# **APPENDIX A**



Township of Centre Wellington

**Annual Water Report** 

Centre Wellington Drinking Water System - 20000086

Prepared:

January 2025

# **Annual Water Report**

# For the period of January 1, 2024 – December 31, 2024 Centre Wellington Drinking Water System – 220000086

## **Annual Report Introduction:**

As prescribed in the Safe Drinking Water Act, 2002 Ontario Regulation 170/03 Section 11, an Annual Report must be prepared for the period from January 1 to December 31 and must be completed not later than February 28 of the following year.

#### The Annual Report must include:

- a brief description of the drinking water system;
- a list of water treatment chemicals used;
- a summary of the most recent water test results required under Ontario Regulation (OReg) 170/03 or an Approval, Municipal Drinking Water Licence or an Order;
- a summary of adverse test results and other issues reported to the Ministry of Environment, Conservation and Parks (MECP) including corrective actions taken;
- a description of major expenses incurred to install, repair or replace required equipment;
- the locations where this report is available for inspection.

A copy of the report is available for viewing at:

- Infrastructure Services Office, 7444 County Road 21, Elora
- Municipal Civic Centre, 1 MacDonald Square, Elora
- Online at <u>www.centrewellington.ca</u>

## **Drinking Water System Description**

The Centre Wellington Drinking Water System is a large municipal residential system and is supplied by nine groundwater well sources. One source well is offline and does not contribute to the system at this time (Fergus Well 2).

The distribution system covers the village of Elora and the town of Fergus and is connected by a booster station. It serves a population of approximately 24,000 people and it is comprised of the following infrastructure:

- 135 km of buried watermain;
- 4 elevated storage towers; and
- Watermain valves, service valves, fire hydrants, and water meters.

### Water Treatment Chemicals

The raw water is treated with chlorine gas at all production well sites. If needed, rechlorination is achieved using sodium hypochlorite at the booster station and two tower locations, one in Fergus and one in Elora. At Fergus Well #1, carbon dioxide (CO<sub>2</sub>) gas is added to the treated water to allow for pH stabilization and to reduce downstream calcification of hardness.

## **Drinking Water Test Results**

From January 1 to December 31, 2024, all regulatory microbiological and chemical quality samples were collected throughout the drinking water system by certified Operators and tests were performed by an accredited, licensed laboratory.

- Adverse test results reported under the Safe Drinking Water Act, 18(1) or OReg 170/03, Schedule 16-4.
  - Adverse Water Quality Incidents (AWQI) refers to any unusual test result that does not meet a provincial water quality standard or a situation where the disinfection of the drinking water may be compromised.

There were no Adverse Water Quality Incidents in the period January 1 to December 31, 2024.

- 2) Microbiological testing completed under OReg 170/03, Schedule 10.
  - a) The Owner of the drinking water system must ensure water samples are taken at least once every week from the raw water supply, before any treatment has been applied to the water. Raw water samples are taken at all well sites and are tested for Total Coliforms and Escherichia coli (E. coli).
  - b) The Owner of the drinking water system must ensure water samples are taken at least **once every week** from the **treated water** supply. Treated water samples are taken at all well sites and are tested for Total Coliform, Heterotrophic Plate Count (HPC) and E. coli.
  - c) The Owner of the drinking water system must ensure water samples are taken **once every week** from the **distribution system**. The number of samples is

based on population served. Distribution water samples are tested for Total Coliform, Heterotrophic Plate Count (HPC) and E. coli.

**Table 1: Microbiological Test Results** 

| Type of Sample                | Number of Samples | Range (minimum –<br>maximum) | Unit of<br>Measure |
|-------------------------------|-------------------|------------------------------|--------------------|
| Raw – Total Coliform          | 411               | 0 - 1                        | MPN/100 mL         |
| Raw – E. coli                 | 411               | 0 - 0                        | MPN/100 mL         |
| Treated – Total Coliform      | 410               | 0 - 0                        | MPN/100 mL         |
| Treated – E. coli             | 410               | 0 - 0                        | MPN/100 mL         |
| Treated – HPC                 | 408               | 0 – 41*                      | cfu/mL             |
| Distribution – Total Coliform | 575               | 0 - 0                        | MPN/100 mL         |
| Distribution – E. coli        | 575               | 0 - 0                        | MPN/100 mL         |
| Distribution – HPC            | 558               | 0 - 110                      | cfu/ mL            |

MPN = most probable number; cfu = colony forming units

- 3) Operational checks completed under OReg 170/03, Schedule 7.
  - a) The Owner of a drinking water system that provides chlorination for primary disinfection must ensure that sampling and testing for **free chlorine residual** is carried out by continuous monitoring equipment. The representative number of samples taken through continuous monitoring is considered to be 8,760.
  - b) The Owner of a drinking water system must ensure that a water sample is taken at least **once per month**, from a location before raw water enters the treatment system and is tested for **turbidity**. If the system obtains water from a raw water supply that is groundwater, then a sample must be taken from each well that is supplying water to the system.

**Table 2: Chlorine and Turbidity Results** 

| Parameter | Number of Samples | Range (minimum – maximum) | Unit of measure |
|-----------|-------------------|---------------------------|-----------------|
| Chlorine  | 8,760             | 0.57 – 2.72               | mg/L            |
| Turbidity | 411               | 0.01 – 0.97               | NTU             |

<sup>\*</sup> mg/L = milligrams/Litre; NTU = Nephelometric Turbidity unit

- 4) Treated water quality results under OReg 170/03, Schedule 13-6 and 13-7.
  - a) The Owner of a drinking water system that provides chlorination must ensure that at least one **distribution sample** is taken in **each calendar quarter** and tested for **trihalomethanes** (THMs). The sample must be taken at a point in the system that is likely to have an elevated potential for the formation of THMs. The annual report value is based on a running annual average (RAA) of quarterly THMs results.

<sup>\*</sup>One well location sampled on August 21, 2024 and December 27, 2024 had lab comment for HPC- No Data, HPC bacteria overgrown. In both instances the HPC result the following week was 0 cfu/mL.

- b) The Owner of a drinking water system that provides chlorination must ensure that at least one **distribution sample** is taken in **each calendar quarter** and tested for **haloacetic acids** (HAAs). The sample must be taken at a point in the system that is likely to have an elevated potential for the formation of HAAs. The annual report value is based on a running annual average (RAA) of quarterly HAAs results.
- c) The Owner of a drinking water system must ensure that at least one water sample is taken every three months and tested for nitrate and nitrite. Samples were taken at every well site that is supplying water to the system.
- d) The Drinking Water Standard (STND) for the parameters are listed as per OReg 169/03 Schedule 2.

