95 hours"		
	0 025 0 025	a ais	0 000 cm	sec"	
	40 HVDROGRAPH Next link	, "	0.000 C.m/	See	
	5 Nevt link "				
п		013 0 013	0 000"		
	33 CATCHMENT 200"	010 0.010	0.000		
	1 Thiangulan CCC"				
	1 Equal longth"				
	I Equal teligui				
	2 Horion equation				
	200 Cattiment 200				
	0.040 IOTAL Area				

"	20.000	Flow length"					
"	15.000	Overland Slope"					
"	0.040	Pervious Area"					
"	20.000	Pervious length"					
"	15.000	Pervious slope"					
"	0.000	Impervious Area"					
"	20.000	Impervious length"					
"	15.000	Impervious slope"					
"	0.250	Pervious Manning 'n					
"	75.000	Pervious Max.infilt	ration"				
"	12.500	Pervious Min.infilt	ration"				
"	0.250	Pervious Lag consta	nt (hours)"				
"	5.000	Pervious Depression	storage"				
"	0.015	Impervious Manning	'n'"				
"	0.000	Impervious Max.infi	ltration"				
"	0.000	Impervious Min.infi	ltration"				
"	0.050	Impervious Lag cons	tant (hours)) "			
"	1.500	Impervious Depressi	on storage"				
"		0.000 0.01	3 0.013	0.000	c.m/sec'		
"	Ca	atchment 200	Pervious	Imperviou	s Total /	Area	
"	Su	urface Area	0.040	0.000	0.040		hectare"
"	Ti	ime of concentration	11.944	0.977	11.944		minutes"
"	Ti	ime to Centroid	84.280	84.889	84.280		minutes"
"	Ra	ainfall depth	33.014	33.014	33.014		mm"
"	Ra	ainfall volume	13.21	0.00	13.21		c.m"
"	Ra	ainfall losses	32.003	2.614	32.003		mm"
"	Ru	unoff depth	1.011	30.400	1.011		mm"
"	Ru	unoff volume	0.40	0.00	0.40		c.m"
"	Ru	unoff coefficient	0.031	0.000	0.031		
"	Ma	aximum flow	0.000	0.000	0.000		c.m/sec"
"	40 HY	YDROGRAPH Add Runoff	"				
"	4	Add Runoff "					
"		0.000 0.01	3 0.013	0.000			
"	38 ST	TART/RE-START TOTALS	200"				
"	3	Runoff Totals on EX	IT"				
"	Тс	otal Catchment area			0.300	hect	tare"
"	Тс	otal Impervious area			0.120	hect	tare"
"	Тс	otal % impervious		3	9.867"		
"	19 EX	KIT"					

"			MIDUSS Output	·····>"
"			MIDUSS version	Version 2.25 rev. 473"
"			MIDUSS created	Sunday, February 07, 2010"
"		10	Units used:	ie METRIC"
"			Job folder:	C:\MIDUSS\421133"
"			Output filename:	421133 - Post 5yr R3.out"
"			Licensee name:	gmbp"
"			Company	
"			Date & Time last used:	3/2/2023 at 10:30:14 AM"
"	31	TI	ME PARAMETERS"	
"		5.000	Time Step"	
"		180.000	Max. Storm length"	
"		1500.000	Max. Hydrograph"	
"	32	ST	ORM Chicago storm"	
"		1	Chicago storm"	
"		1459.072	Coefficient A"	
"		13.690	Constant B"	
"		0.850	Exponent C"	
"		0.380	Fraction R"	
		180.000	Duration"	
"		1.000	Time step multiplier"	
"		Ma	ximum intensity 113.58	36 mm/hr"
"		То	tal depth 49.79	92 mm"
"		6	005hvd Hvdrograph extension	used in this file"
	33	ĊA	TCHMENT 100"	
	22	1	Triangular SCS"	
"		- 1	Foual length"	
"		- 2	Horton equation"	
		100	Catchment 100"	
"		46.000	% Impervious"	
"		0.260	Total Area"	
"		20.000	Flow length"	
		5.000	Overland Slone"	
		0,140	Pervious Area"	
		20,000	Pervious length"	
		5,000	Pervious slope"	
		0 120	Impervious Area"	
		20 000	Impervious length"	
		5 000	Impervious slope"	
		0 250	Pervious Manning 'n'"	
		75 000	Pervious Max infiltration"	
		12 500	Pervious Min infiltration"	
		0 250	Pervious Lag constant (hours)"	
		5 000	Pervious Depression storage"	
п		0 015	Impopyious Manning 'n'"	
		0.015	Impervious Max infiltration"	
		0.000	Impervious Min infiltration"	
		0.000	Impervious lag constant (hours)	\ ''
		1 500	Impervious Lag constant (nours,	,
		T. 700		0 000 c m/sec"
				0.000

