

Functional Servicing and Stormwater Management Design Report for:

465 Garafraxa Street West Township of Centre Wellington (Fergus)

GMBP File: 422144

January 2023

TABLE OF CONTENTS

1.	INT	RODUCTION	1
2.	SIT	E INFORMATION	1
3.	PRC	OPOSED DEVELOPMENT	1
3	3.1	Site Grading	1
3	3.2	Water Supply	2
3	3.3	Sanitary Servicing	2
3	3.4	Storm Servicing	2
4.	STC	DRMWATER MANAGEMENT DESIGN	3
2	4.1	Stormwater Management Criteria	3
2	1.2	Existing Conditions	3
2	4.3	Allowable Release Rates	4
2	1.4	Post-Development Condition Drainage Areas	4
2	1.5	Routing	5
5.	MAI	INTENANCE PLAN	8
6.	SED	DIMENT AND EROSION CONTROL	8
7.	CO	NCLUSIONS	9

APPENDICES

APPENDIX A: GEOTECHNICAL INVESTIGATION (CMT ENGINEERING INC., NOVEMBER 28, 2022) APPENDIX B: STORMWATER MANAGEMENT ANALYSIS APPENDIX C: SANITARY SEWER DESIGN APPENDIX D: STORM SEWER DESIGN

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT DESIGN REPORT 465 GARAFRAXA STREET WEST TOWNSHIP OF CENTRE WELLINGTON (FERGUS) JANUARY 2023 GMBP FILE: 422144

1. INTRODUCTION

This report documents the proposed servicing and stormwater management system design for the proposed development at 465 Garafraxa Street West in the Township of Centre Wellington (Fergus).

The Owner is required to have a Professional Engineer design a stormwater management system and have said Engineer supervise and certify that the stormwater management system was installed in accordance with the approvals given under Section 41 of the Planning Act.

The topographic survey of the site was completed by GM BluePlan Engineering Limited (dated January 30, 2022). The site layout was prepared by Dryden, Smith and Head Planning Consultants Ltd. (dated January 2023).

2. SITE INFORMATION

The 0.42-hectare site is located at 465 Garafraxa Street West in the Township of Centre Wellington (Fergus). The site is bound by Garafraxa Street West to the east and farmland to the north, south and west.

Under existing conditions, runoff generated from the site sheetflows generally from west to east of the roadside ditch on Garafraxa Street West.

At this time, the intent of the Owner is to construct three 3-storey stacked townhouse buildings. The total number of units is proposed to be 32. The site will be serviced with municipal sanitary sewer and water, via an extension of the existing municipal services on Garafraxa Street West from Maiden Lane.

3. PROPOSED DEVELOPMENT

3.1 Site Grading

The site layout and the internal roads are shown on the Site Grading Plan (GM BluePlan Engineering Limited Drawing No. 2). The elevations of the internal road network is controlled by the centerline road elevations of Garafraxa Street West, the building elevations, and the existing property line elevations.

3.2 Water Supply

Water supply for the proposed development will be provided via a future 150mm diameter watermain along Garafraxa Street West, and a 150mm diameter service connection to the from the 150mm watermain on Garafraxa Street West.

Watermain will be installed to a minimum depth of 2.0 meters below finished grade.

Fire protection for the proposed development will be provided by the proposed on-site fire hydrant.

3.3 Sanitary Servicing

Sanitary servicing for the proposed development will be provided via the extension of a 200mm diameter sanitary sewer from the future 200mm diameter sanitary sewer on Garafraxa Street West.

Sanitary sewers (minimum grade of 0.5%) will be installed at a minimum depth of 2.5 metres below finished grade. Sanitary sewer design sheets have been provided in Appendix C.

3.4 Storm Servicing

Under existing conditions, runoff generated from the site sheetflows overland to the existing ditch along the northwesterly boundary of the site.

Storm service for the proposed development will be provided via the installation of storm sewers on site and connection to the future storm sewer on Garafraxa Street West. The on-site storm sewers will convey runoff to the future storm sewers to be installed on Garafraxa Street West.

All storm sewers within the development will be sized (at minimum) to accommodate the 5-year design storm event. Major storm runoff will be conveyed within the limits of the internal road network, ultimately discharging to the Garafraxa Street West right-of-way. Storm sewer design sheets have been provided in Appendix D.

4. STORMWATER MANAGEMENT DESIGN

4.1 Stormwater Management Criteria

The stormwater management criteria for the site are as follows:

- 1. Post-development flows from the site are to be attenuated to pre-development levels.
- 2. Promoting the infiltration of rooftop runoff, if feasible, to achieve a site water balance should be explored.
- 3. Enhanced (80% TSS removal) quality control treatment is required for runoff generated by the site.
- 4. Major storm flows are to be routed overland to an appropriate outlet.

The Fergus Shad Dam Chicago Storm parameters and the total depth of rainfall used for the full range of design storms are as follows:

	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
a =	695.047	1,459.072	2,327.596	3,701.648	5,089.418	6,933.019
b =	6.387	13.690	19.500	25.500	30.000	34.699
C =	0.793	0.850	0.894	0.937	0.967	0.998
r =	0.380	0.380	0.380	0.380	0.380	0.380
Duration (minutes) =	180	180	180	180	180	180
Rainfall Depth (mm) =	33.014	49.792	61.359	75.581	86.737	97.921

Table No. 1: Chicago Rainfall Distribution Parameters

The Horton infiltration method was used in the runoff calculations. The parameters used in MIDUSS are as follows:

Table No. 2: Horton Infiltration Parameters

	Impervious Areas	Pervious Areas
Maximum Infiltration	0.0 mm/hr	75.0 mm/hr
Minimum Infiltration	0.0 mm/hr	12.5 mm/hr
Lag Constant	0.0 hr	0.25 hr
Depression Storage	1.5 mm	5.0 mm

The hydrologic model MIDUSS was used to create runoff hydrographs and to route the flows through the storage structures.

4.2 Existing Conditions

For the existing condition analysis, the site was modelled as one (1) drainage catchment (see Figure No. 1).

Catchment 10 (0.42-hectares, 0% Impervious) represents the entire site under existing conditions. Runoff generated from Catchment 10 discharges to the existing swale at the rear of the property, and ultimately to the existing pond adjacent to Beatty Line North and Black Street.

Table No. 3: Existing Condition Flow Rates

	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
Catchment 10	0.003 m³/s	0.033 m³/s	0.054 m³/s	0.085 m³/s	0.109 m³/s	0.132 m³/s

4.3 Allowable Release Rates

From the Township of Centre Wellington, the post-development flows generated from the site are to be attenuated to the existing condition levels. Therefore, the allowable release rates from the site under post-development conditions are as follows:

Table No. 4: Allowable Release Rates

	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
Catchment 10	0.003 m³/s	0.033 m³/s	0.054 m³/s	0.085 m³/s	0.109 m³/s	0.132 m³/s

4.4 **Post-Development Condition Drainage Areas**

For the post-development condition analysis, the site was modelled as five (5) drainage catchments (see Figure No. 2).

Catchment 100 (0.03-hectares, 100% Impervious) represents the rooftop of Block A. Discharge from Block A is directed to a proposed infiltration gallery.

The on-site infiltration gallery proposed for Catchment 100, having an area of 42m², provides 14m³ of storage. This gallery was designed to infiltrate the 5-year design storm event runoff volume from the rooftop of Block A. Overflow from the on-site infiltration gallery is directed to the proposed on-site storm sewers via a 250mm diameter pipe connected to MH.8.

Catchment 200 (0.03-hectares, 100% Impervious) represents the rooftop of Block B. Discharge from Block B is directed to a proposed infiltration gallery.

Catchment 300 (0.04-hectares, 100% Impervious) represents the rooftop of Block C. Discharge from Block C is directed to a proposed infiltration gallery.

The on-site infiltration gallery proposed for Catchments 200 and 300, having an area of 95m², provides 31.7m³ of storage. This gallery was designed to infiltrate the 5-year design storm event runoff volume from the rooftop of Blocks B and C. Overflow from the on-site infiltration gallery is directed to the proposed on-site storm sewers via a 250mm diameter pipe connected to MH.85

Catchment 400 (0.13-hectares, 0% Impervious) represents the perimeter of the site. Runoff generated from Catchment 400 will continue to discharge to the existing ditch to the northwest of the site via sheetflow overland.

Catchment 500 (0.19-hectares, 95% Impervious) represents the proposed on-site driving and parking areas. Runoff generated from Catchment 500 will discharge to the proposed storm sewers, prior to discharging to the future storm sewers on Garafraxa Street West. Quantity control for runoff generated by Catchment 500 will be provided by a 90mm diameter orifice plate installed in CBMH.6, along with pipe storage and parking lot ponding. The proposed oversized storm sewers pipe will provide approximately 12.1m³ of storage and the proposed parking lot ponding will provide an additional 15.8m³ of storage up to the weir elevation of 415.32.

Quality control treatment for runoff generated by Catchment 500 will be provided via the proposed oil/grit separator structure (Stormceptor EFO4 or approved equivalent).

Stormceptor sizing details can be found in Appendix B.

4.5 Routing

The hydrologic model MIDUSS was used to create the design storm runoff hydrographs and to route the hydrographs. A copy of the final printout of the hydrologic modelling is appended in Appendix "B".