Table 3: Trihalomethanes Running Annual Average (RAA)

| Location     | Date          | THMs RAA | THMs STND | Unit of Measure |
|--------------|---------------|----------|-----------|-----------------|
| Distribution | 2024 Sampling | 12.8     | 100       | ug/L            |

<sup>\*</sup> ug/L = micrograms/Litre

Table 4: Haloacetic Acids Running Annual Average (RAA)

| Location     | Date          | HAAs RAA | HAAs STND | Unit of Measure |
|--------------|---------------|----------|-----------|-----------------|
| Distribution | 2024 Sampling | < 5.0    | 80        | ug/L            |

**Table 5: Nitrate and Nitrite Results** (4<sup>th</sup> sampling round in 2024)

| Location      | Date             | Nitrate (as<br>Nitrogen) | Nitrate<br>STND | Nitrite (as<br>Nitrogen) | Nitrite<br>STND | Unit of<br>Measure |
|---------------|------------------|--------------------------|-----------------|--------------------------|-----------------|--------------------|
| Fergus Well 1 | October 30, 2024 | 0.956                    | 10              | <0.050                   | 1.0             | mg/L               |
| Fergus Well 4 | October 30, 2024 | 0.131                    | 10              | <0.010                   | 1.0             | mg/L               |
| Fergus Well 5 | October 30, 2024 | 0.337                    | 10              | <0.010                   | 1.0             | mg/L               |
| Fergus Well 6 | October 30, 2024 | <0.100                   | 10              | <0.050                   | 1.0             | mg/L               |
| Fergus Well 7 | October 30, 2024 | <0.020                   | 10              | <0.010                   | 1.0             | mg/L               |
| Elora Well 1  | October 30, 2024 | <0.020                   | 10              | <0.010                   | 1.0             | mg/L               |
| Elora Well 3  | October 30, 2024 | 0.213                    | 10              | <0.050                   | 1.0             | mg/L               |
| Elora Well 4  | October 30, 2024 | <0.020                   | 10              | <0.010                   | 1.0             | mg/L               |

#### 5) Treated water quality results under OReg 170/03, Schedule 13-2.

- a) The Owner of a drinking water system must ensure that at least one water sample is taken every 36 months and tested for Schedule 23, Inorganics. Samples were taken at every well site that is supplying water to the system.
- b) The Drinking Water Standards (STND) for the parameters are listed as per OReg 169/03 Schedule 2.

Table 6: Fergus Well 1 Schedule 23 Inorganic Results

| Parameter | Sample Date    | Result | STND  | Unit of Measure |
|-----------|----------------|--------|-------|-----------------|
| Antimony  | March 18, 2024 | <0.60  | 6     | ug/L            |
| Arsenic   | March 18, 2024 | <1.0   | 10    | ug/L            |
| Barium    | March 18, 2024 | 58     | 1,000 | ug/L            |
| Boron     | March 18, 2024 | <50    | 5,000 | ug/L            |
| Cadmium   | March 18, 2024 | <0.10  | 5     | ug/L            |
| Chromium  | March 18, 2024 | <1.0   | 50    | ug/L            |
| Mercury   | March 18, 2024 | <0.100 | 1     | ug/L            |
| Selenium  | March 18, 2024 | <1.0   | 50    | ug/L            |
| Uranium   | March 18, 2024 | <2.0   | 20    | ug/L            |

Table 7: Fergus Well 4 Schedule 23 Inorganic Results

| Parameter | Sample Date    | Result | STND  | Unit of Measure |
|-----------|----------------|--------|-------|-----------------|
| Antimony  | March 18, 2024 | <0.60  | 6     | ug/L            |
| Arsenic   | March 18, 2024 | <1.0   | 10    | ug/L            |
| Barium    | March 18, 2024 | 32     | 1,000 | ug/L            |
| Boron     | March 18, 2024 | 70     | 5,000 | ug/L            |
| Cadmium   | March 18, 2024 | <0.10  | 5     | ug/L            |
| Chromium  | March 18, 2024 | <1.0   | 50    | ug/L            |
| Mercury   | March 18, 2024 | <0.100 | 1     | ug/L            |
| Selenium  | March 18, 2024 | <1.0   | 50    | ug/L            |
| Uranium   | March 18, 2024 | <2.0   | 20    | ug/L            |

Table 8: Fergus Well 5 Schedule 23 Inorganic Results

| Parameter | Sample Date    | Result | STND  | Unit of Measure |
|-----------|----------------|--------|-------|-----------------|
| Antimony  | March 18, 2024 | <0.60  | 6     | ug/L            |
| Arsenic   | March 18, 2024 | <1.0   | 10    | ug/L            |
| Barium    | March 18, 2024 | 50     | 1,000 | ug/L            |
| Boron     | March 18, 2024 | <50    | 5,000 | ug/L            |
| Cadmium   | March 18, 2024 | <0.10  | 5     | ug/L            |
| Chromium  | March 18, 2024 | <1.0   | 50    | ug/L            |
| Mercury   | March 18, 2024 | <0.100 | 1     | ug/L            |
| Selenium  | March 18, 2024 | <1.0   | 50    | ug/L            |
| Uranium   | March 18, 2024 | <2.0   | 20    | ug/L            |

Table 9: Fergus Well 6 Schedule 23 Inorganic Results

| Parameter | Sample Date    | Result | STND  | Unit of Measure |
|-----------|----------------|--------|-------|-----------------|
| Antimony  | March 18, 2024 | < 0.60 | 6     | ug/L            |
| Arsenic   | March 18, 2024 | <1.0   | 10    | ug/L            |
| Barium    | March 18, 2024 | 18     | 1,000 | ug/L            |

| Boron    | March 18, 2024 | 100    | 5,000 | ug/L |
|----------|----------------|--------|-------|------|
| Cadmium  | March 18, 2024 | <0.10  | 5     | ug/L |
| Chromium | March 18, 2024 | <1.0   | 50    | ug/L |
| Mercury  | March 18, 2024 | <0.100 | 1     | ug/L |
| Selenium | March 18, 2024 | <1.0   | 50    | ug/L |
| Uranium  | March 18, 2024 | <2.0   | 20    | ug/L |

# Table 10: Fergus Well 7 Schedule 23 Inorganic Results

| Parameter | Sample Date    | Result | STND  | Unit of Measure |
|-----------|----------------|--------|-------|-----------------|
| Antimony  | March 18, 2024 | <0.60  | 6     | ug/L            |
| Arsenic   | March 18, 2024 | <1.0   | 10    | ug/L            |
| Barium    | March 18, 2024 | 22     | 1,000 | ug/L            |
| Boron     | March 18, 2024 | 60     | 5,000 | ug/L            |
| Cadmium   | March 18, 2024 | <0.10  | 5     | ug/L            |
| Chromium  | March 18, 2024 | <1.0   | 50    | ug/L            |
| Mercury   | March 18, 2024 | <0.100 | 1     | ug/L            |
| Selenium  | March 18, 2024 | <1.0   | 50    | ug/L            |
| Uranium   | March 18, 2024 | <2.0   | 20    | ug/L            |

# Table 11: Elora Well 1 Schedule 23 Inorganic Results

| Parameter | Sample Date    | Result | STND  | Unit of Measure |
|-----------|----------------|--------|-------|-----------------|
| Antimony  | March 19, 2024 | <0.60  | 6     | ug/L            |
| Arsenic   | March 19, 2024 | <1.0   | 10    | ug/L            |
| Barium    | March 19, 2024 | 26     | 1,000 | ug/L            |
| Boron     | March 19, 2024 | <50    | 5,000 | ug/L            |
| Cadmium   | March 19, 2024 | <0.10  | 5     | ug/L            |
| Chromium  | March 19, 2024 | <1.0   | 50    | ug/L            |
| Mercury   | March 19, 2024 | <0.100 | 1     | ug/L            |
| Selenium  | March 19, 2024 | <1.0   | 50    | ug/L            |
| Uranium   | March 19, 2024 | <2.0   | 20    | ug/L            |

# Table 12: Elora Well 3 Schedule 23 Inorganic Results

| Parameter | Sample Date    | Result | STND  | Unit of Measure |
|-----------|----------------|--------|-------|-----------------|
| Antimony  | March 19, 2024 | < 0.60 | 6     | ug/L            |
| Arsenic   | March 19, 2024 | <1.0   | 10    | ug/L            |
| Barium    | March 19, 2024 | 24     | 1,000 | ug/L            |
| Boron     | March 19, 2024 | <50    | 5,000 | ug/L            |
| Cadmium   | March 19, 2024 | <0.10  | 5     | ug/L            |
| Chromium  | March 19, 2024 | <1.0   | 50    | ug/L            |
| Mercury   | March 19, 2024 | <0.100 | 1     | ug/L            |
| Selenium  | March 19, 2024 | <1.0   | 50    | ug/L            |
| Uranium   | March 19, 2024 | <2.0   | 20    | ug/L            |