"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.140	0.120	0.260	hectare"
"	Time of concentration	8.951	1.256	2.880	minutes"
"	Time to Centroid	86.290	84.538	84.908	minutes"
"	Rainfall depth	49.792	49.792	49.792	mm"
"	Rainfall volume	69.91	59.55	129.46	c.m"
"	Rainfall losses	39.014	2.522	22.228	mm"
"	Runoff depth	10.778	47.269	27.564	mm"
"	Runoff volume	15.13	56.53	71.67	c.m"
	Runoff coefficient	0.216	0.949	0.554	
	Maximum flow	0.013	0.032	0.035	c.m/sec"
	40 HYDROGRAPH Add Runoff	"			,
	4 Add Runoff "				
	0 035 0 03	5 9 999	a aaa"		
	54 POND DESTGN"	5 0.000	0.000		
	0.035 Current peak flow	c.m/sec"			
	0.016 Target outflow c	m/sec"			
	71 7 Hydrograph volume	· m/ 500			
	11 Number of stages"	C • III			
	373 150 Minimum water level	metre"			
	375 000 Maximum water level	metre"			
	373 150 Starting water leve	1 metre"			
п	0 Keen Design Data: 1	$= True \cdot 0 =$	- False"		
	Level Discharge	Volume"	- 10150		
	373 150 0 000	0 000"			
	373.250 0.01700	16 330"			
	373.350 0.01/00	32 660"			
		10 000"			
		49.000			
		49.050			
		49.100			
	373.900 0.00900	49.150			
	374.050 0.07700	49.210			
	374.100 0.07900	51.360			
	374.150 0.08100	61.600			
	374.200 0.1290	/8.200			
	Peak outflow	2.0	22 C.M/Se	2C	
	Maximum level	3/3.20	se metre	-	
	Maximum storage	22.54	20 c.m."		
	Centroidal lag	1.68	36 hours"	/ II	
	0.035 0.035	0.022	0.000 c.m/	'sec"	
	40 HYDROGRAPH Next link "				
	5 Next link "				
	0.035 0.02	2 0.022	0.000"		
"	33 CATCHMENT 200"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	2 Horton equation"				
"	200 Catchment 200"				
"	0.000 % Impervious"				
"	0.040 Total Area"				

"	20.000	Flow length"					
"	15.000	Overland Slope"					
"	0.040	Pervious Area"					
"	20.000	Pervious length"					
"	15.000	Pervious slope"					
"	0.000	Impervious Area"					
"	20.000	Impervious length"					
"	15.000	Impervious slope"					
"	0.250	Pervious Manning 'n					
"	75.000	Pervious Max.infilt	ration"				
"	12.500	Pervious Min.infilt	ration"				
"	0.250	Pervious Lag consta	nt (hours)"				
"	5.000	Pervious Depression	storage"				
"	0.015	Impervious Manning	'n'"				
"	0.000	Impervious Max.infi	ltration"				
"	0.000	Impervious Min.infi	ltration"				
"	0.050	Impervious Lag cons	tant (hours)) "			
"	1.500	Impervious Depressi	on storage"				
"		0.005 0.02	2 0.022	0.000	c.m/sec'	1	
"	Ca	itchment 200	Pervious	Impervious	s Total A	Area "	
"	Su	irface Area	0.040	0.000	0.040	hectare"	'
"	Ti	me of concentration	6.438	0.903	6.438	minutes"	'
"	Ti	me to Centroid.	83.859	84.128	83.859	minutes"	'
"	Ra	infall depth	49.792	49.792	49.792	mm"	
"	Ra	infall volume	19.92	0.00	19.92	c.m"	
"	Ra	infall losses	39.088	3.385	39.088	mm"	
"	Ru	noff depth	10.704	46.407	10.704	mm"	
"	Ru	noff volume	4.28	0.00	4.28	c.m"	
"	Ru	noff coefficient	0.215	0.000	0.215	"	
"	Ma	ximum flow	0.005	0.000	0.005	c.m/sec"	'
"	40 HY	DROGRAPH Add Runoff	"				
"	4	Add Runoff "					
"		0.005 0.02	6 0.022	0.000'	I		
"	38 ST	ART/RE-START TOTALS	200"				
"	3	Runoff Totals on EX	IT"				
"	Тс	otal Catchment area		e	0.300	hectare"	
"	Тс	otal Impervious area		e	0.120	hectare"	
"	Тс	otal % impervious		39	9.867"		
	19 EX	XIT"					