The results of the routing analysis are as follows:

	Available Capacity			Actual Capacity Used			
	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	
Bottom of Stone	0.000	0.0	412.55				
2-Year				0.0001	8.1	413.13	
5-Year				0.002	12.6	413.45	
Top of Stone	0.0002	14.0	413.55				
Invert of Overflow Pipe	0.0002	14.2	413.85				
10-Year				0.001	14.2	413.86	
25-Year				0.004	14.2	413.88	
50-Year				0.006	14.2	413.89	
100-Year				0.009	14.2	413.91	
Obvert of Overflow Pipe	0.0463	14.5	414.10				

 Table No. 5:
 Catchment 100 Infiltration Gallery Stage/Storage/Discharge Capacities

	Ava	ailable Capa	city	Actu	al Capacity L	Jsed			
	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m			
Bottom of Stone	0.000	0.0	411.80						
2-Year				0.0001	17.9	412.37			
5-Year				0.0003	28.6	412.70			
Top of Stone	0.0003	31.7	412.80						
Invert of Overflow Pipe	0.0003	31.7	413.10						
10-Year				0.002	31.7	413.11			
25-Year				0.008	31.8	413.15			
50-Year				0.013	31.8	413.19			
100-Year				0.020	31.9	413.22			
Obvert of Overflow Pipe	0.0465	32.0	413.35						

Table No. 6: Catchment 200 & 300 Infiltration Gallery Stage/Storage/Discharge Capacities

	Available Capacity			Actual Capacity Used			
	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	
Invert of Orifice Plate	0.000	0.0	413.59				
Invert of Pipe	0.002	0.0	413.62				
Obvert of Pipe	0.012	12.1	414.15				
T/G DCB.6	0.020	13.0	415.02				
2-Year				0.021	14.7	415.15	
5-Year				0.022	27.4	415.32	
Weir	0.022	27.9	415.32				
10-Year				0.040	28.4	415.32	
25-Year				0.065	28.7	415.32	
50-Year				0.072	28.8	415.33	
100-Year				0.089	29.1	415.33	
Overflow	0.505	58.4	415.47				

Table No. 7: Catchment 500 Superpipe and Parking Lot Ponding Stage/Storage/Discharge Capacities

In summary, the post-development flow rates from the site are as follows:

Table No. 8: Post-Development Condition Flow Rates

	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
Catchment 100	0.000 m³/s	0.000 m³/s	0.000 m³/s	0.000 m³/s	0.000 m³/s	0.000 m³/s
Catchment 200 & 300	0.000 m³/s	0.000 m³/s	0.000 m³/s	0.000 m³/s	0.000 m³/s	0.000 m³/s
Catchment 400	0.001 m³/s	0.008 m³/s	0.014 m³/s	0.023 m ³ /s	0.029 m ³ /s	0.035 m³/s
Catchment 500 and overflow from Catchments 100, 200 & 300	0.021 m³/s	0.022 m³/s	0.040 m³/s	0.065 m³/s	0.072 m³/s	0.089 m³/s
Total	0.021 m³/s	0.030 m³/s	0.050 m³/s	0.076 m³/s	0.087 m³/s	0.122 m³/s

	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
Post-Development Flow Rate	0.021 m³/s	0.030 m³/s	0.050 m³/s	0.076 m³/s	0.087 m³/s	0.122 m³/s
Allowable Release Rate	0.003 m³/s	0.033 m³/s	0.054 m³/s	0.085 m³/s	0.109 m³/s	0.132 m³/s

Table No. 9: Comparison of Allowable Release Rate and Post-Development Condition Flow Rates

Therefore, under post-development conditions, runoff during the 5 through 100-yar design storm events has been attenuated to less than the allowable release rates.

5. MAINTENANCE PLAN

To ensure that the stormwater management system continues to function as designed and constructed, we recommend that the following inspections and maintenance activities be completed on an annual basis:

- 1. Is there any noticeable damage to the asphalt and grassed swale (i.e. erosion, blockages)? If yes, complete any necessary repairs.
- 2. Is there any indication of a spill (i.e. frothy water, oily sheen)? If yes, investigate, inform the appropriate agencies and complete the necessary clean-up and restoration.
- 3. Inspect all roof drains and associated piping. Remove and dispose of any accumulated sediment, trash/litter, debris (i.e. leaves).
- 4. Inspect the oil/grit structure and complete any necessary maintenance/repair activities as identified by the manufacturer.
- 5. Inspect all catchbasins, and manholes. Remove and dispose of any accumulated sediment, trash/litter, debris (i.e. sediment, garbage, leaves, etc.).
- 6. Inspect all swales and overflow locations. Remove and dispose of any accumulated sediment, trash/litter, debris (i.e. sediment, garbage, leaves. etc.).

Please note that any structures identified during the annual inspection to be worn, missing or damaged are to be repaired or replaced within 48 hours.

6. SEDIMENT AND EROSION CONTROL

A silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. The silt fence will serve to minimize the opportunity for waterborne sediments to be washed on to the adjacent properties.

Inspection and maintenance of all silt fencing will start after installation is complete. The fence will be inspected on a weekly basis during active construction or after a rainfall event of 13 mm or greater. Maintenance will be carried out, within 48 hours, on any part of the facility found to need repair.

Once construction and landscaping has been substantially completed, the silt fence will be removed, any accumulated sediment will be removed and the landscaping will be completed.

Prior to construction, a mud mat will be installed at the entrance/exit location for the site. Similarly, prior to construction silt sacks will be placed in each catchbasin, as outlined in the Erosion and Sediment Control Plan. Once construction and landscaping has been substantially completed, the mud mat, catchbasin silt sacks, and any accumulated sediment therein will be removed.

After construction of the complete development, erosion and sediment transport will be minimal.

7. CONCLUSIONS

In summary, the features of the design for the proposed development at 465 Garafraxa Street West in the Township of Centre Wellington (Fergus) are as follows:

- 1. Water supply for the proposed development will be provided via a future 150mm diameter watermain along Garafraxa Street West, and a 150mm diameter service connection to the from the 150mm watermain on Garafraxa Street West.
- 2. Sanitary servicing for the proposed development will be provided via the extension of a 200mm diameter sanitary sewer from the future 200mm diameter sanitary sewer on Garafraxa Street West.
- 3. Storm service for the proposed development will be provided via the installation of storm sewers on site and connection to the future storm sewer on Garafraxa Street West. All storm sewers within the development have been sized to accommodate the 5-year design storm event.
- 4. The post-devleopment flow rates for the 5 through 100-year design storm events have been attenuated to less than the allowable release rates.
- 5. Major overland flows are routed through the site to Garafraxa Street West, while not exceeding a maximum ponding depth of 0.30m.
- 6. Prior to construction, a silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. A mud mat will be installed at the entrance/exit location for the site. Silt sacks will be placed in each catchbasin, as outlined in the Erosion and Sediment Control Plan. This will minimize the transport of sediment off-site during the construction period.
- 7. Quality control for the site is provided via the proposed oil/grit separator (Stormceptor EFO4 or approved equivalent).

All of which is respectfully submitted.

GM BLUEPLAN ENGINEERING LIMITED

Per:

Patrick Grier, P. Eng.

Encl.

W:/Kitchener/422-2022/422144 - 465 Garafraxa Street West Fergus/Design Phase/Reports - SWM, FSR, Design Brief, etc/422144 FSR and SWM Report - 2023-01-30.docx

STM INV=414.80

APPENDIX A: Geotechnical Investigation (CMT Engineering Inc., November 28, 2022)

GEOTECHNICAL INVESTIGATION

GEOTECH – PROPOSED TOWNHOUSE DEVELOPMENT 465 GARAFRAXA STREET WEST FERGUS, ONTARIO

CMT Project 22-765.R01

Prepared for:

Habitat for Humanity

November 28, 2022

November 28, 2022

22-765.R01

Habitat for Humanity 104 Dawson Road Suite 100B Guelph, Ontario N1H 1A6

Attention: Janey Secnic

Dear Janey:

Re: Geotechnical Investigation Geotech – Proposed Townhouse Development 465 Garafraxa Street West Fergus, Ontario

As requested, CMT Engineering Inc. conducted a geotechnical investigation at the above referenced site, and we are pleased to present the enclosed report.

We trust that this information meets your present requirements, and we thank you for allowing us to undertake this project. Should you have any questions, please do not hesitate to contact our office.

Yours truly,

() Feening

Jake Feeney P. Eng.

ht

	Page
1.0 INTRODUCTION	1
2.0 EXISTING SITE CONDITIONS	1
3.0 FIELD AND LABORATORY PROCEDURES	
4.0 SUBSOIL CONDITIONS	2
4.1. Topsoil	
4.2. Sand and Gravel Fill	
4.3. Silt Fill	
4.4. Silty Sand	
4.5. Sandy Silt/Sandy Silt Till	
4.6. Groundwater	
5.0 DISCUSSION AND RECOMMENDATIONS	4
5.1. Serviceability and Ultimate Limit Pressure	5
5.2. Seismic Site Classification	7
5.3. Soil Design Parameters	7
5.4. Site Preparation	7
5.4.1. Topsoil Stripping/Vegetation Removal	8
5.4.2. Removal/Relocation of Existing Buried Piping	8
5.4.3. Fill Removal	8
5.4.4. Site Grading	9
5.5. Foundation Subgrade Preparation	10
5.6. Slab-on-Grade/Modulus of Subgrade Reaction	11
5.7. Excavations	12
5.8. Construction Dewatering Considerations	13
5.9. Service Pipe Bedding	14
5.10. Perimeter Building Drainage, Foundation Wall Backfill and Trench Backfill	14
5.11. Pavement Design/Drainage	
5.12. Excess Soil Management	
5.12.1. Chemical Testing was NOT Undertaken	
5.12.2 Leachate Testing Requirement	
5.13. Radon	
6.0 SITE INSPECTION	
7.0 LIMITATIONS OF THE INVESTIGATION	
Drawing 1 - Site Location Map	
Drawing 2 - Site Plan Showing Borehole Locations	

TABLE OF CONTENTS

Appendix A - Borehole Logs Appendix B - Grain Size Analyses

1.0 INTRODUCTION

The services of CMT Engineering Inc. (CMT Inc.) were retained by Janey Secnic of Habitat for Humanity to conduct a geotechnical investigation for the proposed new townhouse development to be constructed at 465 Garafraxa Street West, Fergus, Ontario. The location of the site is shown on Drawing 1.

It is understood that the project will involve the construction of three (3) townhouse blocks with associated roadways and parking areas.

The purpose of the geotechnical investigation was to assess the existing soil and groundwater conditions encountered in the boreholes. Included in the assessment are the soil classification and groundwater observations, as well as comments and recommendations regarding geotechnical resistance (bearing capacity); serviceability limit states (anticipated settlement); dewatering considerations; site classification for seismic site response; recommendations for site grading, site servicing, excavations and backfilling; recommendations for slab-on-grade construction; pavement design/drainage; soil design properties; and a summary of the laboratory results.

The recommendations provided in this report are solely based on the information obtained from the boreholes advanced on the subject site.

2.0 EXISTING SITE CONDITIONS

The site of the proposed residential development is located to the Northwest of Garafraxa Street West. The site is bounded by Garafraxa Street West to the Southeast, undeveloped land to the Northeast and Northwest, and agricultural land to the Southwest. The site currently comprises vacant land, with some trees and a walking trail. In general, the site topography is relatively flat with existing ditches throughout the proposed construction area. It is understood that the site is to be serviced by municipal services.

3.0 FIELD AND LABORATORY PROCEDURES

The field investigation was conducted on November 16, 2022 and comprised the advancement of seven (7) boreholes (referenced as Boreholes 1 to 7), utilizing a Geoprobe 7822DT drillrig operated by employees of CMT Drilling Inc. Boreholes 1 to 5 were advanced to depths of approximately 5.18 m (17.00 ft) below the existing ground surface in the area of the proposed townhouses. Boreholes 6 and 7 were advanced to depths of approximately 1.52 m (5.00 ft) below the existing ground surface in the field investigation being carried out, underground service locates were undertaken to ensure that existing utilities would not be damaged, or any personnel injured.