Table 13: Elora Well 4 Schedule 23 Inorganic Results

| Parameter | Sample Date    | Result | STND  | Unit of Measure |
|-----------|----------------|--------|-------|-----------------|
| Antimony  | March 19, 2024 | <0.60  | 6     | ug/L            |
| Arsenic   | March 19, 2024 | <1.0   | 10    | ug/L            |
| Barium    | March 19, 2024 | 21     | 1,000 | ug/L            |
| Boron     | March 19, 2024 | <50    | 5,000 | ug/L            |
| Cadmium   | March 19, 2024 | <0.10  | 5     | ug/L            |
| Chromium  | March 19, 2024 | <1.0   | 50    | ug/L            |
| Mercury   | March 19, 2024 | <0.100 | 1     | ug/L            |
| Selenium  | March 19, 2024 | <1.0   | 50    | ug/L            |
| Uranium   | March 19, 2024 | <2.0   | 20    | ug/L            |

- 6) Treated water quality results under OReg 170/03, Schedule 13-8 and 13-9.
  - a) The Owner of a drinking water system must ensure that at least **one water** sample is taken **every 60 months** and tested for **sodium**. Samples were taken at every well site that is supplying water to the system.
  - b) The Owner of a drinking water system must ensure that at least **one water sample** is taken **every 60 months** and tested for **fluoride**. Samples were taken at every well site that is supplying water to the system.
  - c) The Drinking Water Standards (STND) for the parameters are listed as per OReg 169/03 Schedule 2.
  - d) The aesthetic objective (AO) for sodium in drinking water is 200 mg/L. The local Medical Officer of Health must be notified when the sodium concentration exceeds 20 mg/L.

**Table 14: Sodium and Fluoride Results** 

| Location      | Sample Date  | Sodium | Sodium<br>AO | Fluoride | Fluoride<br>STND | Unit of<br>Measure |
|---------------|--------------|--------|--------------|----------|------------------|--------------------|
| Fergus Well 1 | Apr 15, 2021 | 83.2   | 200          | 0.46     | 1.5              | mg/L               |
| Fergus Well 4 | Apr 15, 2021 | 27.4   | 200          | 0.86     | 1.5              | mg/L               |
| Fergus Well 5 | Apr 15, 2021 | 10.3   | 200          | 0.12     | 1.5              | mg/L               |
| Fergus Well 6 | Apr 15, 2021 | 40.1   | 200          | 0.34     | 1.5              | mg/L               |
| Fergus Well 7 | Apr 27, 2021 | 18.9   | 200          | 0.36     | 1.5              | mg/L               |
| Elora Well 1  | Apr 15, 2021 | 20.3   | 200          | 0.28     | 1.5              | mg/L               |
| Elora Well 3  | Apr 15, 2021 | 12.2   | 200          | 0.28     | 1.5              | mg/L               |
| Elora Well 4  | Apr 15, 2021 | 15.6   | 200          | 0.24     | 1.5              | mg/L               |

- 7) Treated water quality results under OReg 170/03, Schedule 13-4.
  - a) The Owner of a drinking water system must ensure that at least one water sample is taken every 36 months and tested for Schedule 24, Organics. Samples were taken at every well site that is supplying water to the system.

b) The Drinking Water Standards (STND) for the parameters are listed as per OReg 169/03 Schedule 2.

Table 15: Fergus Well 1 Schedule 24 Organic Results

| Parameter                                  | Sample Date  | Result  | STND | Unit of<br>Measure |
|--------------------------------------------|--------------|---------|------|--------------------|
| Alachlor                                   | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Atrazine + N-dealkylated metabolites       | Mar 18, 2024 | <0.14   | 5    | ug/L               |
| Azinphos-methyl                            | Mar 18, 2024 | <0.100  | 20   | ug/L               |
| Benzene                                    | Mar 18, 2024 | <0.50   | 1    | ug/L               |
| Benzo(a)pyrene                             | Mar 18, 2024 | <0.0050 | 0.01 | ug/L               |
| Bromoxynil                                 | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Carbaryl                                   | Mar 18, 2024 | <0.050  | 90   | ug/L               |
| Carbofuran                                 | Mar 18, 2024 | <0.0250 | 90   | ug/L               |
| Carbon Tetrachloride                       | Mar 18, 2024 | <0.20   | 2    | ug/L               |
| Chlorpyrifos                               | Mar 18, 2024 | <0.10   | 90   | ug/L               |
| Diazinon                                   | Mar 18, 2024 | <0.0250 | 20   | ug/L               |
| Dicamba                                    | Mar 18, 2024 | <0.10   | 120  | ug/L               |
| 1,2-Dichlorobenzene                        | Mar 18, 2024 | <0.50   | 200  | ug/L               |
| 1,4-Dichlorobenzene                        | Mar 18, 2024 | <0.50   | 5    | ug/L               |
| 1,2-Dichloroethane                         | Mar 18, 2024 | <0.50   | 5    | ug/L               |
| 1,1-Dichloroethylene (vinylidene chloride) | Mar 18, 2024 | <0.50   | 14   | ug/L               |
| Dichloromethane                            | Mar 18, 2024 | <1.0    | 50   | ug/L               |
| 2,4-Dichlorophenol                         | Mar 18, 2024 | <0.30   | 900  | ug/L               |
| 2,4-Dichlorophenoxy acetic acid (2,4-D)    | Mar 18, 2024 | <0.050  | 100  | ug/L               |
| Diclofop-methyl                            | Mar 18, 2024 | <0.100  | 9    | ug/L               |
| Dimethoate                                 | Mar 18, 2024 | <0.050  | 20   | ug/L               |
| Diquat                                     | Mar 18, 2024 | <1.0    | 70   | ug/L               |
| Diuron                                     | Mar 18, 2024 | <0.050  | 150  | ug/L               |
| Glyphosate                                 | Mar 18, 2024 | <0.20   | 280  | ug/L               |
| Malathion                                  | Mar 18, 2024 | <0.0250 | 190  | ug/L               |
| 2 Methyl-4-chlorophenoxyacetic acid        | Mar 18, 2024 | <0.050  | 100  | ug/L               |
| Metolachlor                                | Mar 18, 2024 | <0.0250 | 50   | ug/L               |
| Metribuzin                                 | Mar 18, 2024 | <0.100  | 80   | ug/L               |
| Monochlorobenzene                          | Mar 18, 2024 | <0.50   | 80   | ug/L               |
| Paraquat                                   | Mar 18, 2024 | <1.0    | 10   | ug/L               |
| Pentachlorophenol                          | Mar 18, 2024 | <0.50   | 60   | ug/L               |
| Phorate                                    | Mar 18, 2024 | <0.250  | 2    | ug/L               |
| Picloram                                   | Mar 18, 2024 | <0.10   | 190  | ug/L               |
| Polychlorinated Biphenyls (PCB)            | Mar 18, 2024 | <0.030  | 3    | ug/L               |
| Prometryne                                 | Mar 18, 2024 | <0.0250 | 1    | ug/L               |
| Simazine                                   | Mar 18, 2024 | <0.100  | 10   | ug/L               |

| Terbufos                  | Mar 18, 2024 | <0.50  | 1   | ug/L |
|---------------------------|--------------|--------|-----|------|
| Tetrachloroethylene       | Mar 18, 2024 | <0.50  | 10  | ug/L |
| 2,3,4,6-Tetrachlorophenol | Mar 18, 2024 | <0.50  | 100 | ug/L |
| Triallate                 | Mar 18, 2024 | <0.100 | 230 | ug/L |
| Trichloroethylene         | Mar 18, 2024 | <0.50  | 5   | ug/L |
| 2,4,6-Trichlorophenol     | Mar 18, 2024 | <0.50  | 5   | ug/L |
| Trifluralin               | Mar 18, 2024 | <0.10  | 45  | ug/L |
| Vinyl Chloride            | Mar 18, 2024 | <0.50  | 1   | ug/L |

