LAND SURVEYORS and ENGINEERS

July 3, 2018
25600-18
Taylor McDaniel
66 Wellington Road 7, Unit 1
PO Box 1156
Elora, ON
NOB 1S0

Dear Sir:

Re: Functional Servicing and Stormwater Management Report
 Proposed Condominium Development
 6552 Beatty Line
 Part of Lot 18, Concession 14
 Geographic Township of Nichol
 Township of Centre Wellington

1.0 Introduction

Van Harten Surveying Inc. was retained by Taylor McDaniel to prepare a functional servicing and stormwater management design and report for the above mentioned property located on the southwest corner of Beatty Line and Farley Road. This work is being done in support of Rezoning, Lot Line Adjustment and Draft Plan of Condominium applications.

This report will summarize the proposed plan as it pertains to site servicing including sanitary, storm, and water supply. This will be done in accordance with the accepted engineering practices and criteria as noted by the local approval agencies, as well as the municipal servicing standards.

2.0 Site and Project Description

The project will involve combining the properties known as 6552 , 6554 , 6556 and 6558 Beatty Road into one property for the purpose of creating one overall condominium plan. Each of these properties currently contain single family dwellings, each individually serviced from Beatty Line. The properties are vegetated with grass and are lightly treed. The properties currently drain towards Beatty Line with a total topographic relief of approximately 4.0 m . Water, sanitary and storm servicing is available to the site from Beatty Line. Servicing for these utilities currently exists along Farley Road, however it is noted that it is the preference of the township to avoid servicing the site through Farley Road wherever possible.

Adjacent to the site to the east is a new subdivision currently under construction. At this time it is understood the majority of road and servicing construction to the individual properties within the subdivision is complete, and several homes are either under construction or fully constructed. To the

[^0]LAND SURVEYORS and ENGINEERS
south of the subject property are more single family dwellings on large properties, similar in size and condition to the lots to be re-developed.

Referring to the Grading and Servicing Plans attached as Appendix A, the proposal is to construct 16 semi-detached houses (32 dwelling units), one fully detached dwelling, and a four storey apartment building containing 71 dwelling units. Construction of the apartment building will also necessitate the construction of a parking lot with parking for approximately 94 vehicles. A common element roadway will also be constructed with attachments to Beatty Line and Farley Road to access the proposed dwellings.

Following development, it is proposed to extend private sanitary and water servicing through a common element roadway to service the proposed semi-detached and fully detached condominium units. Connection of these services will be to Beatty Line. Servicing for the apartment building will be achieved through an existing sanitary stub located under Farley Road near the intersection of Farley Road and Beatty Line, and a new water service to be constructed at Beatty Line.

Stormwater Management on site will be self-contained and controlled for quantity and quality. Minor stormwater events will be directed underground to connections at Beatty Line where they ultimately outlet to a wetland on the east side of Beatty Line. Major storms will drain as per existing conditions, generally overland towards Beatty Line.

3.0 Water Supply

It is understood that each of the existing dwellings as part of the proposed development have a private connection to the water supply located under Beatty Line. As indicated on the Preliminary Grading and Servicing Plan found in Appendix A, all existing water services directed towards the subject property are to be decommissioned in accordance with township standards.

It is proposed to provide water to the proposed condominium development by installing a 150 mm watermain with a connection to the existing 300 mm watermain found under Beatty Line. In order to continually provide a flow of water, it is typically preferred to loop the water system. As water servicing under Farley Road currently exists, it would be preferable to provide a connection to the existing watermain on Farley Road as well, as indicated on the attached plan.

Fire protection on site will be provided by a new private fire hydrant to be installed near the common parking area and Unit 11. Fire hydrants are available near the entrance to the site from both Farley Road and Beatty Line, which will provide the additional required fire protection on site.

Individual units within the condominium plan will be serviced through the proposed watermain to be located in the common elements. In accordance with township and Ontario Building Code (OBC) standards, each unit will be provided with individual 25 mm water services. Each unit will be privately metered.