"			MIDUSS Output	>"
"			MIDUSS version	Version 2.25 rev. 473"
"			MIDUSS created	Sunday, February 07, 2010"
"		10	Units used:	ie METRIC"
"			Job folder:	C:\MIDUSS\421133"
"			Output filename:	421133 - Post 10vr R3.out"
"			Licensee name:	gdmg
"			Company	0
"			Date & Time last used:	3/2/2023 at 10:29:15 AM"
"	31	TI	IME PARAMETERS"	<i>, _,</i>
"	-	5.000	Time Step"	
		180.000	Max. Storm length"	
		1500,000	Max. Hydrograph"	
	32	500.000	TORM Chicago storm"	
	52	1	Chicago storm"	
		2327 596	Coefficient A"	
		19 500	Constant B"	
		19.300	Exponent C"	
		0.094	Exponent C Enaction P"	
		190 000	Praction K Dunation"	
		1 000	Time cton multiplion"	
		1.000 M-	vinum intensity 126 171	mm / h n "
		Ma	$\begin{array}{ccc} 120.1/1 \\ 110001510 \\ 120.1/1 \\ 120.1$	
			Oldi uepin 01.559	v mm vod in thic filo"
	22	0	UTONYU HYUROgraph extension us	
	33	CA 1	ATCHMENT 100	
		1	Irlangular SCS	
		1	Equal length"	
		2	Horton equation"	
		100	Catchment 100"	
		46.000	% Impervious"	
		0.260	Total Area"	
		20.000	Flow length"	
		5.000	Overland Slope"	
"		0.140	Pervious Area"	
"		20.000	Pervious length"	
"		5.000	Pervious slope"	
"		0.120	Impervious Area"	
"		20.000	Impervious length"	
"		5.000	Impervious slope"	
"		0.250	Pervious Manning 'n'"	
"		75.000	Pervious Max.infiltration"	
"		12.500	Pervious Min.infiltration"	
"		0.250	Pervious Lag constant (hours)"	
"		5.000	Pervious Depression storage"	
"		0.015	Impervious Manning 'n'"	
"		0.000	Impervious Max.infiltration"	
"		0.000	Impervious Min.infiltration"	
"		0.050	Impervious Lag constant (hours)"	
"		1.500	Impervious Depression storage"	
"			0.047 0.000 0.000	0.000 c.m/sec"

"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.140	0.120	0.260	hectare"
"	Time of concentration	8.003	1.204	3.127	minutes"
"	Time to Centroid	86.733	84.120	84.859	minutes"
"	Rainfall depth	61.359	61.359	61.359	mm"
"	Rainfall volume	86.15	73.39	159.53	c.m"
"	Rainfall losses	41.699	2.842	23.825	mm"
"	Runoff depth	19.660	58.517	37.534	mm"
"	Runoff volume	27.60	69.99	97.59	c.m"
"	Runoff coefficient	0.320	0.954	0.612	
	Maximum flow	0.024	0.037	0.047	c.m/sec"
	40 HYDROGRAPH Add Runoff	"			,
	4 Add Runoff "				
	0 047 0 04	7 9 999	a aaa"		
	54 POND DESTGN"	, 0.000	0.000		
	0.047 Current neak flow	c.m/sec"			
	0.016 Target outflow c	m/sec"			
	97.6 Hydrograph volume	· m/ 500			
	11 Number of stages"	C.III			
	373 150 Minimum water level	motro"			
	375 000 Maximum water level	metre"			
	373 150 Starting water level	1 motro"			
	0 Keen Design Data: 1	$= True \cdot 0 =$	- False"		
	Level Discharge	Volume"	- 18136		
	373 150 0 000	0 000"			
	373.250 0.01700	16 330"			
	272 250 0.02100	22 660"			
		10 000"			
		49.000			
	373.000 0.03200	49.050			
		49.100			
	373.900 0.00900	49.150			
	374.050 0.07700	49.210			
	374.100 0.07900	51.360			
	374.150 0.08100	61.600			
	374.200 0.1290	/8.200			
	Peak outflow	2.0	30 C.M/Se	2C	
	Maximum level	3/3.34	42 metre		
	Maximum storage	31.3	50 C.M"		
	Centroidal lag	1.69	92 hours"	/ II	
	0.04/ 0.04/	0.030	0.000 c.m/	'sec"	
	40 HYDROGRAPH Next link "				
	5 Next link "				
	0.047 0.03	0 0.030	0.000"		
"	33 CATCHMENT 200"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	2 Horton equation"				
"	200 Catchment 200"				
"	0.000 % Impervious"				
"	0.040 Total Area"				