**Table 16: Fergus Well 4 Schedule 24 Organic Results** 

| Parameter                               | Sample Date  | Result  | STND | Unit of<br>Measure |
|-----------------------------------------|--------------|---------|------|--------------------|
| Alachlor                                | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Atrazine + N-dealkylated metabolites    | Mar 18, 2024 | <0.14   | 5    | ug/L               |
| Azinphos-methyl                         | Mar 18, 2024 | <0.100  | 20   | ug/L               |
| Benzene                                 | Mar 18, 2024 | <0.50   | 1    | ug/L               |
| Benzo(a)pyrene                          | Mar 18, 2024 | <0.0050 | 0.01 | ug/L               |
| Bromoxynil                              | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Carbaryl                                | Mar 18, 2024 | <0.050  | 90   | ug/L               |
| Carbofuran                              | Mar 18, 2024 | <0.0250 | 90   | ug/L               |
| Carbon Tetrachloride                    | Mar 18, 2024 | <0.20   | 2    | ug/L               |
| Chlorpyrifos                            | Mar 18, 2024 | <0.10   | 90   | ug/L               |
| Diazinon                                | Mar 18, 2024 | <0.0250 | 20   | ug/L               |
| Dicamba                                 | Mar 18, 2024 | <0.10   | 120  | ug/L               |
| 1,2-Dichlorobenzene                     | Mar 18, 2024 | <0.50   | 200  | ug/L               |
| 1,4-Dichlorobenzene                     | Mar 18, 2024 | <0.50   | 5    | ug/L               |
| 1,2-Dichloroethane                      | Mar 18, 2024 | <0.50   | 5    | ug/L               |
| 1,1-Dichloroethylene                    | Mar 18, 2024 | <0.50   | 14   | ug/L               |
| (vinylidene chloride)                   |              |         |      |                    |
| Dichloromethane                         | Mar 18, 2024 | <1.0    | 50   | ug/L               |
| 2,4-Dichlorophenol                      | Mar 18, 2024 | <0.30   | 900  | ug/L               |
| 2,4-Dichlorophenoxy acetic acid (2,4-D) | Mar 18, 2024 | <0.050  | 100  | ug/L               |
| Diclofop-methyl                         | Mar 18, 2024 | <0.100  | 9    | ug/L               |
| Dimethoate                              | Mar 18, 2024 | <0.050  | 20   | ug/L               |
| Diquat                                  | Mar 18, 2024 | <1.0    | 70   | ug/L               |
| Diuron                                  | Mar 18, 2024 | <0.050  | 150  | ug/L               |
| Glyphosate                              | Mar 18, 2024 | <0.20   | 280  | ug/L               |
| Malathion                               | Mar 18, 2024 | <0.0250 | 190  | ug/L               |
| 2 Methyl-4-chlorophenoxyacetic acid     | Mar 18, 2024 | <0.050  | 100  | ug/L               |
| Metolachlor                             | Mar 18, 2024 | <0.0250 | 50   | ug/L               |
| Metribuzin                              | Mar 18, 2024 | <0.100  | 80   | ug/L               |
| Monochlorobenzene                       | Mar 18, 2024 | <0.50   | 80   | ug/L               |
| Paraquat                                | Mar 18, 2024 | <1.0    | 10   | ug/L               |

| Pentachlorophenol               | Mar 18, 2024 | <0.50   | 60  | ug/L |
|---------------------------------|--------------|---------|-----|------|
| Phorate                         | Mar 18, 2024 | <0.250  | 2   | ug/L |
| Picloram                        | Mar 18, 2024 | <0.10   | 190 | ug/L |
| Polychlorinated Biphenyls (PCB) | Mar 18, 2024 | <0.030  | 3   | ug/L |
| Prometryne                      | Mar 18, 2024 | <0.0250 | 1   | ug/L |
| Simazine                        | Mar 18, 2024 | <0.100  | 10  | ug/L |
| Terbufos                        | Mar 18, 2024 | <0.50   | 1   | ug/L |
| Tetrachloroethylene             | Mar 18, 2024 | <0.50   | 10  | ug/L |
| 2,3,4,6-Tetrachlorophenol       | Mar 18, 2024 | <0.50   | 100 | ug/L |
| Triallate                       | Mar 18, 2024 | <0.100  | 230 | ug/L |
| Trichloroethylene               | Mar 18, 2024 | <0.50   | 5   | ug/L |
| 2,4,6-Trichlorophenol           | Mar 18, 2024 | <0.50   | 5   | ug/L |
| Trifluralin                     | Mar 18, 2024 | <0.10   | 45  | ug/L |
| Vinyl Chloride                  | Mar 18, 2024 | <0.50   | 1   | ug/L |

Table 17: Fergus Well 5 Schedule 24 Organic Results

| Parameter                                  | Sample Date  | Result  | STND | Unit of<br>Measure |
|--------------------------------------------|--------------|---------|------|--------------------|
| Alachlor                                   | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Atrazine + N-dealkylated metabolites       | Mar 18, 2024 | <0.14   | 5    | ug/L               |
| Azinphos-methyl                            | Mar 18, 2024 | <0.100  | 20   | ug/L               |
| Benzene                                    | Mar 18, 2024 | <0.50   | 1    | ug/L               |
| Benzo(a)pyrene                             | Mar 18, 2024 | <0.0050 | 0.01 | ug/L               |
| Bromoxynil                                 | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Carbaryl                                   | Mar 18, 2024 | <0.050  | 90   | ug/L               |
| Carbofuran                                 | Mar 18, 2024 | <0.0250 | 90   | ug/L               |
| Carbon Tetrachloride                       | Mar 18, 2024 | <0.20   | 2    | ug/L               |
| Chlorpyrifos                               | Mar 18, 2024 | <0.10   | 90   | ug/L               |
| Diazinon                                   | Mar 18, 2024 | <0.0250 | 20   | ug/L               |
| Dicamba                                    | Mar 18, 2024 | <0.10   | 120  | ug/L               |
| 1,2-Dichlorobenzene                        | Mar 18, 2024 | <0.50   | 200  | ug/L               |
| 1,4-Dichlorobenzene                        | Mar 18, 2024 | <0.50   | 5    | ug/L               |
| 1,2-Dichloroethane                         | Mar 18, 2024 | <0.50   | 5    | ug/L               |
| 1,1-Dichloroethylene (vinylidene chloride) | Mar 18, 2024 | <0.50   | 14   | ug/L               |
| Dichloromethane                            | Mar 18, 2024 | <1.0    | 50   | ug/L               |
| 2,4-Dichlorophenol                         | Mar 18, 2024 | <0.30   | 900  | ug/L               |
| 2,4-Dichlorophenoxy acetic acid (2,4-D)    | Mar 18, 2024 | <0.050  | 100  | ug/L               |
| Diclofop-methyl                            | Mar 18, 2024 | <0.100  | 9    | ug/L               |
| Dimethoate                                 | Mar 18, 2024 | <0.050  | 20   | ug/L               |
| Diquat                                     | Mar 18, 2024 | <1.0    | 70   | ug/L               |
| Diuron                                     | Mar 18, 2024 | <0.050  | 150  | ug/L               |
| Glyphosate                                 | Mar 18, 2024 | <0.20   | 280  | ug/L               |