LAND SURVEYORS and ENGINEERS

Available water pressure to service this development should be verified by the township prior to commencement of this development. It is recommended to perform hydrant flow tests during the detailed design stage to determine available water pressures and flows within the existing system.

Water demand to the condominium units in accordance with MOECC design standards and in reference to township servicing standards is approximately 450 L/day per capita. Assuming 35 single family dwelling units and an average of 2.5 occupants per dwelling, a total water demand of 39,375 L/day is calculated. Peaking factors, in accordance with MOECC design standards, are 3.6 as a maximum day factor, and 5.4 for the peak hour factor. Fire flows will be over and above the calculated peak flows.

The water system for the proposed apartment building will be connected to the municipal water supply under Beatty Line. Demand flows for the apartment will be calculated similar to the above, however we will rely on more detailed design from a mechanical consultant where more details regarding fire protection and water pressures at the top floor will be provided.

4.0 Sanitary Servicing

It is understood that each of the existing dwellings as part of the proposed development have a private connection to the sanitary sewer located under Beatty Line. As indicated on the Preliminary Grading and Servicing Plan found in Appendix A, all existing sanitary services directed towards the subject property are to be decommissioned in accordance with township standards.

Sanitary servicing to the site will be achieved with a connection to the existing 250 mm sanitary sewer located under Beatty Line with a 200 mm sewer main. Individual condominium units will be connected to this main with typical 100 mm PVC sanitary laterals. Preliminary calculations based on known pipe depths and existing grading would indicate that a gravity connection to the main under Beatty Line is feasible.

Sanitary sewer demand for the proposed condominium units has been calculated based on Township of Centre Wellington municipal servicing standards with per capita flows of $450 \mathrm{~L} /$ day per capita and a population of 87.5 . Therefore, daily flows of approximately $39,375 \mathrm{~L} /$ day are to be expected, with peak flows calculated to be approximately $2.33 \mathrm{~L} / \mathrm{sec}$, combining the peaking factor as per Harmon Formula and assumed extraneous flows. Although this is a relatively low demand, the available capacity of the Beatty Line sewer should be verified.

Sanitary servicing to the proposed apartment building will be achieved through an existing 150 mm sanitary stub noted on as-built plan and profile drawings of Farley Road near the intersection of Beatty Line. It is assumed sanitary demand to the apartment building will not exceed the capacity of the existing 150 mm service. Actual demand and available capacity will be verified when mechanical designs of the proposed building are made available.

LAND SURVEYORS and ENGINEERS

5.0 Stormwater Management

It is assumed all existing dwellings within the development are not serviced with storm connections to Beatty Line. Storm servicing is generally unavailable near the frontage of these dwellings. Therefore, no alteration to existing storm servicing is required to facilitate the proposed development.

An existing stormwater outlet for the property is understood to be near the corner of Beatty Line and Farley Road, or the northeast corner of the subject property. Here, a double inlet catchbasin manhole is constructed with an underground connection to a 1,800 by 900 mm box culvert running diagonally northwest to southeast under Beatty Line. The outlet of this culvert is understood to be into an existing wetland on the opposite side of Beatty Line from the subject property. As this is currently the only suitable underground connection available to the subject property, the minor storm outlet from the site will be to this manhole. Major storms will drain overland to Beatty Line and ultimately outlet to this same wetland.

Preliminary stormwater modelling has been completed using MIDUSS with design storms provided by the Township of Centre Wellington. As noted above, the storm system for the entire site will be directed through an existing catchbasin manhole located at the northeast corner of the site, which is assumed to be the general location of the existing stormwater outlet. Peak flows will be attenuated using parking lot storage, underground storage in superpipes located under the common element and a small dry pond to be located between Unit 8 and Beatty Line. Preliminary feasibility calculations using MIDUSS based on the enclosed grading and servicing plan are attached as Appendix B.