"	20.000	Flow length"				
"	15.000	Overland Slope"				
"	0.040	Pervious Area"				
"	20.000	Pervious length"				
"	15.000	Pervious slope"				
"	0.000	Impervious Area"				
"	20.000	Impervious length"				
"	15.000	Impervious slope"				
"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depressi	on storage"			
"		0.007 0.03	0 0.030	0.000	c.m/sec'	ı
"	C	atchment 200	Pervious	Imperviou	s Total A	Area "
"	S	urface Area	0.040	0.000	0.040	hectare"
"	Т	ime of concentration	5.756	0.866	5.756	minutes"
"	Т	ime to Centroid	84.551	83.844	84.551	minutes"
"	R	ainfall depth	61.359	61.359	61.359	mm"
"	R	ainfall volume	24.54	0.00	24.54	c.m"
"	R	ainfall losses	41.797	4.030	41.797	mm"
"	R	unoff depth	19.562	57.329	19.562	mm"
"	R	unoff volume	7.82	0.00	7.82	c.m"
"	R	unoff coefficient	0.319	0.000	0.319	"
"	М	aximum flow	0.007	0.000	0.007	c.m/sec"
"	40 H	YDROGRAPH Add Runoff	"			
"	4	Add Runoff "				
"		0.007 0.03	4 0.030	0.000	11	
"	38 S	TART/RE-START TOTALS	200"			
"	3	Runoff Totals on EX	IT"			
"	Т	otal Catchment area			0.300	hectare"
"	Т	otal Impervious area		(0.120	hectare"
"	Т	otal % impervious		3	9.867"	
	19 F	ХТТ"				

"			MIDUSS Output	·····›»
"			MIDUSS version	Version 2.25 rev. 473"
"			MIDUSS created	Sunday, February 07, 2010"
"		10	Units used:	ie METRIC"
"			Job folder:	C:\MIDUSS\421133"
"			Output filename:	421133 - Post 25vr R3.out"
"			Licensee name:	"gdmg
"			Company	0 F 11
"			Date & Time last used:	3/2/2023 at 10:27:44 AM"
	31	тт	ME PARAMETERS"	5,2,2025 at 2002,000 / 000
	51	5.000	Time Step"	
		180.000	Max. Storm length"	
		1500,000	Max. Hydrograph"	
	32	500.0001	ORM Chicago storm"	
	52	1	Chicago storm"	
		3701 648	Coefficient A"	
		25 500	Constant B"	
		23.300	Exponent C"	
		0.327	Exponent C Enaction P"	
		190 000	Praction R Dunation"	
		1 000	Time stop multiplion"	
		1.000 M-	vinum intensity 142.27	71 mm / b n "
		Ma	$\begin{array}{cccc} 143.37 \\ 14$	21 mm"
			Oldi uepin /5.50	ol mm used in this file"
	22	0	UZSHYU HYUROgraph extension u	ised in this file
	33	CA 1	ATCHMENT 100	
		1	Irlangular SCS	
		1	Equal length"	
		2	Horton equation"	
		100	Catchment 100"	
		46.000	% Impervious"	
		0.260	Total Area"	
		20.000	Flow length"	
		5.000	Overland Slope"	
"		0.140	Pervious Area"	
"		20.000	Pervious length"	
"		5.000	Pervious slope"	
"		0.120	Impervious Area"	
"		20.000	Impervious length"	
"		5.000	Impervious slope"	
"		0.250	Pervious Manning 'n'"	
"		75.000	Pervious Max.infiltration"	
"		12.500	Pervious Min.infiltration"	
"		0.250	Pervious Lag constant (hours)"	
"		5.000	Pervious Depression storage"	
"		0.015	Impervious Manning 'n'"	
"		0.000	Impervious Max.infiltration"	
"		0.000	Impervious Min.infiltration"	
"		0.050	Impervious Lag constant (hours))"
"		1.500	Impervious Depression storage"	
"			0.067 0.000 0.000	0.000 c.m/sec"