| Malathion                           | Mar 18, 2024 | <0.0250 | 190 | ug/L         |
|-------------------------------------|--------------|---------|-----|--------------|
| 2 Methyl-4-chlorophenoxyacetic acid | Mar 18, 2024 | <0.050  | 100 | ug/L         |
| Metolachlor                         | Mar 18, 2024 | <0.0250 | 50  | ug/L         |
| Metribuzin                          | Mar 18, 2024 | <0.100  | 80  | ug/L         |
| Monochlorobenzene                   | Mar 18, 2024 | <0.50   | 80  | ug/L         |
| Paraquat                            | Mar 18, 2024 | <1.0    | 10  | ug/L         |
| Pentachlorophenol                   | Mar 18, 2024 | <0.50   | 60  | ug/L         |
| Phorate                             | Mar 18, 2024 | <0.250  | 2   | ug/L         |
| Picloram                            | Mar 18, 2024 | <0.10   | 190 | ug/L         |
| Polychlorinated Biphenyls (PCB)     | Mar 18, 2024 | <0.030  | 3   | ug/L<br>ug/L |
| Prometryne                          | Mar 18, 2024 | <0.030  | 1   | ug/L<br>ug/L |
| Simazine                            | ·            |         | 10  | ·            |
|                                     | Mar 18, 2024 | <0.100  |     | ug/L         |
| Terbufos                            | Mar 18, 2024 | <0.50   | 1   | ug/L         |
| Tetrachloroethylene                 | Mar 18, 2024 | <0.50   | 10  | ug/L         |
| 2,3,4,6-Tetrachlorophenol           | Mar 18, 2024 | <0.50   | 100 | ug/L         |
| Triallate                           | Mar 18, 2024 | <0.100  | 230 | ug/L         |
| Trichloroethylene                   | Mar 18, 2024 | <0.50   | 5   | ug/L         |
| 2,4,6-Trichlorophenol               | Mar 18, 2024 | <0.50   | 5   | ug/L         |
| Trifluralin                         | Mar 18, 2024 | <0.10   | 45  | ug/L         |
| Vinyl Chloride                      | Mar 18, 2024 | <0.50   | 1   | ug/L         |

Table 18: Fergus Well 6 Schedule 24 Organic Results

| Parameter                                  | Sample Date  | Result  | STND | Unit of<br>Measure |
|--------------------------------------------|--------------|---------|------|--------------------|
| Alachlor                                   | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Atrazine + N-dealkylated metabolites       | Mar 18, 2024 | <0.14   | 5    | ug/L               |
| Azinphos-methyl                            | Mar 18, 2024 | <0.100  | 20   | ug/L               |
| Benzene                                    | Mar 18, 2024 | <0.50   | 1    | ug/L               |
| Benzo(a)pyrene                             | Mar 18, 2024 | <0.0050 | 0.01 | ug/L               |
| Bromoxynil                                 | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Carbaryl                                   | Mar 18, 2024 | <0.050  | 90   | ug/L               |
| Carbofuran                                 | Mar 18, 2024 | <0.0250 | 90   | ug/L               |
| Carbon Tetrachloride                       | Mar 18, 2024 | <0.20   | 2    | ug/L               |
| Chlorpyrifos                               | Mar 18, 2024 | <0.10   | 90   | ug/L               |
| Diazinon                                   | Mar 18, 2024 | <0.0250 | 20   | ug/L               |
| Dicamba                                    | Mar 18, 2024 | <0.10   | 120  | ug/L               |
| 1,2-Dichlorobenzene                        | Mar 18, 2024 | <0.50   | 200  | ug/L               |
| 1,4-Dichlorobenzene                        | Mar 18, 2024 | <0.50   | 5    | ug/L               |
| 1,2-Dichloroethane                         | Mar 18, 2024 | <0.50   | 5    | ug/L               |
| 1,1-Dichloroethylene (vinylidene chloride) | Mar 18, 2024 | <0.50   | 14   | ug/L               |
| Dichloromethane                            | Mar 18, 2024 | <1.0    | 50   | ug/L               |
| 2,4-Dichlorophenol                         | Mar 18, 2024 | <0.30   | 900  | ug/L               |

| 2,4-Dichlorophenoxy acetic acid (2,4-D) | Mar 18, 2024 | <0.050  | 100 | ug/L |
|-----------------------------------------|--------------|---------|-----|------|
| Diclofop-methyl                         | Mar 18, 2024 | <0.100  | 9   | ug/L |
| Dimethoate                              | Mar 18, 2024 | <0.050  | 20  | ug/L |
| Diquat                                  | Mar 18, 2024 | <1.0    | 70  | ug/L |
| Diuron                                  | Mar 18, 2024 | <0.050  | 150 | ug/L |
| Glyphosate                              | Mar 18, 2024 | <0.20   | 280 | ug/L |
| Malathion                               | Mar 18, 2024 | <0.0250 | 190 | ug/L |
| 2 Methyl-4-chlorophenoxyacetic acid     | Mar 18, 2024 | <0.050  | 100 | ug/L |
| Metolachlor                             | Mar 18, 2024 | <0.0250 | 50  | ug/L |
| Metribuzin                              | Mar 18, 2024 | <0.100  | 80  | ug/L |
| Monochlorobenzene                       | Mar 18, 2024 | <0.50   | 80  | ug/L |
| Paraquat                                | Mar 18, 2024 | <1.0    | 10  | ug/L |
| Pentachlorophenol                       | Mar 18, 2024 | <0.50   | 60  | ug/L |
| Phorate                                 | Mar 18, 2024 | <0.250  | 2   | ug/L |
| Picloram                                | Mar 18, 2024 | <0.10   | 190 | ug/L |
| Polychlorinated Biphenyls (PCB)         | Mar 18, 2024 | <0.030  | 3   | ug/L |
| Prometryne                              | Mar 18, 2024 | <0.0250 | 1   | ug/L |
| Simazine                                | Mar 18, 2024 | <0.100  | 10  | ug/L |
| Terbufos                                | Mar 18, 2024 | <0.50   | 1   | ug/L |
| Tetrachloroethylene                     | Mar 18, 2024 | <0.50   | 10  | ug/L |
| 2,3,4,6-Tetrachlorophenol               | Mar 18, 2024 | <0.50   | 100 | ug/L |
| Triallate                               | Mar 18, 2024 | <0.100  | 230 | ug/L |
| Trichloroethylene                       | Mar 18, 2024 | <0.50   | 5   | ug/L |
| 2,4,6-Trichlorophenol                   | Mar 18, 2024 | <0.50   | 5   | ug/L |
| Trifluralin                             | Mar 18, 2024 | <0.10   | 45  | ug/L |
| Vinyl Chloride                          | Mar 18, 2024 | <0.50   | 1   | ug/L |