A summary of the peak flow rates and required storage volumes based on preliminary modelling using MIDUSS are listed below:

	Peak Flow Rate $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$		
	Existing	Proposed Controlled	Total Storage Volume Required $\left(\mathrm{m}^{3}\right)$
5-year Period		$\mathbf{0 . 1 4 6}$	$\mathbf{2 1 4 . 4}$
100 -year	$\mathbf{0 . 1 5 2}$	$\mathbf{0 . 4 8 8}$	$\mathbf{5 4 6 . 1}$

6.0 Conclusions

The completed servicing and grading design is specific to the subject property and cannot be applied to different properties. It has been determined that municipal servicing exists and is generally suitable for this property, and overland stormwater conveyance is available, where required. It is noted that some further investigation to the available capacity of the existing infrastructure on Beatty Line and Farley Road may be warranted prior to commencement of this development.

LAND SURVEYORS and ENGINEERS

I trust that this report and design has been completed within our terms of reference and is suitable for your present requirements. Please contact our office if you have any questions or require further consultation.

Van Harten Surveying Inc.

Mike Vaughan, P. Eng.

Encl. Appendix A - Preliminary Site, Grading and Servicing Plans
Encl. Appendix B - MIDUSS Calculations

LAND SURVEYORS and ENGINEERS

Appendix A
 Preliminary Site, Grading and Servicing Plans

LAND SURVEYORS and ENGINEERS

Appendix B MIDUSS Calculations

5-Year Storm - Existing Conditions

100-Year Storm - Existing Conditions

```
    MIDUSS Output -----------------------------------------------------------
    MIDUSS version Version 2.25 rev. 465"
    MIDUSS created Tuesday, February 05, 2008"
            10 Units used:
            Job folder: Q:\18-256\25600-18 (Beatty Line)"
            Output filename: 100-yr ex.out"
            Licensee name: Mike.Vaughan"
            Company
            Date & Time last used: 5/24/2018 at 11:12:36 AM"
            TIME PARAMETERS"
            5.000 Time Step"
            180.000 Max. Storm length"
1500.000 Max. Hydrograph"
FILEI_O Read/Open FERGUS 100YR STORM.stm"
            1 1=read/open; 2=write/save"
            1 1=rainfall; 2=hydrograph"
            1 1=rain; 2=imperv; 3=perv"
            FERGUS 100YR STORM.stm"
            Fergus Shand Dam using Environment Canada IDF curve data"
            New storm defined"
            Total depth 93.224 mm"
            Maximum intensity 211.620 mm/hr"
            Duration 180.000 minutes"
                0.000 0.000 0.000 0.000 c.m/sec"
            6 lo0hyd Hydrograph extension used in this file"
            CATCHMENT 1"
            1 Triangular SCS"
            Equal length"
            Horton equation"
            C1 - EXISTING SITE"
            5.000 % Impervious"
            1.864 Total Area"
            152.000 Flow length"
            2.000 Overland Slope"
            1.771 Pervious Area"
            152.000 Pervious length"
            2.000 Pervious slope"
            0.093 Impervious Area"
            152.000 Impervious length"
            2.000 Impervious slope"
            0.250 Pervious Manning 'n'"
            25.000 Pervious Max.infiltration"
            5.000 Pervious Min.infiltration"
            0.250 Pervious Lag constant (hours)"
            5.000 Pervious Depression storage"
            0.015 Impervious Manning 'n'"
            0.000 Impervious Max.infiltration"
            0.000 Impervious Min.infiltration"
            0.050 Impervious Lag constant (hours)"
            1.500 Impervious Depression storage"
                0.488 0.000 0.000 0.000 c.m/sec"
            Catchment 1 Pervious Impervious Total Area "
            Surface Area 1.771 0.093 1.864 hectare"
            Time of concentration 23.791 4.352 22.544 minutes"
            Time to Centroid 112.697 89.411 111.203 minutes"
            Rainfall depth 93.224 93.224 93.224 mm"
            Rainfall volume 1650.55 86.87 1737.42 c.m"
            Rainfall losses 23.402 2.286 22.347 mm"
            Runoff depth 69.822 90.939 70.878 mm"
            Runoff volume 1236.21 84.74 1320.95 c.m"
```


5-Year Storm - Design Conditions

Surface Area 0.077 0.163 0.240 hectare"
Time of concentration 10.953 1.982 3.880 minutes"
Time to Centroid $97.55488 .094 \quad 90.095$ minutes"

```
        418.795 0.1320 190.879"
```