"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.140	0.120	0.260	hectare"
"	Time of concentration	6.812	1.144	3.044	minutes"
"	Time to Centroid	87.133	83.780	84.904	minutes"
"	Rainfall depth	75.581	75.581	75.581	mm"
"	Rainfall volume	106.12	90.39	196.51	c.m"
"	Rainfall losses	44.545	3.300	25.572	mm"
"	Runoff depth	31.036	72.281	50.009	mm"
"	Runoff volume	43.57	86.45	130.02	c.m"
"	Runoff coefficient	0.411	0.956	0.662	п
"	Maximum flow	0.034	0.042	0.067	c.m/sec"
"	40 HYDROGRAPH Add Runoff	"			
	4 Add Runoff "				
	0.067 0.06	7 0.000	0.000"		
	54 POND DESTGN"	, 0.000	0.000		
"	0.067 Current peak flow	c.m/sec"			
	0.016 Target outflow c	.m/sec"			
	130.0 Hydrograph volume	c.m"			
	11. Number of stages"	C			
	373.150 Minimum water level	metre"			
	375 000 Maximum water level	metre"			
	373 150 Starting water leve	1 metre"			
	0 Keen Design Data: 1	= True: 0 =	= False"		
	Level Discharge	Volume"	- Turse		
	373 150 0 000	0 000"			
	373 250 0 01700	16 330"			
	373 350 0 03100	32 660"			
	373 450 0 04100	49 000"			
	373 600 0 05200	49.000			
	373 750 0 06100	49.000			
	373 900 0 06900	49.100			
	374 050 0.00500	49.190			
	374 100 0 07900	51 360"			
	374 150 0 08100	61 600"			
	374,200 0,1290	78 200"			
	Peak outflow	, 0. 200 A A:	37 cm/c4	۲ د "	
	Maximum level	373 /1	10 motro'		
	Maximum storage	42 42	15 cm"		
	Centroidal lag	42.4-	A hours"		
		0 037	0 000 cm	(soc"	
	10 HVDROGRAPH Next link "	0.057	0.000 C.m/	360	
	5 Novt link "				
			0 000"		
	23 CATCUMENT 200"	/ 0.05/	0.000		
	1 Triangulan SCS"				
	I Fausl longth"				
	I Equal length				
	2 HOPLON EQUALION				
	0.040 % Impervious				
-	0.040 IOTAL Area"				

"	20.000	Flow length"				
"	15.000	Overland Slope"				
"	0.040	Pervious Area"				
"	20.000	Pervious length"				
"	15.000	Pervious slope"				
"	0.000	Impervious Area"				
"	20.000	Impervious length"				
"	15.000	Impervious slope"				
"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depressi	on storage"			
"		0.010 0.03	7 0.037	0.000	c.m/sec'	•
"	Ca	atchment 200	Pervious	Imperviou	is Total A	Area "
"	Si	urface Area	0.040	0.000	0.040	hectare"
"	T:	ime of concentration	4.900	0.823	4.899	minutes"
"	T:	ime to Centroid	85.123	83.624	85.123	minutes"
"	Ra	ainfall depth	75.581	75.581	75.581	mm"
"	Ra	ainfall volume	30.23	0.00	30.23	c.m"
"	Ra	ainfall losses	44.251	5.042	44.251	mm"
"	Ri	unoff depth	31.330	70.539	31.330	mm"
"	Ri	unoff volume	12.53	0.00	12.53	c.m"
"	Ri	unoff coefficient	0.415	0.000	0.415	
"	Ma	aximum flow	0.010	0.000	0.010	c.m/sec"
"	40 H	YDROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.010 0.04	3 0.037	0.000)"	
"	38 S ⁻	TART/RE-START TOTALS	200"			
"	3	Runoff Totals on EX	IT"			
"	То	otal Catchment area			0.300	hectare"
"	Тс	otal Impervious area			0.120	hectare"
"	Тс	otal % impervious		3	9.867"	
"	19 EX	XIT"				