Table 19: Fergus Well 7 Schedule 24 Organic Results

| Parameter                            | Sample Date  | Result  | STND | Unit of<br>Measure |
|--------------------------------------|--------------|---------|------|--------------------|
| Alachlor                             | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Atrazine + N-dealkylated metabolites | Mar 18, 2024 | <0.14   | 5    | ug/L               |
| Azinphos-methyl                      | Mar 18, 2024 | <0.100  | 20   | ug/L               |
| Benzene                              | Mar 18, 2024 | <0.50   | 1    | ug/L               |
| Benzo(a)pyrene                       | Mar 18, 2024 | <0.0050 | 0.01 | ug/L               |
| Bromoxynil                           | Mar 18, 2024 | <0.050  | 5    | ug/L               |
| Carbaryl                             | Mar 18, 2024 | <0.050  | 90   | ug/L               |
| Carbofuran                           | Mar 18, 2024 | <0.0250 | 90   | ug/L               |
| Carbon Tetrachloride                 | Mar 18, 2024 | <0.20   | 2    | ug/L               |
| Chlorpyrifos                         | Mar 18, 2024 | <0.10   | 90   | ug/L               |
| Diazinon                             | Mar 18, 2024 | <0.0250 | 20   | ug/L               |
| Dicamba                              | Mar 18, 2024 | <0.10   | 120  | ug/L               |

| 1,2-Dichlorobenzene                     | Mar 18, 2024 | <0.50   | 200 | ug/L |
|-----------------------------------------|--------------|---------|-----|------|
| 1,4-Dichlorobenzene                     | Mar 18, 2024 | <0.50   | 5   | ug/L |
| 1,2-Dichloroethane                      | Mar 18, 2024 | <0.50   | 5   | ug/L |
| 1,1-Dichloroethylene                    | Mar 18, 2024 | <0.50   | 14  | ug/L |
| (vinylidene chloride)                   |              |         |     |      |
| Dichloromethane                         | Mar 18, 2024 | <1.0    | 50  | ug/L |
| 2,4-Dichlorophenol                      | Mar 18, 2024 | <0.30   | 900 | ug/L |
| 2,4-Dichlorophenoxy acetic acid (2,4-D) | Mar 18, 2024 | <0.050  | 100 | ug/L |
| Diclofop-methyl                         | Mar 18, 2024 | <0.100  | 9   | ug/L |
| Dimethoate                              | Mar 18, 2024 | <0.050  | 20  | ug/L |
| Diquat                                  | Mar 18, 2024 | <1.0    | 70  | ug/L |
| Diuron                                  | Mar 18, 2024 | <0.050  | 150 | ug/L |
| Glyphosate                              | Mar 18, 2024 | <0.20   | 280 | ug/L |
| Malathion                               | Mar 18, 2024 | <0.0250 | 190 | ug/L |
| 2 Methyl-4-chlorophenoxyacetic acid     | Mar 18, 2024 | <0.050  | 100 | ug/L |
| Metolachlor                             | Mar 18, 2024 | <0.0250 | 50  | ug/L |
| Metribuzin                              | Mar 18, 2024 | <0.100  | 80  | ug/L |
| Monochlorobenzene                       | Mar 18, 2024 | <0.50   | 80  | ug/L |
| Paraquat                                | Mar 18, 2024 | <1.0    | 10  | ug/L |
| Pentachlorophenol                       | Mar 18, 2024 | <0.50   | 60  | ug/L |
| Phorate                                 | Mar 18, 2024 | <0.250  | 2   | ug/L |
| Picloram                                | Mar 18, 2024 | <0.10   | 190 | ug/L |
| Polychlorinated Biphenyls (PCB)         | Mar 18, 2024 | <0.030  | 3   | ug/L |
| Prometryne                              | Mar 18, 2024 | <0.0250 | 1   | ug/L |
| Simazine                                | Mar 18, 2024 | <0.100  | 10  | ug/L |
| Terbufos                                | Mar 18, 2024 | <0.50   | 1   | ug/L |
| Tetrachloroethylene                     | Mar 18, 2024 | <0.50   | 10  | ug/L |
| 2,3,4,6-Tetrachlorophenol               | Mar 18, 2024 | <0.50   | 100 | ug/L |
| Triallate                               | Mar 18, 2024 | <0.100  | 230 | ug/L |
| Trichloroethylene                       | Mar 18, 2024 | <0.50   | 5   | ug/L |
| 2,4,6-Trichlorophenol                   | Mar 18, 2024 | <0.50   | 5   | ug/L |
| Trifluralin                             | Mar 18, 2024 | <0.10   | 45  | ug/L |
| Vinyl Chloride                          | Mar 18, 2024 | <0.50   | 1   | ug/L |

Table 20: Elora Well 1 Schedule 24 Organic Results

| Parameter                            | Sample Date  | Result  | STND | Unit of<br>Measure |
|--------------------------------------|--------------|---------|------|--------------------|
| Alachlor                             | Mar 19, 2024 | <0.050  | 5    | ug/L               |
| Atrazine + N-dealkylated metabolites | Mar 19, 2024 | <0.14   | 5    | ug/L               |
| Azinphos-methyl                      | Mar 19, 2024 | <0.100  | 20   | ug/L               |
| Benzene                              | Mar 19, 2024 | <0.50   | 1    | ug/L               |
| Benzo(a)pyrene                       | Mar 19, 2024 | <0.0050 | 0.01 | ug/L               |

| Bromoxynil                              | Mar 19, 2024 | <0.050  | 5   | ug/L |
|-----------------------------------------|--------------|---------|-----|------|
| Carbaryl                                | Mar 19, 2024 | <0.050  | 90  | ug/L |
| Carbofuran                              | Mar 19, 2024 | <0.0250 | 90  | ug/L |
| Carbon Tetrachloride                    | Mar 19, 2024 | <0.20   | 2   | ug/L |
| Chlorpyrifos                            | Mar 19, 2024 | <0.10   | 90  | ug/L |
| Diazinon                                | Mar 19, 2024 | <0.0250 | 20  | ug/L |
| Dicamba                                 | Mar 19, 2024 | <0.10   | 120 | ug/L |
| 1,2-Dichlorobenzene                     | Mar 19, 2024 | <0.50   | 200 | ug/L |
| 1,4-Dichlorobenzene                     | Mar 19, 2024 | <0.50   | 5   | ug/L |
| 1,2-Dichloroethane                      | Mar 19, 2024 | <0.50   | 5   | ug/L |
| 1,1-Dichloroethylene                    | Mar 19, 2024 | <0.50   | 14  | ug/L |
| (vinylidene chloride)                   | Wai 13, 2024 | <0.50   | 14  | ug/L |
| Dichloromethane                         | Mar 19, 2024 | <1.0    | 50  | ug/L |
| 2,4- Dichlorophenol                     | Mar 19, 2024 | <0.30   | 900 | ug/L |
| 2,4-Dichlorophenoxy acetic acid (2,4-D) | Mar 19, 2024 | <0.050  | 100 | ug/L |
| Diclofop-methyl                         | Mar 19, 2024 | <0.100  | 9   | ug/L |
| Dimethoate                              | Mar 19, 2024 | <0.050  | 20  | ug/L |
| Diquat                                  | Mar 19, 2024 | <1.0    | 70  | ug/L |
| Diuron                                  | Mar 19, 2024 | <0.050  | 150 | ug/L |
| Glyphosate                              | Mar 19, 2024 | <0.20   | 280 | ug/L |
| Malathion                               | Mar 19, 2024 | <0.0250 | 190 | ug/L |
| 2 Methyl-4-chlorophenoxyacetic acid     | Mar 19, 2024 | <0.050  | 100 | ug/L |
| Metolachlor                             | Mar 19, 2024 | <0.0250 | 50  | ug/L |
| Metribuzin                              | Mar 19, 2024 | <0.100  | 80  | ug/L |
| Monochlorobenzene                       | Mar 19, 2024 | <0.50   | 80  | ug/L |
| Paraquat                                | Mar 19, 2024 | <1.0    | 10  | ug/L |
| Pentachlorophenol                       | Mar 19, 2024 | <0.50   | 60  | ug/L |
| Phorate                                 | Mar 19, 2024 | <0.250  | 2   | ug/L |
| Picloram                                | Mar 19, 2024 | <0.10   | 190 | ug/L |
| Polychlorinated Biphenyls (PCB)         | Mar 19, 2024 | <0.030  | 3   | ug/L |
| Prometryne                              | Mar 19, 2024 | <0.0250 | 1   | ug/L |
| Simazine                                | Mar 19, 2024 | <0.100  | 10  | ug/L |
| Terbufos                                | Mar 19, 2024 | <0.50   | 1   | ug/L |
| Tetrachloroethylene                     | Mar 19, 2024 | <0.50   | 10  | ug/L |
| 2,3,4,6-Tetrachlorophenol               | Mar 19, 2024 | <0.50   | 100 | ug/L |
| Triallate                               | Mar 19, 2024 | <0.100  | 230 | ug/L |
| Trichloroethylene                       | Mar 19, 2024 | <0.50   | 5   | ug/L |
| 2,4,6-Trichlorophenol                   | Mar 19, 2024 | <0.50   | 5   | ug/L |
| Trifluralin                             | Mar 19, 2024 | <0.10   | 45  | ug/L |
| Vinyl Chloride                          | Mar 19, 2024 | <0.50   | 1   | ug/L |