Standard penetration testing and sampling was carried out in Boreholes 1 to 5 using 38 mm inside diameter split spoon sampling equipment and an automatic hammer, in accordance with ASTM D1586 "Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils". SPT soil sampling was generally conducted at 0.76 m (2.5 ft) intervals to 3.05 m (10.00 ft) and every 1.52 m (5.00 ft) thereafter, to borehole termination. Macro core (MC5) direct push sampling was conducted between the SPT soil samples conducted below 3.05 m (10.0 ft) depth and throughout Boreholes 6 and 7. Technical staff from CMT Inc. observed the drilling operation and collected and logged the recovered soil samples. A small portion of each sample was placed in a sealed, marked jar for moisture content determinations.

Representative soil samples from the boreholes at the following depths were submitted to the CMT Inc. laboratory in St. Clements, Ontario for grain size analyses:

- Borehole 3 depth 1.52 m to 2.13 m (5.00 ft to 7.00 ft); and
- Borehole 5 depth 3.05 m to 3.66 m (10.00 ft to 12.00 ft).

The borehole logs are provided in Appendix A and the resulting grain size analyses can be found in Appendix B.

The ground surface elevations of the boreholes were surveyed by CMT Inc. (using laser survey equipment) following the completion of drilling. The ground surface elevation of the existing bell pedestal located on the Southeast side of the site beside Garafraxa Street West was utilized as a temporary benchmark, with an assumed elevation of 100.00 m. As such, the ground surface elevation at the borehole locations ranged from approximately 99.34 m to 100.20 m. The locations of the boreholes are shown on Drawing 2.

4.0 <u>SUBSOIL CONDITIONS</u>

The soils encountered in the boreholes are described briefly below and a more detailed stratigraphic description is provided on the borehole logs in Appendix A. The following paragraphs have been simplified into terms of major soil strata. The soil boundaries indicated have been inferred from non-continuous samples and observations of sampling and drilling resistance and typically represent transitions from one soil type to another rather than exact planes of geological change. Further, the subsurface conditions are anticipated to vary between and beyond the borehole locations.

4.1. <u>Topsoil</u>

Loose, dark brown, silty, organic topsoil in a moist state was encountered at the surface of Boreholes 4 and 7 and buried within the sand and gravel fill soil at Boreholes 1 and 2. The thickness of the topsoil was observed to range from about 300 mm to 600 mm (average 450 m) at the borehole locations, however the thickness of the topsoil is anticipated to vary throughout the site. Materials noted as topsoil in this report were classified based on visual and textural evidence. Testing of organic content or for other nutrients was not carried out.

4.2. <u>Sand and Gravel Fill</u>

Brown sand and gravel fill was encountered at the surface of Boreholes 1 to 3 and 6. Black buried topsoil was observed within the sand and gravel fill at Boreholes 1 and 2. The sand and gravel fill were compact with SPT N-values ranging from about 14 to 19 blows per 0.30 m (average 17 blows per 0.30 m). The sand and gravel fill soils are considered to be moist, with moisture contents ranging from about 7.6% to 10.6% (average 9.4%).

4.3. <u>Silt Fill</u>

Brown silt fill with trace gravel was encountered at the surface of Borehole 4. Black staining was observed within the silt fill. The silt fill was considered to be firm with a SPT N-value of about 4 blows per 0.30 m. The silt fill was considered to be moist, with a moisture content of about 11.8%.

4.4. <u>Silty Sand</u>

Brown silty sand was encountered underlying the sand and gravel fill at Borehole 1, the sandy silt at Borehole 2, the silt fill at Borehole 4 and the topsoil at Borehole 5 and 7. The silty sand was observed to extend to the termination depth of Borehole 7. The silty sand was considered to be loose to compact with SPT N-values ranging from about 9 to 29 blows per 0.30 m (average 18 blows per 0.30 m). The silty sand soils are considered to be moist, with moisture contents ranging from about 5.2% to 14.3% (average 9.7%).

4.5. <u>Sandy Silt/Sandy Silt Till</u>

Brown to grey sandy silt/sandy silt till with some clay and trace gravel were encountered underlying the silty sand at Boreholes 1, 2, 4 and 5 and underlying the sand and gravel fill at Boreholes 2, 3 and 6. The sandy silt/sandy silt till was observed to extend to the termination depths of Boreholes 1 to 6. The sandy silt/sandy silt till was considered to be stiff to hard with SPT N-values ranging from about 10 to greater than 100 blows per 0.30 m (average 43 blows per 0.30 m). The sandy silt/sandy silt till soils are considered to be moist, with moisture contents ranging from about 3.1% to 15.9% (average 9.3%).

4.6. <u>Groundwater</u>

No accumulated groundwater or seepage was observed upon completion of the boreholes. It should be noted that the stiff to hard sandy silt till soils encountered in the boreholes have the potential to created perched groundwater conditions in any overlying soils. Groundwater conditions (particularly perched water) are generally dependent on the weather conditions, amount of precipitation, site grading and other measures in place to control surface water drainage, as well as the time of year, and can fluctuate significantly in elevation over time.

Recommendations with respect to dewatering conditions are provided in Section 5.8 of this report, and recommendations regarding waterproofing and drainage are presented in Section 5.10.

5.0 DISCUSSION AND RECOMMENDATIONS

This section of the report provides CMT Inc.'s interpretation of the factual geotechnical data obtained during the investigation and is intended for the guidance of the owner and design engineer. Where comments are made on construction, they are provided only to highlight those aspects which could affect the design of the project. Contractors bidding on or undertaking the work should make their own independent interpretation of the factual subsurface information provided as it affects their proposed construction means and methods, equipment selection, scheduling, pricing, and the like.

Utilizing the information gathered during the geotechnical investigation and assuming that the borehole information is representative of the subsoil conditions throughout the site, the following comments and recommendations are provided.

5.1. <u>Serviceability and Ultimate Limit Pressure</u>

Based on the information obtained from the boreholes, the following table provides a summary of the estimated geotechnical reaction at the Serviceability Limit State (SLS) and the factored geotechnical resistance at the Ultimate Limit State (ULS) at the various elevations, including soil type:

BH No.	Ground Surface Elevation (m)	SLS kPa (psf)	ULS kPa (psf)	Estimated Highest Founding Elevations (m)	Depth Below Existing Grade to Founding Elevation (m)	Soil Type
		150 (3,000)	225 (4,500)	99.13 to 97.15	1.07	Sand and
BH1	100.20	200 (4,000)	300 (6,000)	97.15 to 95.02 (termination)	3.05	Gravel Fill/Silty Sand/Sandy Silt Till
		150 (3,000)	225 (4,500)	98.86 to 97.54	0.97	Sandy
BH2	99.83	200 (4,000)	300 (6,000)	97.54 to 94.65 (termination)	2.29	Silt/Silty Sand/Sandy Silt Till
		150 (3,000)	225 (4,500)	98.58 to 97.05	0.76	
BH3	99.34	200 (4,000)	300 (6,000)	97.05 to 94.16 (termination)	2.29	Sandy Silt Till
		100 (2,000)	150 (3,000)	98.64 to 97.11	0.76	Silty
BH4	99.40	150 (3,000)	225 (4,500)	97.11 to 96.35	2.29	Silly Sand/Sandy
DIIT	99.40	200 (4,000)	300 (6,000)	96.35 to 94.22 (termination)	3.05	Silt Till
		150 (3,000)	225 (4,500)	99.57 to 97.12	0.60	Silty
BH5	100.17	200 (4,000)	300 (6,000)	97.12 to 94.99 (termination)	3.05	Sand/Sandy Silt Till

Based on the bearing capacities and elevations provided in the table above, soils suitable to support conventional foundations designed with an estimated bearing capacity of 150 kPa (3,000 psf) at SLS and 225 kPa (4,500 psf) at ULS were typically encountered in the shallower native soils encountered underlying the fill soils in the boreholes at depths ranging from 0.6 m to 2.29 m below the existing ground surface.

Based on the bearing capacities and elevations provided in the table above, soils suitable to support conventional foundations designed with an estimated bearing capacity of 200 kPa (4,000 psf) at SLS and 300 kPa (6,000 psf) at ULS were typically encountered in the deeper native till soils encountered in the boreholes at depths ranging from 2.29 m to 3.05 m below the existing ground surface.

Should footings be designed to be constructed at elevations higher than the elevations indicated in the table above, then structural fill will be required in order to achieve the design grades for the proposed foundations. The serviceability limit pressure for granular structural fill placed and compacted in accordance with Section 5.4.4 of this report is estimated to be at least 150 kPa (3,000 psf). Alternatively, lean mix concrete fill could be used for this application.

Footings could also be stepped down to bear on approved undisturbed founding soils. Due to the presence of fill soils on the subject site, it is imperative that the founding soils be assessed at the time of construction by qualified geotechnical personnel in order to confirm their founding suitability.

Footings founded on soil may be placed at a higher elevation relative to another footing provided that the slope between the outside face of the footings is separated by a minimum slope of 10 horizontal to 7 vertical (10H:7V) with an imaginary line projected from the underside of the footings.

It is recommended that the structural foundation drawings be cross-referenced with site servicing drawings to ensure that service pipes do not conflict with building foundations (including the zone of influence down and away from the footings).

With respect to the Serviceability Limit State (SLS), the total and differential footing settlements are not expected to exceed the generally acceptable limits of 25 mm (1") and 19 mm (3/4") respectively.

All exterior footings must be provided with a minimum of 1.2 m of soil cover or equivalent thermal insulation in order to provide protection against frost action.

CMT Inc. would be pleased to review design drawings when they become available and provide further recommendations with respect to bearing and foundation elevations.

5.2. <u>Seismic Site Classification</u>

The site classification for seismic response in Table 4.1.8.4 of the 2012 Ontario Building Code relates to the average properties of the upper 30.0 m of strata. The information obtained in the geotechnical field investigation was gathered from the upper 5.18 m of strata. Based on the information gathered in the geotechnical field investigation, the site classification for seismic site response would be considered Site Class D (stiff soils) for structures founded on the native soils or structural fill at the recommended founding elevations provided in Section 5.1 of this report. The structural engineer responsible for the design of the structure should review the earthquake loads and effects.

5.3. <u>Soil Design Parameters</u>

The following table provides estimated soil design parameters for imported granular fill, as well as the existing native soils encountered on-site. It should be noted that earth pressure coefficients (Ka, Kp, Ko) provided are for flat ground surface conditions and will differ for areas with slopes or embankments.

The estimated soil design parameters can be utilized for the design of perimeter shoring, foundations and retaining walls, as required.