"			MIDUSS Output	>"
"			MIDUSS version	Version 2.25 rev. 473"
"			MIDUSS created	Sunday, February 07, 2010"
"		10	Units used:	ie METRIC"
"			Job folder:	C:\MIDUSS\421133"
"			Output filename:	421133 - Post 50vr R3.out"
"			Licensee name:	"gdmg
"			Company	0 F
			Date & Time last used:	3/2/2023 at 10:22:20 AM"
	31	тт	ME PARAMETERS"	3, 2, 2023 ac 20122.20 , 11
	51	5.000	Time Sten"	
		180.000	Max. Storm length"	
		1500,000	Max. Hydrograph"	
	32	500.0001	ORM Chicago storm"	
	52	1	Chicago storm"	
		5089 418	Coefficient A"	
		30 000	Constant B"	
		0 967	Exponent C"	
		0.307	Exponence Enaction P"	
		190 000	Praction K	
		1 000	Time stop multipliop"	
		1.000 M-	vinum intensity 156 2	
		Ma	AXIMUM INCENSICY 130.3	27 mm"
			Ocal depth 80.7	3/ IIIII used in this file"
	22	0	TCUMENT 100"	used in this tile
	33	CA 1	Triangular CCC"	
		1	Irlangular SCS	
		1	Equal length"	
		2	Horton equation	
		100	Catchment 100"	
		46.000	% Impervious"	
		0.260	Total Area"	
		20.000	Flow length"	
		5.000	Overland Slope"	
"		0.140	Pervious Area"	
"		20.000	Pervious length"	
"		5.000	Pervious slope"	
"		0.120	Impervious Area"	
"		20.000	Impervious length"	
"		5.000	Impervious slope"	
"		0.250	Pervious Manning 'n'"	
"		75.000	Pervious Max.infiltration"	
"		12.500	Pervious Min.infiltration"	
"		0.250	Pervious Lag constant (hours)"	
"		5.000	Pervious Depression storage"	
"		0.015	Impervious Manning 'n'"	
"		0.000	Impervious Max.infiltration"	
"		0.000	Impervious Min.infiltration"	
"		0.050	Impervious Lag constant (hours)"
"		1.500	Impervious Depression storage"	
"			0.080 0.000 0.000	0.000 c.m/sec"

"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.140	0.120	0.260	hectare"
"	Time of concentration	6.361	1.105	3.019	minutes"
"	Time to Centroid	87.501	83.641	85.047	minutes"
"	Rainfall depth	86.737	86.737	86.737	mm"
"	Rainfall volume	121.78	103.74	225.52	c.m"
"	Rainfall losses	46.249	3.723	26.687	mm"
"	Runoff depth	40.488	83.014	60.050	mm"
"	Runoff volume	56.84	99.28	156.13	c.m"
"	Runoff coefficient	0.467	0.957	0.692	
"	Maximum flow	0.040	0.046	0.080	c.m/sec"
"	40 HYDROGRAPH Add Runoff				
"	4 Add Runoff "				
"	0.080 0.08	80 0.000	0.000"		
"	54 POND DESIGN"				
"	0.080 Current peak flow	c.m/sec"			
"	0.016 Target outflow	c.m/sec"			
"	156.1 Hvdrograph volume	c.m"			
"	11. Number of stages"				
	373.150 Minimum water level	l metre"			
"	375.000 Maximum water leve	l metre"			
"	373.150 Starting water leve	el metre"			
"	0 Keep Design Data: 1	1 = True: 0	= False"		
"	Level Discharge	Volume"			
	373.150 0.000	0.000"			
	373,250 0,01700	16.330"			
	373, 350 0, 03100	32.660"			
	373,450 0,04100	49.000"			
	373,600 0,05200	49,050"			
	373,750 0,06100	49,100"			
	373,900 0,06900	49.150"			
	374.050 0.07700	49.210"			
	374 100 0.07900	51.360"			
	374 150 0 08100	61 600"			
	374, 200 0, 1290	78,200"			
	Peak outflow	9.0	67 c.m/se	^ع د"	
	Maximum level	373 8	63 metre'	1	
	Maximum storage	49.1	38 c.m"		
	Centroidal lag	1 7	00 hours"		
		0 067	00 nours 0 000 cm	/sec"	
	40 HVDROGRAPH Next link	"	0.000 c.m/	See	
	5 Next link "				
		57 Q Q67	0 000"		
	33 CATCHMENT 200"	0.007	0.000		
	1 Triangular CCC"				
	1 Faust longth"				
	2 Honton equation"				
	$2 \text{for control equation} \\ 200 \text{Catchmont 200"} \\ \end{array}$				
	200 Calciment 200 0 000 % Imponvious"				