Table 21: Elora Well 3 Schedule 24 Organic Results

| Parameter                               | Sample Date Result |         | STND      | Unit of<br>Measure |
|-----------------------------------------|--------------------|---------|-----------|--------------------|
| Alachlor                                | Mar 19, 2024       | <0.050  | 5         | ug/L               |
| Atrazine + N-dealkylated metabolites    | Mar 19, 2024       | <0.14   | 5         | ug/L               |
| Azinphos-methyl                         | Mar 19, 2024       | <0.100  | 20        | ug/L               |
| Benzene                                 | Mar 19, 2024       | <0.50   | 1         | ug/L               |
| Benzo(a)pyrene                          | Mar 19, 2024       | <0.0050 | 0.01      | ug/L               |
| Bromoxynil                              | Mar 19, 2024       | <0.050  | 5         | ug/L               |
| Carbaryl                                | Mar 19, 2024       | <0.050  | 90        | ug/L               |
| Carbofuran                              | Mar 19, 2024       | <0.0250 | 90        | ug/L               |
| Carbon Tetrachloride                    | Mar 19, 2024       | <0.20   | 2         | ug/L               |
| Chlorpyrifos                            | Mar 19, 2024       | <0.10   | 90        | ug/L               |
| Diazinon                                | Mar 19, 2024       | <0.0250 | 20        | ug/L               |
| Dicamba                                 | Mar 19, 2024       | <0.10   | 120       | ug/L               |
| 1,2-Dichlorobenzene                     | Mar 19, 2024       | <0.50   | 200       | ug/L               |
| 1,4-Dichlorobenzene                     | Mar 19, 2024       | <0.50   | 5         | ug/L               |
| 1,2-Dichloroethane                      | Mar 19, 2024       | <0.50   | 5         | ug/L               |
| 1,1-Dichloroethylene                    | Mar 19, 2024       | <0.50   | 14        | ug/L               |
| (vinylidene chloride)                   | Mar 40, 2024       | 4.0     | <b>50</b> | /                  |
| Dichloromethane                         | Mar 19, 2024       | <1.0    | 50        | ug/L               |
| 2,4-Dichlorophenol                      | Mar 19, 2024       | <0.30   | 900       | ug/L               |
| 2,4-Dichlorophenoxy acetic acid (2,4-D) | Mar 19, 2024       | <0.050  | 100       | ug/L               |
| Diclofop-methyl                         | Mar 19, 2024       | <0.100  | 9         | ug/L               |
| Dimethoate                              | Mar 19, 2024       | <0.050  | 20        | ug/L               |
| Diquat                                  | Mar 19, 2024       | <1.0    | 70        | ug/L               |
| Diuron                                  | Mar 19, 2024       | <0.050  | 150       | ug/L               |
| Glyphosate                              | Mar 19, 2024       | <0.20   | 280       | ug/L               |
| Malathion                               | Mar 19, 2024       | <0.0250 | 190       | ug/L               |
| 2 Methyl-4-chlorophenoxyacetic acid     | Mar 19, 2024       | <0.050  | 100       | ug/L               |
| Metolachlor                             | Mar 19, 2024       | <0.0250 | 50        | ug/L               |
| Metribuzin                              | Mar 19, 2024       | <0.100  | 80        | ug/L               |
| Monochlorobenzene                       | Mar 19, 2024       | <0.50   | 80        | ug/L               |
| Paraquat                                | Mar 19, 2024       | <1.0    | 10        | ug/L               |
| Pentachlorophenol                       | Mar 19, 2024       | <0.50   | 60        | ug/L               |
| Phorate                                 | Mar 19, 2024       | <0.250  | 2         | ug/L               |
| Picloram                                | Mar 19, 2024       | <0.10   | 190       | ug/L               |
| Polychlorinated Biphenyls (PCB)         | Mar 19, 2024       | <0.030  | 3         | ug/L               |
| Prometryne                              | Mar 19, 2024       | <0.0250 | 1         | ug/L               |
| Simazine                                | Mar 19, 2024       | <0.100  | 10        | ug/L               |
| Terbufos                                | Mar 19, 2024       | <0.50   | 1         | ug/L               |
| Tetrachloroethylene                     | Mar 19, 2024       | < 0.50  | 10        | ug/L               |

| 2,3,4,6-Tetrachlorophenol | Mar 19, 2024 | <0.50  | 100 | ug/L |
|---------------------------|--------------|--------|-----|------|
| Triallate                 | Mar 19, 2024 | <0.100 | 230 | ug/L |
| Trichloroethylene         | Mar 19, 2024 | <0.50  | 5   | ug/L |
| 2,4,6-Trichlorophenol     | Mar 19, 2024 | <0.50  | 5   | ug/L |
| Trifluralin               | Mar 19, 2024 | <0.10  | 45  | ug/L |
| Vinyl Chloride            | Mar 19, 2024 | <0.50  | 1   | ug/L |

Table 22: Elora Well 4 Schedule 24 Organic Results

| Parameter                                  | Sample Date  | Result  | STND | Unit of<br>Measure |
|--------------------------------------------|--------------|---------|------|--------------------|
| Alachlor                                   | Mar 19, 2024 | <0.050  | 5    | ug/L               |
| Atrazine + N-dealkylated metabolites       | Mar 19, 2024 | <0.14   | 5    | ug/L               |
| Azinphos-methyl                            | Mar 19, 2024 | <0.100  | 20   | ug/L               |
| Benzene                                    | Mar 19, 2024 | <0.50   | 1    | ug/L               |
| Benzo(a)pyrene                             | Mar 19, 2024 | <0.0050 | 0.01 | ug/L               |
| Bromoxynil                                 | Mar 19, 2024 | <0.050  | 5    | ug/L               |
| Carbaryl                                   | Mar 19, 2024 | <0.050  | 90   | ug/L               |
| Carbofuran                                 | Mar 19, 2024 | <0.0250 | 90   | ug/L               |
| Carbon Tetrachloride                       | Mar 19, 2024 | <0.20   | 2    | ug/L               |
| Chlorpyrifos                               | Mar 19, 2024 | <0.10   | 90   | ug/L               |
| Diazinon                                   | Mar 19, 2024 | <0.0250 | 20   | ug/L               |
| Dicamba                                    | Mar 19, 2024 | <0.10   | 120  | ug/L               |
| 1,2-Dichlorobenzene                        | Mar 19, 2024 | <0.50   | 200  | ug/L               |
| 1,4-Dichlorobenzene                        | Mar 19, 2024 | <0.50   | 5    | ug/L               |
| 1,2-Dichloroethane                         | Mar 19, 2024 | <0.50   | 5    | ug/L               |
| 1,1-Dichloroethylene (vinylidene chloride) | Mar 19, 2024 | <0.50   | 14   | ug/L               |
| Dichloromethane                            | Mar 19, 2024 | <1.0    | 50   | ug/L               |
| 2,4-Dichlorophenol                         | Mar 19, 2024 | <0.30   | 900  | ug/L               |
| 2,4-Dichlorophenoxy acetic acid (2,4-D)    | Mar 19, 2024 | <0.050  | 100  | ug/L               |
| Diclofop-methyl                            | Mar 19, 2024 | <0.100  | 9    | ug/L               |
| Dimethoate                                 | Mar 19, 2024 | <0.050  | 20   | ug/L               |
| Diquat                                     | Mar 19, 2024 | <1.0    | 70   | ug/L               |
| Diuron                                     | Mar 19, 2024 | <0.050  | 150  | ug/L               |
| Glyphosate                                 | Mar 19, 2024 | <0.20   | 280  | ug/L               |
| Malathion                                  | Mar 19, 2024 | <0.0250 | 190  | ug/L               |
| 2 Methyl-4-chlorophenoxyacetic acid        | Mar 19, 2024 | <0.050  | 100  | ug/L               |
| Metolachlor                                | Mar 19, 2024 | <0.0250 | 50   | ug/L               |
| Metribuzin                                 | Mar 19, 2024 | <0.100  | 80   | ug/L               |
| Monochlorobenzene                          | Mar 19, 2024 | <0.50   | 80   | ug/L               |
| Paraquat                                   | Mar 19, 2024 | <1.0    | 10   | ug/L               |
| Pentachlorophenol                          | Mar 19, 2024 | <0.50   | 60   | ug/L               |
| Phorate                                    | Mar 19, 2024 | <0.250  | 2    | ug/L               |