Soil Type	Soil Density (kg/m³)	Friction Angle (Degree)	Coefficient of Active Pressure (Ka)	Coefficient of Passive Pressure (K _p)	Coefficient of At-Rest Pressure (K ₀)	Coefficient of Friction (µ)	Cohesion (Undrained) (kPa)
Imported Granular 'A'/ Granular 'B' (OPSS 1010)	2,100	34°	0.28	3.54	0.44	0.45	0
Silty Sand	1,800	32°	0.31	3.25	0.47	0.41	0
Sandy Silt Till	1,850	30°	0.33	3.00	0.50	0.38	0
Sand and Gravel	1,900	34°	0.28	3.54	0.44	0.45	0

5.4. <u>Site Preparation</u>

The site preparation for the proposed new townhouses is anticipated to include the removal of topsoil and vegetation, the subexcavation of any unsuitable fill and any native soils deemed not capable of supporting the design bearing capacity, removal, or relocation of any existing services, followed by the placement of structural fill (as required) and site grading to achieve proposed grades.

5.4.1. <u>Topsoil Stripping/Vegetation Removal</u>

All topsoil (including buried topsoil) must be removed from within the proposed building, parking lot and driveway areas to expose approved competent subgrade soils. The topsoil may be used in landscaped areas where some settlement can be tolerated; otherwise, it should be properly disposed of off-site.

All vegetation and trees (including tree root structures as well as any loose soils that are typically associated with root structures) must be removed from within the proposed building, parking lot and driveway areas to expose approved competent subgrade soils.

The volume of topsoil removed during the stripping process can be influenced by the equipment utilized for the stripping process as well as the moisture conditions at the time of stripping.

5.4.2. <u>Removal/Relocation of Existing Buried Piping</u>

Any existing underground services (if present) that may be located within the proposed building areas should be removed/relocated. If left in place, the location of existing services must be reviewed to ensure that they do not conflict with proposed foundation locations. This includes any existing subdrains that may be present. Any piping that is left in place that is no longer active must be completely sealed with watertight mechanical covers, concrete, or grout at termination points to prevent the migration of soils into pipe voids, which may result in potential settlement. All existing trench backfill material associated with any underground services must be subexcavated and the subsequent excavation must be backfilled with approved soils placed in accordance with Section 5.4.4 of this report.

5.4.3. Fill Removal

Any existing fill (including any existing trench backfill), as well as any native soils that have inadequate bearing capacity or have been disturbed by construction processes and is deemed unsuitable to support foundations or slab-on-grades, must be subexcavated from within the proposed building areas, exterior entranceways, perimeter sidewalks, and perimeter concrete slab areas to expose approved competent subgrade soils. It would also be sound construction practice to subexcavate all existing unsuitable fill from the paved parking areas; however, this may not be cost-effective. At a minimum, thorough inspection will be required at the time of construction to assess the existing fill to ensure there is no buried topsoil or other deleterious materials within the subgrade soils. Remedial action may also be required to further consolidate any existing fill if it is decided to leave it in place. If any existing fill is left in place, provisions for the alterations to the design of the pavement structure should be included in the tender documents. Review of the subgrade and potential changes to the design of the pavement structure, as required, will be addressed at the time of construction.

Prior to reusing excavated material on-site as potential bulk fill, thorough field inspection and approval by qualified geotechnical personnel would be required to ensure that existing fill materials are not comprised of organics, topsoil, or other deleterious materials.

5.4.4. Site Grading

Following removal of the debris as well as the subexcavation of any fill or native soils deemed unsuitable of supporting the design bearing capacity, the exposed subgrade soils must be proof-rolled, and any soft or unstable areas must be subexcavated and replaced with approved fill materials.

Any fill materials required to achieve the design grades should be placed according to the following procedures:

- Prior to placement of any structural fill or bulk fill, the subgrade for the proposed buildings and parking lot must be prepared large enough to accommodate a 1:1 slope commencing a distance of 1.0 m beyond the outside edge of the proposed foundation and pavement edge (where feasible) to the approved competent founding soils;
- Soils approved for use as structural fill must be placed in loose lifts not exceeding 0.3 m (12") in depth for granular soils (recommended fill material) and 0.2 m (8") in depth for silts and clays (not recommended for this application), or the capacity of the compactor (whichever is less);
- Granular fill materials (OPSS 1010 Type III Granular 'B' recommended for this application) can be compacted utilizing adequate heavy vibratory smooth drum or padfoot compaction equipment;
- Fine-grained silt and clay soils (not recommended) must be compacted utilizing adequate heavy padfoot vibratory compaction equipment;
- Approved fill materials must be at suitable moisture contents to achieve the specified compaction. Soil moisture will also be dependent on weather conditions at the time of construction. Granular soils may require the addition of water in order to achieve the specified compaction;

- Approved structural fill materials that will support structures (including foundations, interior slab-on-grades, sidewalks and large expansive exterior slabs) must be compacted to 100% standard Proctor maximum dry density (SPMDD);
- Approved bulk fill (foundation wall backfill, bulk fill under slab-on-grades that will not support footings or heavy point loading) must be compacted to a minimum 98% SPMDD. It would be expected that the native soils would be suitable for use as bulk fill; however, depending on the time of year and weather conditions when construction takes place, soils excavated at depth may require air-drying in order to achieve the specified density;
- Granular 'B' subbase and Granular 'A' base materials for the paved parking areas must be compacted to 100% SPMDD.

Any wet soils encountered in the boreholes will require significant air-drying along with working of the soils in order to achieve the specified compaction. Utilizing the existing soils during site grading may be more achievable if work is completed during the generally drier summer months. It should be noted, however, that due to the nature of some of the soils, during hot dry weather, the addition of water might be required in order to achieve the specified compaction. Reuse of excavated soils on-site will be subject to approval from qualified geotechnical personnel.

5.5. <u>Foundation Subgrade Preparation</u>

The native soils encountered in the boreholes are sensitive to changes in moisture content and can become loose/soft if the soils are subjected to additional water or precipitation, as well as severe drying conditions. The native subgrade soils could also be easily disturbed if traveled on during construction. Once they become disturbed, they are no longer considered adequate for the support of shallow foundations.

To ensure and protect the integrity of the founding soils during construction operations, the following is recommended:

• Should the native soils at the design founding elevation in the proposed building envelope comprise wet or saturated soils, then a granular drainage layer, constructed in accordance with Section 9.14.4 of the current Ontario Building Code (OBC) may be required. Alternatively, a lean mix concrete mud mat may be poured overlying the subgrade soils to provide a stable base;

- During construction, the subgrade should be sloped to a sump (as required) located outside the building footprints (if feasible) in the excavation to promote surface drainage of rainwater or seepage and the collected water should be pumped out of the excavation. It is critical that all water be controlled (not allowed to pond) and that the subgrade and foundation preparation commence in dry conditions;
- Construction equipment travel and foot traffic on the founding soils should be minimized;
- If construction is to be undertaken during subzero weather conditions, the founding native soils and any potential fill materials must be maintained above freezing;
- Prior to placing concrete for the footings, the footing area must be cleaned of all disturbed or caved materials;
- The foundation formwork and concrete should be installed as soon as practical following the excavation, inspection, and approval of the founding soils. The longer that the excavated soils remain open to weather conditions and groundwater seepage, the greater the potential for construction problems to occur;
- If it is expected that the founding soils will be left open to exposure for an extended period of time, it is recommended that a 75 mm concrete mud slab be placed in order to protect the structural integrity of the founding soils.

Due to the variability of the native soils encountered in the boreholes, all foundation excavations must be reviewed by qualified personnel to confirm the suitability of the founding fill soils prior to foundation placement.

5.6. <u>Slab-on-Grade/Modulus of Subgrade Reaction</u>

Prior to the placement of the granular base for any slab-on-grades, the subgrade soils must be proof-rolled. Any soft or weak zones, as well as the unsuitable fill in the subgrade, should be subexcavated and backfilled with approved fill materials (see Sections 5.4.4 and 5.10 of this report).

Soil Type	Estimated Modulus of Subgrade Reaction (k)		
Imported Sand and Gravel (OPSS 1010)	81,000 kN/m ³ (300 lb/in ³)		
Sandy Silt/Sandy Silt Till	61,200 kN/m ³ (225 lb/in ³)		
Silty Sand	61,200 kN/m ³ (225 lb/in ³)		
Sand and Gravel	68,000 kN/m ³ (250 lb/in ³)		

The following table provides the estimated modulus of subgrade reaction (k) for imported granular fill, as well as the native soils encountered on-site:

In dry conditions, floor slabs can be founded on a minimum thickness of 150 mm (6") of Granular 'A' (OPSS 1010) and compacted to 100% SPMDD. If wet to saturated conditions are encountered during the excavation of the site, it would be recommended that for any basement floor slabs, 150 mm (6") of 19 mm clear crushed stone (OPSS 1004) should be used instead of Granular 'A'. Utilizing clear crushed stone for the slab-on-grade base can assist in providing a moisture barrier by reducing the potential for capillary rise of moisture from the subgrade soils. Compactive effort is required to consolidate the clear stone. The 19 mm clear crushed stone should meet the physical property and gradation requirements of OPSS 1004.

It is recommended that areas of extensive exterior slab-on-grade (sidewalks and accessibility ramps) be constructed with a Granular 'B' subbase (450 mm) and a Granular 'A' base (150 mm), as well as incorporating subdrains, to promote rapid drainage and reduce the effects of frost heaving. This is particularly critical at barrier-free access points. Alternatively, structural frost slabs could be designed and constructed, or sufficient thermal insulation could be provided, at all door entrances and areas of barrier-free access.

5.7. <u>Excavations</u>

All excavations must be carried out in accordance with Ontario Regulation 213/91 (Reg 213/91) of the Occupational Health and Safety Act and Regulations for Construction Projects.

Type 2 Soils - In general, the native sandy silt till soils encountered in the boreholes in a drained state (not saturated), would be classified as Type 2 soils under Reg 213/91. The Type 2 soils must be sloped from within 1.2 m of the bottom of the excavation having a minimum gradient of 1 horizontal to 1 vertical. Soils underlain by Type 3 or 4 soils that are exposed in the excavation must be treated accordingly as Type 3 or 4 soils (see below). All saturated soils encountered must be treated as Type 4 soils, as described below.

Type 3 Soils - In general, the silty sand/silty sand and any existing fill materials (including backfill of existing foundations and services) in a drained state (not saturated), would be classified as Type 3 soils under Reg 213/91. The Type 3 soils must be sloped from the bottom of the excavation at a minimum gradient of 1 horizontal to 1 vertical. Soils underlain by Type 4 soils that are exposed in the excavation must be treated accordingly as Type 4 soils (see below). All saturated soils encountered must be treated as Type 4 soils, as described below.