 418.795 0.1320 190.879"
 418.848 0.1960 192.560"
 418.848 0.1960 192.560"
 418.900 0.2805 192.560"
 418.900 0.2805 192.560"
 1. WEIRS"
 1. WEIRS"
 Crest Weir Crest Left Right"
 Crest Weir Crest Left Right"
 elevation coefficie breadth sideslope sideslope"
 elevation coefficie breadth sideslope sideslope"
 418.700 0.900 1.000 3.000 3.000"
 418.700 0.900 1.000 3.000 3.000"
 1. ORIFICES"
 1. ORIFICES"
 Orifice Orifice Orifice Number of"
 Orifice Orifice Orifice Number of"
 invert coefficie diameter orifices"
 invert coefficie diameter orifices"
 417.800 0.630 0.1950 1.000"
 417.800 0.630 0.1950 1.000"
 1.
 1.
 Bottom Aspect Bottom Top Average"
 Bottom Aspect Bottom Top Average"
 area ratio elevation elevation sideslope"
 area ratio elevation elevation sideslope"
 67.676 7.774 417.800 418.800 4.000"
 67.676 7.774 417.800 418.800 4.000"
 Peak outflow 0.057 c.m/sec"
 Peak outflow 0.057 c.m/sec"
 Maximum level 418.400 metre"
 Maximum level 418.400 metre"
 Maximum storage 82.683 c.m"
 Maximum storage 82.683 c.m"
 Centroidal lag 2.022 hours"
 Centroidal lag 2.022 hours"
 0.075 0.107 0.057 0.000 c.m/sec"
 0.075 0.107 0.057 0.000 c.m/sec"
 HYDROGRAPH Combine 34"
 HYDROGRAPH Combine 34"
 6 Combine "
 6 Combine "
 34 Node #"
 34 Node #"
 LEAVING SITE"
 LEAVING SITE"
 Maximum flow 0.057 c.m/sec"
 Maximum flow 0.057 c.m/sec"
 Hydrograph volume 336.259 C.m"
 Hydrograph volume 336.259 C.m"
 0.075 0.107 0.057 0.057"
 0.075 0.107 0.057 0.057"
 HYDROGRAPH Start - New Tributary"
 HYDROGRAPH Start - New Tributary"
 2 Start - New Tributary"
 2 Start - New Tributary"
 0.075 0.000 0.057 0.057"
 0.075 0.000 0.057 0.057"
 CATCHMENT 201"
 CATCHMENT 201"
 1 Triangular SCS"
 1 Triangular SCS"
 1 Equal length"
 1 Equal length"
 2 Horton equation"
 2 Horton equation"
 201 C2O1 - NORTH PORTION OF APARTMENT PARKING LOT"
 201 C2O1 - NORTH PORTION OF APARTMENT PARKING LOT"
 67.800 % Impervious"
67.800 % Impervious"
0.240 Total Area"
0.240 Total Area"
28.000 Flow length"
28.000 Flow length"
2.000 Overland Slope"
2.000 Overland Slope"
0.077 Pervious Area"
0.077 Pervious Area"
28.000 Pervious length"
28.000 Pervious length"
2.000 Pervious slope"
2.000 Pervious slope"
0.163 Impervious Area"
0.163 Impervious Area"
28.000 Impervious length"
28.000 Impervious length"
2.000 Impervious slope"
2.000 Impervious slope"
0.250 Pervious Manning 'n'"
0.250 Pervious Manning 'n'"