| Picloram                        | Mar 19, 2024 | <0.10   | 190 | ug/L |
|---------------------------------|--------------|---------|-----|------|
| Polychlorinated Biphenyls (PCB) | Mar 19, 2024 | <0.030  | 3   | ug/L |
| Prometryne                      | Mar 19, 2024 | <0.0250 | 1   | ug/L |
| Simazine                        | Mar 19, 2024 | <0.100  | 10  | ug/L |
| Terbufos                        | Mar 19, 2024 | <0.50   | 1   | ug/L |
| Tetrachloroethylene             | Mar 19, 2024 | <0.50   | 10  | ug/L |
| 2,3,4,6-Tetrachlorophenol       | Mar 19, 2024 | <0.50   | 100 | ug/L |
| Triallate                       | Mar 19, 2024 | <0.100  | 230 | ug/L |
| Trichloroethylene               | Mar 19, 2024 | <0.50   | 5   | ug/L |
| 2,4,6-Trichlorophenol           | Mar 19, 2024 | <0.50   | 5   | ug/L |
| Trifluralin                     | Mar 19, 2024 | <0.10   | 45  | ug/L |
| Vinyl Chloride                  | Mar 19, 2024 | <0.50   | 1   | ug/L |

- 8) Lead results under OReg 170/03, Schedule 15.1-5.
  - a) The Owner of a drinking water system must ensure that the distribution system is sampled and tested for lead concentrations. For systems that continuously demonstrate good results, the regulation allows for reduced sampling. The Center Wellington DWS qualifies for reduced sampling. The samples must be taken during the period of December 15 April 15 (winter sampling) and during the period of June 15 October 15 (summer sampling) every 36 months.
  - b) The Drinking Water Standards (STND) for the parameters are listed as per OReg 169/03 Schedule 2.
  - c) The Owner of a drinking water system must ensure that the distribution system is sampled and tested for **pH and total alkalinity** during each of the sampling periods (summer sampling and winter sampling) in **every 12 month period**.
  - d) The Operational Guideline for pH is 6.5 8.5 and the Operational Guideline for alkalinity (as CaCO3) is 30 500 mg/L.

Table 23: Schedule 15.1 Lead Results

| Location                | Sample Date        | Lead<br>Result | Lead<br>STND | Unit of<br>Measure |
|-------------------------|--------------------|----------------|--------------|--------------------|
| Distribution Location 1 | April 13, 2022     | <1.0           | 10           | ug/L               |
| Distribution Location 2 | April 13, 2022     | <1.0           | 10           | ug/L               |
| Distribution Location 3 | April 13, 2022     | <1.0           | 10           | ug/L               |
| Distribution Location 4 | April 13, 2022     | <1.0           | 10           | ug/L               |
| Distribution Location 1 | September 21, 2022 | <1.0           | 10           | ug/L               |
| Distribution Location 2 | September 21, 2022 | <1.0           | 10           | ug/L               |
| Distribution Location 3 | September 21, 2022 | <1.0           | 10           | ug/L               |
| Distribution Location 4 | September 21, 2022 | <1.0           | 10           | ug/L               |

Table 24: Schedule 15.1 pH and Alkalinity Results (Sampling Required Only)

| Location                | Sample Date      | pH Result | Alkalinity<br>Result (as<br>CaCO3) | Alkalinity<br>Unit of<br>Measure |
|-------------------------|------------------|-----------|------------------------------------|----------------------------------|
| Distribution Location 1 | January 23, 2024 | 7.59      | 210                                | mg/L                             |
| Distribution Location 2 | January 23, 2024 | 7.42      | 298                                | mg/L                             |
| Distribution Location 3 | January 23, 2024 | 7.50      | 219                                | mg/L                             |
| Distribution Location 4 | January 23, 2024 | 7.52      | 218                                | mg/L                             |
| Distribution Location 1 | July 18, 2024    | 7.25      | 201                                | mg/L                             |
| Distribution Location 2 | July 18, 2024    | 7.15      | 262                                | mg/L                             |
| Distribution Location 3 | July 18, 2024    | 7.44      | 206                                | mg/L                             |
| Distribution Location 4 | July 18, 2024    | 7.48      | 205                                | mg/L                             |

- 9) **Summary of Additional Testing and Sampling** as required under the Township Municipal Drinking Water Licence (MDWL), Schedule C, Section 4.1, Table 5.
  - a) The Township is required to complete **raw water sampling** every **quarter** and test for **Trichloroethylene** (TCE) at **Fergus Well 1**.
  - b) The Drinking Water Standard (STND) for TCE is listed as per OReg 169/03 Schedule 2.

Table 25: MDWL Trichloroethylene Results (Raw Water and Treated Water)

| Location      | Sample Date       | Raw    | Treated | TCE  | Unit of |
|---------------|-------------------|--------|---------|------|---------|
|               |                   | Water  | Water   | STND | Measure |
|               |                   | Result | Result  |      |         |
| Fergus Well 1 | February 14, 2024 | 9.36   | <0.50   | 5    | ug/L    |
| Fergus Well 1 | April 16, 2024    | 1.99   | <0.50   | 5    | ug/L    |
| Fergus Well 1 | July 18, 2024     | 9.67   | <0.50   | 5    | ug/L    |
| Fergus Well 1 | October 30, 2024  | 0.54   | <0.50   | 5    | ug/L    |

#### 10) Review of the Data

- a) The Annual Report must list any inorganic or organic parameter that exceeded half the standard (½ STND) prescribed in Schedule 2 of the Ontario Drinking Water Standards.
- b) The Drinking Water Standard (STND) was established for parameters which when present above a certain concentration, have known or suspected adverse health effects.
- c) The results of the organic parameter analysis are below the ½ STND for each parameter and the majority were under the laboratory's MDL (minimum detection limit).
- d) The results of the inorganic parameter analysis are below the ½ STND for each parameter with the following exception:

Table 26: Inorganic and Organic Parameters Exceeding ½ STND

| Parameter | Location      | Result | STND | ½ STND | Units |
|-----------|---------------|--------|------|--------|-------|
| Fluoride  | Fergus Well 4 | 0.86   | 1.5  | 0.75   | mg/L  |

11) The Annual Report must describe any **major expenses incurred** during the year to install, **repair or replace required equipment**.

**Table 27: 2024 Equipment Major Expenses** 

| Location      | Description                             | Cost      |
|---------------|-----------------------------------------|-----------|
| Fergus Well 6 | Submersible well pump motor replacement | \$23, 800 |