<u>**Type 4 Soils</u>** - In general, any wet to saturated soils would be classified as Type 4 soils under Reg 213/91. Type 4 soils must be sloped from the bottom of the excavation at a minimum gradient of 3 horizontal to 1 vertical.</u>

If it is not practical to excavate according to the above requirements, then a trench support system (designed in accordance with the Ontario Health and Safety Act Regulations) may be utilized. When using a temporary trench support system consisting of trench boxes to reduce the lateral extent of the excavations, it should be noted that the support system is intended primarily to protect workers as opposed to controlling lateral soil movement. Any voids between the excavation walls and the support system should be immediately filled to reduce the potential for loss of ground and to provide support to existing adjacent utilities and structures, and it is recommended that the excavation be carried out in short sections, with the support system installed immediately upon excavation completion.

5.8. <u>Construction Dewatering Considerations</u>

Groundwater conditions (particularly perched water) are generally dependent on the amount of precipitation, control of surface water, as well as the time of year, and can fluctuate significantly in elevation and volume. As such, provisions for site dewatering should be part of the site development and construction process.

Seepage control requirements during construction will depend upon the area of work on the site, the depth of the excavations, the time of year, the amount of precipitation and the control of surface water. As required, seepage should generally be adequately controlled using conventional construction dewatering techniques such as pumping from sump pits. However, if heavy seepage occurs (particularly in the saturated soil deposits), it may be necessary to increase the number of pumps during construction.

Dewatering should be performed in accordance with OPSS 517 and the control of water must be in accordance with OPSS 518. It is the responsibility of the contractor to propose a suitable dewatering system based on the groundwater elevation at the time of construction. Collected water should discharge a sufficient distance away from the excavation to prevent re-entry. Sediment control measures must be installed at the discharge point of the dewatering system to avoid any potential adverse impacts on the environment.

5.9. <u>Service Pipe Bedding</u>

The native soils encountered in the geotechnical investigation are generally considered suitable for indirect support of the site service pipes. Should instability due to saturated soil conditions be encountered, it may be necessary to increase the thickness of the granular base and utilize 19 mm clear stone to create an adequate supporting base for the service pipes and/or manholes. Pipe embedment, cover and backfill for both flexible and rigid pipes should be in accordance with all current and applicable OPSD, OPSS and OBC standards and guidelines and as follows:

Flexible Pipes – The pipe bedding should be shaped to receive the bottom of the pipe. If necessary, pipe culvert frost treatment should be undertaken in accordance with OPSD-803.031. The trench excavations should be symmetrical with respect to the centreline of the pipe. The granular material placed under the haunches of the pipe must be compacted to 100% SPMDD prior to the continued placement and compaction of the embedment material. The homogeneous granular material used for embedment should be placed and compacted uniformly around the pipe. Should wet conditions be encountered at the base of the trench, then the pipe bedding should consist of 19 mm clear stone (meeting OPS Specifications) wrapped completely in a geotextile fabric such as Terrafix 270 or equivalent.

<u>Rigid Pipes</u> - In general, the pipe installation recommendations for rigid pipes are the same as those for flexible pipes, except that the minimum bedding depth below a rigid pipe should be 0.15D (where D is the pipe diameter). In no case should this dimension be less than 150 mm or greater than 300 mm.

Any service pipes that are not provided with sufficient frost coverage must be protected with the necessary equivalent thermal insulation. The general contractor is responsible to protect existing and new service piping from damage by heavy equipment.

5.10. Perimeter Building Drainage, Foundation Wall Backfill and Trench Backfill

In order to assist in maintaining a dry building with respect to surface water seepage, it is recommended that exterior grades around the building be sloped down and away at a 2% gradient or more, for a distance of at least 1.5 m. Any surface discharge rainwater leaders must be constructed with solid piping that discharges with positive drainage at least 1.5 m away from the building foundation and/or beyond sidewalks to a drainage swale or appropriate storm drainage system.

In order to reduce the effects of surficial frost heave in areas that will be hard surfaced, it is recommended that the exterior foundation backfill consist of free-draining granular material such as approved on-site sand or sand and gravel or imported Granular 'B' Type I or Type III (OPSS 1010), with a maximum aggregate size not exceeding 100 mm, and that it extend a minimum lateral distance of 600 mm out from the foundation walls and/or beyond perimeter sidewalks and entranceway slabs. It is critical that particles greater than 100 mm in diameter are not in contact with the foundation wall to prevent point loading and overstressing. The backfill material used against the foundation walls must be placed so that the allowable lateral capacities of the foundation walls are not exceeded. Where only one side of a foundation wall will be backfilled, and the height of the wall is such that lateral support is required, or where the concrete strength has not been achieved, the wall must be braced or laterally supported prior to backfilling. In situations where both sides of the wall are backfilled, the backfill should be placed in equal lifts, not exceeding 200 mm differential on each side during backfill operations and the backfill should be compacted to a minimum of 98% SPMDD.

Foundations constructed within or below the any zone of wet soils may be subject to flooding in the event of a power failure or equipment malfunction. Therefore, it would be recommended that foundations be constructed above any saturated zones. If this is not feasible, it is recommended that good quality sump pumps be utilized and that, at a minimum, the systems be equipped with a battery backup (in the event of a power outage) preferably with a separate functioning sump pump(s). Groundwater elevations (perched and regional water tables) are dependent on weather and seasonal conditions and should be expected to fluctuate. The construction of foundations, slabs-on-grade, and deep structures such as sump pits within or below zones of saturation will require design of site-specific waterproofing and dewatering systems constructed in accordance with the 2012 OBC.

If the proposed townhouses are to have basements, an exterior perimeter drainage system comprising perforated drainage pipe with a factory installed filter sock, bedded in 19 mm clear crushed stone, and wrapped in a geotextile filter fabric such as Terrafix 270R (or equivalent), must be installed at an elevation that is below the proposed basement slab-on-grade elevation and provided with positive drainage into a sump pit or pits. The portion of the piping that connects the exterior drainage system into the sump pit must comprise solid piping to prevent exterior water from being introduced into the interior subslab stone. It may be prudent to install perforated drainage pipe in the interior basement as well to provide an outlet for any water that may collect in the subslab stone. It is also recommended that a capped cleanout port(s) be extended up to the ground surface elevation to provide future access (if required). The rainwater leaders must not be connected to the perimeter drainage system.

The native soils, as well as approved fill materials (non-organic) are generally considered suitable for reuse as trench backfill and bulk fill in the parking lot; however, any wet soils encountered may require air-drying in order to achieve the specified compaction. Air-drying cannot typically be achieved during winter construction; therefore, depending on the time of year that construction takes place, it may be more feasible to utilize an imported granular fill for this project.

The existing fill soils are generally considered suitable for reuse as trench backfill and bulk fill in the parking lot areas.

Backfilling operations should be carried out with the following minimum requirements:

- Adequate heavy smooth drum or padfoot vibratory compaction equipment should be used for the compaction and to break down any large blocky pieces of soil;
- Loose lift thicknesses should not exceed 0.3 m (12") for granular soils or 0.2 m (8") for silt soils or the capacity of the compactor (whichever is less);
- The soils must be at suitable moisture contents to achieve compaction to a minimum 98% SPMDD in non-structural bulk fill areas. Service trenches excavated within the zone of influence of footings for structures must be compacted to a minimum of 100% SPMDD;
- It is recommended that inspection and testing be carried out during construction to confirm backfill quality, thickness and to ensure that compaction requirements are achieved;
- Service trench backfill materials may consist of approved excavated soils with no particles greater than 100 mm and no topsoil or other deleterious materials;
- If construction operations are undertaken in the winter, strict consideration should be given to the condition of the backfill material to make certain that frozen material is not used.

5.11. <u>Pavement Design/Drainage</u>

Any soils containing organics or other deleterious material must be stripped/subexcavated from within the parking area. It is recommended to either subexcavate any existing loose subgrade materials or provide further consolidation with vibratory compaction equipment in order to prepare a proper, stable subgrade. Prior to placement of the new granular base, the subgrade soils must be proof-rolled, and any soft or unstable areas should be subexcavated and replaced with suitable drier materials. The subgrade should be graded smooth (free of depressions) and properly crowned to ensure positive drainage, with a minimum grade of 3% toward the drainage outlet or curb line. When service pipes are installed, pipe bedding and backfilling should be undertaken as indicated in Sections 5.9 and 5.10 of this report.

Rapid drainage of the pavement structure is critical to ensure long-term performance. The requirement for subdrains will be dependent on the composition of the prepared parking subgrade soils. Based on the information from the boreholes it is expected that the subgrade will comprise fine-grained, frost-susceptible soils. As such, it is recommended to install subdrains, provided gravity drainage to a suitable outlet can be provided. It is recommended to install minimum 100 mm diameter perforated subdrains to collect and redirect water beneath the pavement surface. Subdrains should be designed and installed in accordance with OPSS 405 and OPSD 216.021. If Granular 'A' bedding (OPSS 1010) is utilized, the subdrains should be equipped with a factory installed filter sock. If 19 mm clear stone (OPSS 1004) is utilized as bedding for the subdrain, then the bedding must be wrapped completely with geotextile filter fabric such as Terrafix 270R (or equivalent) and a factory installed filter sock is not required. Installation of rigid subdrains allows for better grade control and less potential for damage during installation; however, it would be expected that there would be higher cost implications associated with the installation of rigid subdrains over flexible subdrains. Positive drainage through grade control of subdrains is critical, as improperly installed subdrains can turn drainage systems into reservoirs, which can fuel frost action. The subdrains will hasten the removal of water, thereby reducing the risk and effects of frost heaving and load transfer in saturated conditions. It is suggested that, at a minimum, subdrains be installed along the edge of the roadway pavement to prevent water from entering the subbase. The subdrains should be installed in a 0.3 m (1.0 ft) by 0.3 m (1.0 ft) trench in the subgrade and bedded approximately 50 mm (2") above the bottom of the trench. The subgrade must be prepared with positive drainage to the subdrains and the subdrains must be installed with positive drainage into a catch basin structure or other suitable outlet.

The native subgrade soils are sensitive to change in moisture content and can become loose or soft if the soils are subject to inclement weather and seepage or severe drying. Furthermore, the subgrade soils could be easily disturbed if traveled on during construction. As such, where this material will be exposed, it is recommended that the granular subbase be placed immediately upon completion of the subgrade preparation to protect the integrity of the subgrade soils. Should wet to saturated conditions be encountered during construction, site assessments may be required to determine what options can be undertaken to construct a modified pavement base. These options may include subexcavation of wet soils and increasing the thickness of the granular base, the use of reinforcing geotextiles, or a combination of both.

It is expected that the parking lot will be subject to mostly light traffic (personal vehicles) as well as some heavy traffic (delivery trucks, maintenance, and emergency vehicles).