25.000 Pervious Max.infiltration"
25.000 Pervious Max.infiltration"
5.000 Pervious Min.infiltration"
5.000 Pervious Min.infiltration"
0.250 Pervious Lag constant (hours)"
0.250 Pervious Lag constant (hours)"
5.000 Pervious Depression storage"
5.000 Pervious Depression storage"
0.015 Impervious Manning 'n'"
0.015 Impervious Manning 'n'"
0.000 Impervious Max.infiltration"
0.000 Impervious Max.infiltration"
0.000 Impervious Min.infiltration"
0.000 Impervious Min.infiltration"
0.050 Impervious Lag constant (hours)"
0.050 Impervious Lag constant (hours)"
1.500 Impervious Depression storage"
1.500 Impervious Depression storage"
0.049 0.000 0.057 0.057 c.m/sec"
0.049 0.000 0.057 0.057 c.m/sec"
Catchment 201 Pervious Impervious Total Area "
Catchment 201 Pervious Impervious Total Area "
Rainfall depth 48.106 48.106 48.106 mm"
Rainfall depth 48.106 48.106 48.106 mm"
Rainfall volume 37.18 78.28 115.45 c.m"
Rainfall volume 37.18 78.28 115.45 c.m"
Rainfall losses 22.183 2.215 8.645 mm"

```
Rainfall losses 22.183 2.215 8.645 mm"
```



```
    6.000 Pervious length"
    10.000 Pervious slope"
    0.067 Impervious Area"
    6.000 Impervious length"
    10.000 Impervious slope"
    0.250 Pervious Manning 'n'"
    25.000 Pervious Max.infiltration"
    5.000 Pervious Min.infiltration"
    0.250 Pervious Lag constant (hours)"
    5.000 Pervious Depression storage"
    0.015 Impervious Manning 'n'"
    0.000 Impervious Max.infiltration"
    0.000 Impervious Min.infiltration"
    0.050 Impervious Lag constant (hours)"
    1.500 Impervious Depression storage"
        0.035 0.079 0.079 0.057 c.m/sec"
        Catchment 301 Pervious Impervious Total Area "
        Surface Area 0.077 0.067 0.144 hectare"
        Time of concentration 2.682 0.485 1.391 minutes"
        Time to Centroid 87.394 86.476 86.854 minutes"
        Rainfall depth 48.106 48.106 48.106 mm"
        Rainfall volume 37.13 32.14 69.27 c.m"
        Rainfall losses 22.622 6.142 mm"
        Runoff depth 25.484 41.964 33.131 mm"
        Runoff volume 19.67 28.04 47.71 C.m"
        Runoff coefficient 
        Maximum flow 
        4 Add Runoff "
                0.035 0.111 0.079 0.057"
            HYDROGRAPH Copy to Outflow"
            8 Copy to Outflow"
                0.035 0.111 0.111 0.057"
            HYDROGRAPH Combine 34"
            6 Combine "
            34 Node #"
                LEAVING SITE"
```