"	20.000	Flow length"				
"	15.000	Overland Slope"				
"	0.040	Pervious Area"				
"	20.000	Pervious length"				
"	15.000	Pervious slope"				
"	0.000	Impervious Area"				
"	20.000	Impervious length"				
"	15.000	Impervious slope"				
"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depressi	on storage"			
"		0.012 0.06	7 0.067	0.000	c.m/sec'	1
"	Ca	atchment 200	Pervious	Impervious	s Total A	Area "
"	Su	irface Area	0.040	0.000	0.040	hectare"
"	Ti	me of concentration	4.575	0.795	4.575	minutes"
"	Ti	ime to Centroid	85.545	83.517	85.545	minutes"
"	Ra	ainfall depth	86.737	86.737	86.737	mm''
"	Ra	ainfall volume	34.69	0.00	34.69	c.m"
"	Ra	ainfall losses	45.996	5.926	45.996	mm"
"	Ru	unoff depth	40.741	80.811	40.741	mm"
"	Ru	noff volume	16.30	0.00	16.30	c.m"
"	Ru	noff coefficient	0.470	0.000	0.470	
"	Ma	aximum flow	0.012	0.000	0.012	c.m/sec"
"	40 HY	/DROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.012 0.07	4 0.067	0.000'	1	
"	38 S1	ART/RE-START TOTALS	200"			
"	3	Runoff Totals on EX	IT"			
"	To	otal Catchment area		6	0.300	hectare"
"	To	otal Impervious area		6	0.120	hectare"
"	Тс	tal % impervious		20	067"	
				23	.007	

"			MIDUSS Output		>"
"			MIDUSS version		Version 2.25 rev. 473"
"			MIDUSS created		Sunday, February 07, 2010"
"		10	Units used:		ie METRIC"
"			Job folder:		C:\MIDUSS\421133"
"			Output filename:		421133 - Post 100vr R3.out"
"			Licensee name:		gddmg
"			Company		0
"			Date & Time last used:		3/2/2023 at 10:26:09 AM"
"	31	тт	ME PARAMETERS"		
	51	5.000	Time Sten"		
		180.000	Max. Storm length"		
		1500,000	Max. Hydrograph"		
	32	ST	ORM Chicago storm"		
	52	1	Chicago storm"		
		6933 019	Coefficient A"		
		34 669	Constant B"		
		0 009	Exponent C"		
		0.998	Exponent C Enaction P"		
		190 000	Praction K		
		1 000	Time stop multipliop"		
		1.000	vinum intensity	000	mm / b p "
		Ма	tal dopth	0.900 7 025	11111/111 ²
		10 C	100byd Hydrograph oytonci	7.955 on used	IIIII in thic filo"
	22	0	TOUNDAL 100"	on useu	IN UNIS THE
	33		Triangulan CCC		
		1	Irlangular SCS		
		1	Equal length"		
		2	Horton equation"		
		100	Catchment 100"		
		46.000	% Impervious"		
		0.260	Total Area"		
		20.000	Flow length"		
		5.000	Overland Slope"		
"		0.140	Pervious Area"		
"		20.000	Pervious length"		
"		5.000	Pervious slope"		
"		0.120	Impervious Area"		
"		20.000	Impervious length"		
"		5.000	Impervious slope"		
"		0.250	Pervious Manning 'n'"		
"		75.000	Pervious Max.infiltration"		
"		12.500	Pervious Min.infiltration"		
"		0.250	Pervious Lag constant (hour	s)"	
"		5.000	Pervious Depression storage	п	
"		0.015	Impervious Manning 'n'"		
"		0.000	Impervious Max.infiltration	п	
"		0.000	Impervious Min.infiltration	п	
"		0.050	Impervious Lag constant (ho	urs)"	
"		1.500	Impervious Depression stora	ge"	
"			0.092 0.000 0.	000	0.000 c.m/sec"