Material	Recommended Thickness For New Pavement				
	Light Duty	Heavy Duty			
Asphaltic Concrete	HL3 - 40 mm (1.5") HL4 or HL8 - 50 mm (2.0")	HL3 - 50 mm (2.0") HL4 or HL8 - 60 mm (2.5")			
Granular 'A' Base (OPSS 1010)	150 mm (6.0")	150 mm (6.0")			
Granular 'B' Subbase (OPSS 1010)	400 mm (16.0")	450 mm (18.0")			

Based on the anticipated loading, the following pavement design is provided:

Frost tapers must be constructed at any changes from light traffic to heavy traffic areas. If heavy traffic routes are not delineated by barriers or if it is anticipated that heavy equipment (loader and dump trucks) will be utilized for snow removal, it would be recommended that the heavy traffic pavement structure be utilized throughout.

Construction joints in the surface asphalt must be offset a minimum of 150 mm to 300 mm (6" to 12") from construction joints in the binder asphalt so that longitudinal joints do not coincide.

Where new asphalt is joined into existing asphalt, it is recommended that the existing asphalt be sawcut in a straight line prior to being milled to a depth of 40 mm and a width of 150 mm as per OPSD 509.010. It is recommended that a tackcoat in conformance with OPSS 308 be applied to the edge and surface of all milled asphalt prior to placement of new asphalt.

The granular base and subbase materials must conform to the physical property and gradation requirements of OPSS 1010 and must be compacted to 100% SPMDD. Asphaltic concrete should be supplied, placed and compacted to a minimum 92.0% Marshall maximum relative density, in accordance with OPSS 1150 and OPSS 310.

The pavement should be designed to ensure that water will not pond on the pavement surface. If the surface asphalt is not placed within a reasonable time following placement of the binder asphalt, it is recommended that the catch basin lids are set at a lower elevation or apertures provided to allow surface water to drain into the catch basins and not accumulate around the catch basins. The strength of the pavement structure relies on all of the components to be in place in order to provide the design strength; therefore, it is strongly recommended that the surface asphalt be placed shortly after placement of the binder asphalt so as to avoid undue stress on the binder asphalt by not having the complete pavement structure in place.

It should be noted that, currently, asphalt mixes tend to be more flexible and, as such, there is a tendency for damage to occur from vehicles turning their steering wheels or applying excessive brake pressure. The damage can occur from both passenger vehicles as well as large vehicles. The condition is further intensified during hot weather. In high traffic areas, it is recommended that rigid Portland cement pavement be considered.

5.12. <u>Excess Soil Management</u>

5.12.1. Chemical Testing was NOT Undertaken

Generally, if surplus soils are to be exported off-site, it will be necessary to perform chemical analysis of the soils. Chemical analysis was **not** undertaken as part of this geotechnical investigation. Should chemical analysis tests be required, the required tests vary and will be dependent on the disposal site utilized by the general contractor.

5.12.2 Leachate Testing Requirement

If soils are transported off-site, additional chemical testing may be required. The extent of the leachate testing will be determined by the results of the initial chemical testing as well as the requirements of the disposal site.

The chemical analysis results would be compared to the site condition standards of Ontario Regulation 406/19. Typically, the results are compared to; *T1-Leachate Screening Levels – Res/Park/Inst/Ind/Com/Commu Property Use; T3.1-Leachate Screening Levels – Ind/Com/Commu/Property Use.*

When transporting soils off-site, the following is recommended:

• All chemical analyses and environmental assessment reports must be fully disclosed to the receiving site owners/authorities, whom must agree to receive the material;
- An environmental consultant must confirm the land use at the receiving site is compatible to receive the material;
- An environmental consultant must monitor the transportation and placement of the materials to ensure that the material is placed appropriately at the pre-approved site;
- The excess materials may not be transported to a site that has previously had a Record of Site Condition (RSC) filed, unless the material meets the criteria outlined in the RSC.

It should be noted that landfill sites will generally only accept laboratory test results that have been completed within 30 days of exporting. Therefore, it is recommended that provisions for chemical analysis be included in the tender documents. It should also be noted that the laboratory testing generally takes five (5) working days to process with a regular turnaround time.

5.13. <u>Radon</u>

According to information provided by Health Canada, radon is a radioactive gas that is naturally formed through the breakdown of uranium in soil, rock, and water. When radon escapes the earth in the outdoors, it mixes with fresh air, resulting in concentrations that are too low to be of concern. However, when radon enters an enclosed space, such as a building, high concentration of radon can accumulate and become a health concern. Health Canada indicates that most buildings and homes have some level of radon in them. Unfortunately, it is not possible to predict before construction whether or not a new building will have high radon levels as radon can only be detected by radon measurement devices, which would be installed in a building, post construction. Section 9.13.4.1 Soil Gas Control of the current 2012 Ontario Building Code (OBC) states that *"Where methane or radon gases are known to be a problem, construction shall comply with the requirements for soil gas control in MMAH Supplementary Standard SB-9, Requirements for Soil Gas Control"*.

6.0 <u>SITE INSPECTION</u>

Qualified geotechnical personnel should supervise excavation inspections as well as compaction testing for structural filling, site grading, and site servicing. This will ensure that footings are founded in the proper strata and that proper material and techniques are used and the specified compaction is achieved. CMT Engineering Inc. would be pleased to review the design drawings and provide an inspection and testing program for the construction of the proposed development.

7.0 LIMITATIONS OF THE INVESTIGATION

The recommendations made in this report are in accordance with our present understanding of the project. We request that we be permitted to review our recommendations when the drawings and specifications are complete, or if the proposed construction should differ from that mentioned in this report.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments are based on the results obtained at the test locations only. It is therefore assumed that these results are representative of the subsoil conditions across the site. Should any conditions at the site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations.

It should be noted that this report specifically addresses geotechnical aspects of the project and does not include any investigations or assessments relating to potential subsurface contamination. As such, there should be no assumptions or conclusions derived from this report with respect to potential soil or water contamination. Soil or water contamination is generally caused by the presence of xenobiotic (human-made) chemicals or other alteration processes in the natural soil and groundwater environment. If necessary, the investigation, assessment and rehabilitation of soil and water contaminants should be undertaken by qualified environmental specialists.

The samples obtained during the geotechnical investigation will be stored for a period of three months, after which time they will be disposed of unless alternative arrangements are made.

This report is intended solely for the client named. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the reliability of such third parties. The factual data, interpretation, and recommendations in this report pertain to a specific project as described in this report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, deviates from the assumptions stated herein, CMT Inc. should be given an opportunity to confirm that the recommendations are still valid. The subject geotechnical exploration and this report address only the geotechnical aspects of the proposed project; potential environmental impacts or related issues are beyond the defined scope of this work and have not been addressed.

We trust that this report meets with your present requirements. Should you have any questions, please do not hesitate to contact our office.

Prepared by:

() Feening

Jake Feeney P. Eng. ht

Reviewed by:

Nathan Chortos, P.Eng. Senior Geotechnical Engineer

APPENDIX A

BOREHOLE LOGS

	CIN	ING INC	CMT Engineering Inc. 1011 Industrial Crescent St. Clements, Ontario, N0B 2M0 Telephone: 519-699-5775		sed Tow	nho		BC	OREF	IOLE	PAG ¹	3ER 1 E 1 OF 1	
ENG			Fax: 519-699-4664	PROJECT ADDRES	SS: 465	Ge	arafraxa S	treet West					
PROJI		UMBER: 2	2-765	PROJECT LOCATIO	ON: Fer	gus	, Ontario						
DRILI		ΔTF· 22-11	I-16	GROUND FI EVATI	ON : 10	0.2	0 m						
DRILL			R: CMT Drilling Inc		eenev	0.2	<u> </u>						
DRILL	ING E	OUIPMENT:	Geoprobe 7822DT		SAMPLING METHOD:								
					T	T							
	0				E E	%	NTS (10			= A 30	40	
HTc (u	Ηg		MATERIAL DESCRIPTION	Depth,		ĒŖ			Ø POCKET	PENETROME	ETER (kPa) 📀	•••	
DEI L	LC			Elevation (m)	MPL	0		90) 1	80 2	.70	360	
					SAI	R	BLC		MOIS	TURE CONTE	:NT (%) 🔵		
-		Sand ar gravel fi	d Gravel Fill: Compact, brown sand II, trace silt, moist	and 0.00, 100.20	SDT.		0 7 10 16	12	<u>2 2</u> 19	24 3	36	48	
-						49	(19)	7.6●			• • • • •		
-	$\sim\sim$	Topsoil	Black silty, organic, buried topsoil la	ayer 0.60, 99.60							:	:	
	$\sim\sim\sim$										•		
-	$\sim\sim\sim$	Sand ar gravel fi	Id Gravel Fill: Compact, brown sand II, trace silt, moist	and 1.07, 99.13	SPT 2	100	3-5-14-15 (19)	10.6●	19	•			
-		Silty Sa	nd: Compact, brown silty sand, mois	t 1.52, 98.68							•		
2					SPT 3	100	8-9-10-10 (19)	12.8	19				
-		Sandy S	Silt Till: Very stiff, brown sandy silt til	l, 2.29, 97.91							· · · · ·		
- - - -		some cl	ay, trace gravel, moist		SPT 4	100	5-9-12-11 (21)	9.7●	2				
3						_					:		
-		Decomi	ig naro	3.05, 97.15	SPT 5	100	10-28-33- 33 (61)	7.2●				>>	
4													
					6	100		8.6●					
- - 5		becomir	 g grey	4.57, 95.63	SPT 7	100	30-48-44- 37 (92)					>>/	
		Borehol	e open to about 5.18 m below the gr	ound ,									
		surface. upon co Bottom	No accumulated groundwater obsermpletion. of borehole at 5.18 m, Elevation 95.	rved 02 m.									