100-Year Storm - Design Conditions

Surface Area 0.077 0.163 0.240 hectare"

```
        418.795 0.1320 190.879"
```

 418.795 0.1320 190.879"
 418.848 0.1960 192.560"
 418.848 0.1960 192.560"
 418.900 0.2805 192.560"
 418.900 0.2805 192.560"
 1. WEIRS"
 1. WEIRS"
 Crest Weir Crest Left Right"
 Crest Weir Crest Left Right"
 elevation coefficie breadth sideslope sideslope"
 elevation coefficie breadth sideslope sideslope"
 418.700 0.900 1.000 3.000 3.000"
 418.700 0.900 1.000 3.000 3.000"
 1. ORIFICES"
 1. ORIFICES"
 Orifice Orifice Orifice Number of"
 Orifice Orifice Orifice Number of"
 invert coefficie diameter orifices"
 invert coefficie diameter orifices"
 417.800 0.630 0.1950 1.000"
 417.800 0.630 0.1950 1.000"
 1.
 1.
 Bottom Aspect Bottom Top Average"
 Bottom Aspect Bottom Top Average"
 area ratio elevation elevation sideslope"
 area ratio elevation elevation sideslope"
 67.676 7.774 417.800 418.800 4.000"
 67.676 7.774 417.800 418.800 4.000"
 Peak outflow 0.147 c.m/sec"
 Peak outflow 0.147 c.m/sec"
 Maximum level 418.841 metre"
 Maximum level 418.841 metre"
 Maximum storage 192.329 c.m"
 Maximum storage 192.329 c.m"
 Centroidal lag 2.234 hours"
 Centroidal lag 2.234 hours"
 0.169 0.213 0.147 0.000 c.m/sec"
 0.169 0.213 0.147 0.000 c.m/sec"
 HYDROGRAPH Combine 34"
 HYDROGRAPH Combine 34"
 6 Combine "
 6 Combine "
 34 Node #"
 34 Node #"
 LEAVING SITE"
 LEAVING SITE"
 Maximum flow 0.147 c.m/sec"
 Maximum flow 0.147 c.m/sec"
 Hydrograph volume 720.501 c.m"
 Hydrograph volume 720.501 c.m"
 0.169 0.213 0.147 0.147"
 0.169 0.213 0.147 0.147"
 HYDROGRAPH Start - New Tributary"
 HYDROGRAPH Start - New Tributary"
 2 Start - New Tributary"
 2 Start - New Tributary"
 0.169 0.000 0.147 0.147"
 0.169 0.000 0.147 0.147"
 CATCHMENT 201"
 CATCHMENT 201"
 1 Triangular SCS"
 1 Triangular SCS"
 1 Equal length"
 1 Equal length"
 2 Horton equation"
 2 Horton equation"
 201 C201 - NORTH PORTION OF APARTMENT PARKING LOT"
 201 C201 - NORTH PORTION OF APARTMENT PARKING LOT"
 67.800 % Impervious"
67.800 % Impervious"
0.240 Total Area"
0.240 Total Area"
28.000 Flow length"
28.000 Flow length"
2.000 Overland Slope"
2.000 Overland Slope"
0.077 Pervious Area"
0.077 Pervious Area"
28.000 Pervious length"
28.000 Pervious length"
2.000 Pervious slope"
2.000 Pervious slope"
0.163 Impervious Area"
0.163 Impervious Area"
28.000 Impervious length"
28.000 Impervious length"
2.000 Impervious slope"
2.000 Impervious slope"
0.250 Pervious Manning 'n'"
0.250 Pervious Manning 'n'"
25.000 Pervious Max.infiltration"
25.000 Pervious Max.infiltration"
5.000 Pervious Min.infiltration"
5.000 Pervious Min.infiltration"
0.250 Pervious Lag constant (hours)"
0.250 Pervious Lag constant (hours)"
5.000 Pervious Depression storage"
5.000 Pervious Depression storage"
0.015 Impervious Manning 'n'"
0.015 Impervious Manning 'n'"
0.000 Impervious Max.infiltration"
0.000 Impervious Max.infiltration"
0.000 Impervious Min.infiltration"
0.000 Impervious Min.infiltration"
0.050 Impervious Lag constant (hours)"
0.050 Impervious Lag constant (hours)"
1.500 Impervious Depression storage"
1.500 Impervious Depression storage"
0.105 0.000 0.147 0.147 c.m/sec"
0.105 0.000 0.147 0.147 c.m/sec"
Catchment 201 Pervious Impervious Total Area "
Catchment 201 Pervious Impervious Total Area "
Time of concentration 8.622 1.577 3.463 minutes"
Time of concentration 8.622 1.577 3.463 minutes"
Time to Centroid 94.482 85.526 87.924 minutes"
Time to Centroid 94.482 85.526 87.924 minutes"
Rainfall depth 93.224 93.224 93.224 mm"
Rainfall depth 93.224 93.224 93.224 mm"
Rainfall volume 72.04 151.69 223.74 c.m"
Rainfall volume 72.04 151.69 223.74 c.m"
Rainfall losses 23.554 2.749 9.448 mm"

```
Rainfall losses 23.554 2.749 9.448 mm"
```


[^0]: 12 Memorial Avenue Elmira, ON N3B 2R2

 423 Woolwich Street Guelph, ON N1H 3X3 Phone: 519-821-2763
 71 Weber Street East Kitchener, ON N2H 1C6
 Phone: 519-742-8371
 660 Riddell Road, Unit 1 Orangeville, ON L9W 5G5
 Phone: 519-940-4110
 R.P. Magahay, B.A. J.E. Buisman, B.Sc., O.L.S. R.M. Mak, B.Sc., O.L.S. J.M. Laws, B.Sc., O.L.S. J.M. Duffy, P.Eng.