"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.140	0.120	0.260	hectare"
"	Time of concentration	6.112	1.071	3.022	minutes"
"	Time to Centroid	87.638	83.532	85.121	minutes"
"	Rainfall depth	97.935	97.935	97.935	mm"
"	Rainfall volume	137.50	117.13	254.63	c.m"
"	Rainfall losses	47.495	4.176	27.568	mm"
"	Runoff depth	50.440	93.759	70.367	mm"
	Runoff volume	70.82	112.14	182.95	c.m"
"	Runoff coefficient	0.515	0.957	0.719	
"	Maximum flow	0.046	0.050	0.092	c.m/sec"
	40 HYDROGRAPH Add Runoff				,
	4 Add Runoff "				
	Add Nanorr 0.092 0.0	92 0 000	a aaa"		
	54 POND DESTGN"	52 0.000	0.000		
	0.092 Current neak flow	c m/sec"			
	0.052 Current peak riow	c m/sec"			
	192 Q Hydrograph yolumo	c.m/ Sec			
	11 Number of stages"	C.III			
	272 150 Minimum water love	1 motro"			
	275 000 Maximum vater leve	1 metre			
	373.150 Stanting water leve	i metre			
	3/3.150 Starting water iev	1 – Truct Q			
	V Keep Design Data:	I = Inue; 0 :	= Faise		
		vorume			
	373.150 0.000	0.000			
	3/3.250 0.01/00	16.330			
	373.350 0.03100	32.660			
	373.450 0.04100	49.000"			
	3/3.600 0.05200	49.050"			
	3/3./50 0.06100	49.100"			
	373.900 0.06900	49.150"			
	374.050 0.07700	49.210			
	374.100 0.07900	51.360"			
	374.150 0.08100	61.600"			
	374.200 0.1290	78.200"			
"	Peak outflow	0.0	78 c.m/se	≥C"	
"	Maximum level	374.0	79 metre'	•	
"	Maximum storage	50.4	78 c.m"		
"	Centroidal lag	1.69	90 hours"		
"	0.092 0.092	0.078	0.000 c.m,	/sec"	
"	40 HYDROGRAPH Next link	11			
"	5 Next link "				
"	0.092 0.0	78 0.078	0.000"		
"	33 CATCHMENT 200"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	2 Horton equation"				
"	200 Catchment 200"				
"	0.000 % Impervious"				
"	0.040 Total Area"				

"	20.000	Flow length"								
"	15.000	Overland Slope"								
"	0.040	Pervious Area"								
"	20.000	Pervious length"								
"	15.000	Pervious slope"								
"	0.000	Impervious Area"								
"	20.000	Impervious length"								
"	15.000	Impervious slope"								
"	0.250	Pervious Manning 'n'"								
"	75.000	Pervious Max.infiltration"								
"	12.500	Pervious Min.infiltration"								
"	0.250	250 Pervious Lag constant (hours)"								
"	5.000	000 Pervious Depression storage								
"	0.015	Impervious Manning	'n'"							
"	0.000	Impervious Max.infi	ltration"							
"	0.000	Impervious Min.infi	ltration"							
"	0.050	Impervious Lag constant (hours)"								
"	1.500	Impervious Depressi	on storage"							
"		0.015 0.07	8 0.078	0.000	c.m/sec'	1				
"	C	atchment 200	Pervious	Imperviou	s Total A	Area "				
"	S	urface Area	0.040	0.000	0.040	hectare"				
"	T	ime of concentration	4.396	0.771	4.396	minutes"				
"	T	ime to Centroid	85.841	83.430	85.841	minutes"				
"	R	ainfall depth	97.935	97.935	97.935	mm"				
"	R	ainfall volume	39.17	0.00	39.17	c.m"				
"	R	ainfall losses	47.475	6.911	47.475	mm"				
"	R	unoff depth	50.460	91.024	50.460	mm"				
"	R	unoff volume	20.18	0.00	20.18	c.m"				
"	R	unoff coefficient	0.515	0.000	0.515	"				
"	Ma	aximum flow	0.015	0.000	0.015	c.m/sec"				
"	40 H	YDROGRAPH Add Runoff								
"	4	Add Runoff "								
"		0.015 0.09	0 0.078	0.000						
"	38 S ⁻	TART/RE-START TOTALS	200"							
"	3	Runoff Totals on EX	IT"							
"	Т	otal Catchment area			0.300	hectare"				
"	Т	otal Impervious area			0.120	hectare"				
"	Т	otal % impervious		3	9.867"					
	19 F	XTT"								