	CIN	IT INC	CMT Engineering Inc. 1011 Industrial Crescent St. Clements, Ontario, N0B 2M0 Telephone: 519-699-5775					В	ORE	IOLE	NUME PAGE	BER 2	
ENG	ING		Fax: 519-699-4664	PROJECT: Propos	sed Tow	nho	use Deve						
			2-765		5: <u>465</u>	<u>Ga</u>	<u>iratraxa S</u> Ontario	treet Wes	τ				
		ATE: 22 14	<u></u>		<u>γΝ rer</u>	<u>yus</u> pว	m						
			R. CMT Drilling Inc	LOGGED BY: J. Feeney									
DRILL	ING E	QUIPMENT:	Geoprobe 7822DT	SAMPLING METHO	D: SP	г							
						%	NTS			SPT N VALUE		10	
HT (u	HES		MATERIAL DESCRIPTION	Depth,	E TY IBER	ſΕRΥ			© POCKET	PENETROME	TER (kPa) 😣	ŧU	1
DE	GRA			Elevation (m)	MPL	0		ç	00 1	80 2	70 3	60	
					SA	I۳.) BLG		MOIS	TURE CONTE	NT (%) 🔵	18	
-		Sand an gravel fi Black sil	Id Gravel Fill: Compact, brown sand a II, trace silt, moist	and 0.00, 99.83	SPT	49	2-7-7-14 (14)		14			+o	
-		(210 mn	n)					8.7●			· · · · ·		
-	$\sim\sim\sim$	Black si	lty, organic, buried topsoil layer	0.76, 99.07							•	•	
1		Sandy S	Silt: Stiff to very stiff, brown sandy silt,	, 0.97, 98.86	SPT	100	7-8-9-10			:		: :	
-		some ci	ay, trace gravel, moist				(17)	11				•	
-						\vdash					:		
-											•		
-					SPT 3	25	4-5-5-12 (10)	10			:	:	
2							(,	10.4			: : :	:	
-									:		•	:	
-		Silty Sa	nd: Compact, brown silty sand, moist	2.29, 97.54					:		•		
-					SPT	100	4-10-19- 26		:	29			
							(29)	14.	3●				
3													1
		Sandy S	Silt Till: Hard, brown sandy silt till, sor ce gravel, moist	me 3.05, 96.78							•		ļ
-		,	5		SPT 5	100	12-30-38- 50				•		Ī
-							(68)	8.2●					
-						1			:		•	:	
4					M								
-					MC5 6	100			:				
-								10.2					
-											• • • •		
-							50 50 50				:		
5					SPT 7	100	50-50-50- 50 (100)		:		:		Í
-							(100)	····8:9 ● ·			:		1
	17.X/X/X	Borehol	e caved at about 2.95 m below the gr	round ,					•		•	•	1
		upon co	mpletion.										
		Bottom	of borehole at 5.18 m, Elevation 94.6	55 m.									
													J

			CMT Engineering Inc. 1011 Industrial Crescent						В	OR	EHOL	E NU	IMBER 6
	NEER	NGING	St. Clements, Ontario, N0B 2M0 Telephone: 519-699-5775				hai		lonmont			I	FAGE I OF I
ENG			Fax: 519-699-4664		opose RESS	• 465	<u>inoi</u> Gai	<u>ise Deve</u> afraxa S	treet Wes	t			
PROJ	ECT NU	JMBER: 2	2-765	PROJECT LOCA		• <u></u>	gus.	Ontario					
DRILL	ING DA	TE: 22-1	1-16	GROUND ELEVATION: 99.51 m									
DRILL		ONTRACTO	R: CMT Drilling Inc.	LOGGED BY:									
DRILL	ING EC	UIPMENT:	Geoprobe 7822DT	SAMPLING MET	THOD	: <u>MC5</u>	5						
						ш	%	S			SPT N	VALUE 🔺	
Ξ	l₽,,,			5 4		ЕR	Ϋ́	UE)	1	0	20	30	40
L L L L	LOG RPI		MATERIAL DESCRIPTION	Depth, Elevation	, (m)	JMB	NC NE	VAL VAL		⊗ POC	190	ROMETER (kPa)⊗
	9					AMF	Ŭ	δź	5		IOISTURE C	ONTENT (%	.)●
						S	œ	BI	1	2	24	36	48
		Sand ar trace sil	nd Gravel Fill: Brown sand and gravel t, moist	fill, 0.00, 99.51						•			
		Sandy S trace gr	Silt Till: Brown sandy silt till, some cla avel, moist	y, 0.60, 98.91		MC5 1	100			•		• • • • • • •	
									12.50				
	<u>-<i>K/</i>//X</u>	Borehol elevatio upon co	le open to 1.52 m below the ground sund in No accumulated groundwater obsempletion.	urface , erved			<u> </u>					·	
		Bottom	of borehole at 1.52 m, Elevation 97.9	99 m.									
I													

ROJE		CMT Engineering Inc. 1011 Industrial Crescent St. Clements, Ontario, NOB 2M0 Telephone: 519-699-5775 Fax: 519-699-4664	PROJECT: <u>Propos</u> PROJECT ADDRES PROJECT LOCATIO	sed Tow S: <u>465</u> DN: Fei	nhou Gai	use Dev rafraxa S Ontaric	BC	REHOL	.E NU ⊧	MBER 7 PAGE 1 OF
RILLI	NG DA	ATE : 22-11-16	GROUND ELEVATION: 99 70 m							
RILLI	NG CO	DNTRACTOR: CMT Drilling Inc.	LOGGED BY: _J. Feeney							
RILLI	NG EQ	QUIPMENT:Geoprobe 7822DT	SAMPLING METHO	D : _MC	5		-			
(m)	APHIC -OG	MATERIAL DESCRIPTION	Depth, Elevation (m)	LE TYPE MBER	VERY %	COUNTS /ALUE)	10	SPT N 20 POCKET PENET	VALUE 30 ROMETER (k	40 Pa)⊗
5	GR L		,		U U U U U U U	N/N	90	180 MOISTURE C	270 ONTENT (%)	360
_	~	Topsoil: Dark brown silty organic topsoil mai	t 0.00 00 70	<i>ა</i>		B	12	24	36	48
	$\sim \sim$	Topson: Dark brown, sity, organic topson, mos	SL 0.00, 99.70						-	
 		Silty Sand: Brown silty sand, moist	0.30, 99.40	MC5 1	100		5.2●			
		elevation. No accumulated groundwater observ upon completion. Bottom of borehole at 1.52 m, Elevation 98.18	red m.							

BOREHOLE LOG2 22-765.GPJ CMT_TEMPLATE_2020-05-15.GDT 22-11-28

APPENDIX B

GRAIN SIZE ANALYSES

APPENDIX B: Stormwater Management Analysis

Existing Condition Modelling Files Stage-Storage-Discharge Tables Post-Development Condition Modelling Files Oil/Grit Separator Sizing Details

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	C:\Users\pgrier\Documents\Work\"
"			422144 465 Garafraxa"
"		Output filename:	422144 2-year pre.out"
"		Licensee name:	gmbp"
"		Company	
"		Date & Time last used:	1/3/2023 at 4:30:05 PM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
п	180.000	Max. Storm length"	
п	1500.000	Max. Hydrograph"	
	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
	695,047	Coefficient A"	
	6.387	Constant B"	
	0.793	Exponent C"	
	0.795	Eraction B"	
	180 000	Duration"	
	1 000	Time sten multinlier"	
	1.000	aximum intensity	93 292 mm/hr"
	Т	otal denth	33 014 mm"
	6	002hvd Hydrograph extens	ion used in this file"
	33 0	ATCHMENT 10"	
	1	Triangular SCS"	
	1	Faual length"	
	1	Honton equation"	
	10	Catchment 10"	
п	0 000	% Impenvious"	
	0.000	Total Area"	
	25 000	Flow longth"	
	25.000	Fiow Tengen Ovenland Slene"	
	2.000	Dopyious Apop"	
	0.420	Pervious Area	
	25.000	Pervious length	
	2.000	Pervious slope	
	0.000	Impervious Area	
	25.000	Impervious length"	
	2.000	Impervious slope"	
	0.250	Pervious Manning 'n'"	
	/5.000	Pervious Max.infiltration	
	12.500	Pervious Min.infiltration	х. н
	0.250	Pervious Lag constant (hou	irs)"
	5.000	Pervious Depression storage	je "
	0.015	Impervious Manning 'n'"	
	0.000	Impervious Max.infiltratio	n"
	0.000	Impervious Min.infiltratio	n"
"	0.050	Impervious Lag constant (iours)"
"	1.500	Impervious Depression stor	age"

"			0.003	0.000	0.000	0.000 (c.m/sec"	
"		Catchmer	nt 10		Pervious	Impervious	Total A	rea "
"		Surface	Area		0.420	0.000	0.420	hectare"
"		Time of	concentrat	ion	24.993	2.044	24.993	minutes"
"		Time to	Centroid		93.891	0.000	93.891	minutes"
"		Rainfall	l depth		33.014	33.014	33.014	mm"
"		Rainfall	l volume		138.66	0.00	138.66	c.m"
"		Rainfall	losses		32.003	33.014	32.003	mm''
"		Runoff c	lepth		1.010	0.000	1.010	mm''
"		Runoff v	/olume		4.24	0.00	4.24	c.m"
"		Runoff d	coefficient	:	0.031	0.000	0.031	"
"		Maximum	flow		0.003	0.000	0.003	c.m/sec"
"	40	HYDROGRA	APH Add Rur	off '	•			
"	2	1 Add F	Runoff "					
"			0.003	0.003	3 0.000	0.000"		
"	38	START/RE	E-START TOT	TALS 1	L0"			
"	3	3 Runof	f Totals c	on EXI	[T"			
"		Total Ca	atchment ar	rea		0	.420	hectare"
"		Total In	npervious a	area		0	.000	hectare"
"		Total %	impervious	5		0	.000"	
"	19	EXIT"						

<pre>" MIDUSS version Version 2.25 rev. 4 " MIDUSS created Sunday, February 07, 20 " 10 Units used: ie METR " Job folder: C:\Users\pgrier\Documents\Wor " 422144 465 Garafra " Output filename: 422144 5-year pre.o " Licensee name: gm " Company</pre>	73" 10" IC" ka" ut" pp" "
<pre>" MIDUSS created Sunday, February 07, 20 " 10 Units used: ie METR " Job folder: C:\Users\pgrier\Documents\Wor " 422144 465 Garafra " Output filename: 422144 5-year pre.o " Licensee name: gm " Company</pre>	10" IC" ka" ut" pp" "
<pre>" 10 Units used: ie METR " Job folder: C:\Users\pgrier\Documents\Wor 422144 465 Garafra " Output filename: 422144 5-year pre.o " Licensee name: gm " Company</pre>	IC" <\" xa" ut" op" "
<pre>" Job folder: C:\Users\pgrier\Documents\Wor 422144 465 Garafra " Output filename: 422144 5-year pre.o " Licensee name: gm " Company</pre>	<\" xa" ut" op" "
" 422144 465 Garafra " Output filename: 422144 5-year pre.o " Licensee name: gm " Company 1/1/2022 0.00110	xa" ut" op" AM"
"Output filename: 422144 5-year pre.o "Licensee name: gm "Company 1/1/2022 is 2.22 10	ut" op" AM"
"Licensee name: gm "Company 1/1/2022	ор" " \М"
" Company	ФМ.,
	۹М"
Date & lime last used: 1/4/2023 at 8:29:49	
" 31 TIME PARAMETERS"	
" 5.000 Time Step"	
" 180.000 Max. Storm length"	
" 1500.000 Max. Hydrograph"	
" 32 STORM Chicago storm"	
" 1 Chicago storm"	
" 1459.072 Coefficient A"	
" 13.690 Constant B"	
" 0.850 Exponent C"	
" 0.380 Fraction R"	
" 180.000 Duration"	
" 1.000 Time step multiplier"	
" Maximum intensity 113.586 mm/hr"	
" Total depth 49.792 mm"	
" 6 005hvd Hvdrograph extension used in this file"	
" 33 CATCHMENT 10"	
" 1 Triangular SCS"	
" 1 Foual length"	
" 2 Horton equation"	
" 10 Catchment 10"	
" 0.000 % Impervious"	
" 0.420 Total Area"	
25.000 Elow length	
" 2.000 Overland Slope"	
" 0.420 Pervious Area"	
" 25.000 Pervious length"	
" 2.000 Pervious slope"	
" 0.000 Impervious Area"	
" 25.000 Impervious length"	
" 2.000 Impervious slope"	
" 0.250 Pervious Manning 'n'"	
" 75.000 Pervious Max.infiltration"	
" 12.500 Pervious Min infiltration"	
" 0.250 Pervious Lag constant (hours)"	
" 5.000 Pervious Depression storage"	
" 0.015 Impervious Manning 'n'"	
" 0.000 Impervious Max.infiltration"	
" 0.000 Impervious Min.infiltration"	
" 0.050 Impervious Lag constant (hours)"	
" 1.500 Impervious Depression storage"	

"			0.033	0.000	0.000	0.000	c.m/sec"	
"		Catchmer	nt 10		Pervious	Impervious	Total A	rea "
"		Surface	Area		0.420	0.000	0.420	hectare"
"		Time of	concentrat	ion	13.471	1.890	13.470	minutes"
"		Time to	Centroid		90.770	85.354	90.770	minutes"
"		Rainfall	. depth		49.792	49.792	49.792	mm"
"		Rainfall	volume		209.12	0.00	209.13	c.m"
"		Rainfall	losses		39.012	2.179	39.012	mm"
"		Runoff d	lepth		10.780	47.613	10.780	mm"
"		Runoff v	olume		45.28	0.00	45.28	c.m"
"		Runoff c	oefficient	2	0.217	0.000	0.217	п
"		Maximum	flow		0.033	0.000	0.033	c.m/sec"
"	40	HYDROGRA	PH Add Rur	off "	I			
"	4	Add R	lunoff "					
"			0.033	0.033	3 0.000	0.000"		
"	38	START/RE	-START TOT	TALS 1	L0"			
"	3	Runof	[:] f Totals c	on EXI	[T"			
"		Total Ca	itchment ar	rea		0	.420	hectare"
"		Total Im	npervious a	area		0	.000	hectare"
"		Total %	impervious	5		0	.000"	
"	19	EXIT"						

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	C:\Users\pgrier\Documents\Work\"
"			422144 465 Garafraxa"
"		Output filename:	422144 10-year pre.out"
"		Licensee name:	gmbp"
"		Company	
"		Date & Time last used:	1/4/2023 at 8:30:55 AM"
"	31	TIME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32	STORM Chicago storm"	
"	1	Chicago storm"	
	2327.596	Coefficient A"	
	19.500	Constant B"	
	0.894	Exponent C"	
	0.380	Fraction R"	
	180,000	Duration"	
	1,000	Time sten multinlier"	
	1.000	Maximum intensity	126.171 mm/hr"
		Total depth	61.359 mm"
	6	010hvd Hydrograph exter	sion used in this file"
	33	CATCHMENT 10"	
	1	Triangular SCS"	
	- 1	Foual length"	
	- 2	Horton equation"	
	10	Catchment 10"	
	9,999	% Impervious"	
	0.420	Total Area"	
	25,000	Flow length"	
	29.000	Overland Slope"	
	0 420	Pervious Area"	
	25 000	Pervious length"	
	2 000	Pervious slope"	
	2.000 0 000	Impervious Area"	
	25 000	Impervious length"	
	23.000	Impervious slope"	
	2.000 0.250	Dervious Manning 'n'"	
	75 000	Ponyious Max infiltration	п
	12 500	Pervious Min infiltration	п
	12.300	Pervious Lag constant (be	upc) "
	5 000	Pervious Depression stors	ae"
	0.000 0.01	Tmpenyious Manning 'n'"	δ ⁻
	0.000	Impervious Marining II	on"
	0.000	Impervious Min infiltert	on"
	0.000	Impervious Pag constant (houns)"
	1 500	Impervious Lag Constant (nours;
	1.200	impervious Depression sto	rage

п	0.054	0.000	0.000	0.000	c.m/sec"	
п	Catchment 10		Pervious	Impervious	Total A	rea "
п	Surface Area		0.420	0.000	0.420	hectare"
п	Time of concentrat	ion	12.045	1.812	12.045	minutes"
п	Time to Centroid		90.582	84.870	90.582	minutes"
п	Rainfall depth		61.359	61.359	61.359	mm"
п	Rainfall volume		257.71	0.00	257.71	c.m"
п	Rainfall losses		41.728	2.332	41.728	mm''
п	Runoff depth		19.631	59.027	19.631	mm"
п	Runoff volume		82.45	0.00	82.45	c.m"
п	Runoff coefficient	2	0.320	0.000	0.320	"
п	Maximum flow		0.054	0.000	0.054	c.m/sec"
" 40	HYDROGRAPH Add Rur	off '	1			
	4 Add Runoff "					
	0.054	0.054	4 0.000	0.000"		
" 38	START/RE-START TO	TALS 1	L0"			
	3 Runoff Totals o	on EXI	[Т"			
	Total Catchment ar	rea		0	.420	hectare"
11	Total Impervious a	area		0	.000	hectare"
	Total % impervious	5		0	.000"	
" 19	EXIT"					

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	C:\Users\pgrier\Documents\Work\"
"			422144 465 Garafraxa"
"		Output filename:	422144 25-year pre.out"
"		Licensee name:	gmbp"
"		Company	с.
"		Date & Time last used:	1/4/2023 at 8:32:57 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hvdrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
"	3701.648	Coefficient A"	
	25.500	Constant B"	
	0.937	Exponent C"	
	0.380	Fraction R"	
	180,000	Duration"	
	1,000	Time sten multinlier"	
		laximum intensity	143.371 mm/hr"
	Т	otal denth	75.581 mm"
	6	025hvd Hydrograph exte	nsion used in this file"
	33 0	ATCHMENT 10"	
	1	Triangular SCS"	
	- 1	Faual length"	
	2	Horton equation"	
	10	Catchment 10"	
	0.000	% Impervious"	
	0.420	Total Area"	
	25,000	Flow length"	
	2.000	Overland Slope"	
	0.420	Pervious Area"	
	25.000	Pervious length"	
	2.000	Pervious slope"	
	0.000	Impervious Area"	
	25,000	Impervious length"	
	2,000	Impervious slope"	
	0 250	Pervious Manning 'n'"	
	75 000	Pervious Max infiltratio	n"
	12 500	Pervious Min infiltratio	n"
	0 250	Pervious Lag constant (h	ours) "
	5 000	Pervious Denression stor	age"
	0 015	Impervious Manning 'n'"	~D~
	0.013	Impervious May infiltrat	ion"
	0.000 A AAA	Impervious Min infiltest	ion"
	0.000 0 050	Impervious lag constant	(hours)"
	1 500	Impenvious Depression of	onage"
	1.200	Timbel ATORS DebliessToll St	ui age

"			0.085	0.000	0.000	0.000	c.m/sec"	
"		Catchmer	nt 10		Pervious	Impervious	Total A	rea "
"		Surface	Area		0.420	0.000	0.420	hectare"
"		Time of	concentrat	ion	10.252	1.722	10.252	minutes"
"		Time to	Centroid		90.488	84.485	90.488	minutes"
"		Rainfal]	l depth		75.581	75.581	75.581	mm''
"		Rainfall	l volume		317.44	0.00	317.44	c.m"
"		Rainfall	losses		44.281	2.520	44.280	mm"
"		Runoff d	lepth		31.300	73.061	31.300	mm"
"		Runoff v	/olume		131.46	0.00	131.46	c.m"
"		Runoff d	coefficient	Ξ	0.414	0.000	0.414	
"		Maximum	flow		0.085	0.000	0.085	c.m/sec"
"	40	HYDROGRA	APH Add Rur	noff '				
"	2	1 Add F	Runoff "					
"			0.085	0.085	5 0.000	0.000"		
"	38	START/RE	-START TOT	TALS 1	L0"			
"		3 Runof	f Totals o	on EXI	[T"			
"		Total Ca	atchment ar	rea		0	.420	hectare"
"		Total In	npervious a	area		0	.000	hectare"
"		Total %	impervious	5		0	.000"	
"	19	EXIT"						

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	C:\Users\pgrier\Documents\Work\"
"			422144 465 Garafraxa"
"		Output filename:	422144 50-year pre.out"
"		Licensee name:	gmbp"
"		Company	с.
"		Date & Time last used:	1/4/2023 at 8:34:37 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hvdrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
"	5089,418	Coefficient A"	
	30.000	Constant B"	
	0.967	Exponent C"	
	0.380	Fraction R"	
	180,000	Duration"	
	1,000	Time step multiplier"	
"	21000 M	laximum intensity	156.350 mm/hr"
"	Т	otal denth	86.737 mm"
"	6	050hvd Hvdrograph exte	nsion used in this file"
"	33 0	ATCHMENT 10"	
"	1	Triangular SCS"	
"	- 1	Fqual length"	
	- 2	Horton equation"	
	10	Catchment 10"	
	9,000	% Impervious"	
"	0.420	Total Area"	
	25,000	Flow length"	
	2,000	Overland Slope"	
	0 420	Pervious Area"	
	25,000	Pervious length"	
	2 000	Pervious slope"	
	a aaa	Impervious Area"	
	25 000	Impervious length"	
	20.000	Impervious slope"	
	a 250	Pervious Manning 'n'"	
	75 000	Denvious Max infiltratio	n"
	12 500	Pervious Min infiltratio	n"
	0 250	Pervious Lag constant (h	ouns) "
	5 000	Pervious Depression stor	
	0.000	Tmpopyious Manning 'n'"	age
	0.015	Impervious May infiltent	ion"
	0.000	Impervious Min infiltest	ion"
	0.000 0 0E0	Impervious lag constant	(houns)"
	1 500	Imponyious Dopposion of	(1001 3 <i>)</i>
	1.200	TubeLATORS DebLession st	orage

"	0.109 0.00	0.000	0.000 (c.m/sec"	
"	Catchment 10	Pervious	Impervious	Total Are	a "
"	Surface Area	0.420	0.000	0.420	hectare"
"	Time of concentration	9.574	1.663	9.574	minutes"
"	Time to Centroid	90.779	84.291	90.779	minutes"
"	Rainfall depth	86.737	86.737	86.737	mm"
"	Rainfall volume	364.29	0.00	364.29	c.m"
"	Rainfall losses	45.966	2.621	45.966	mm"
"	Runoff depth	40.771	84.116	40.771	mm "
"	Runoff volume	171.24	0.00	171.24	c.m"
"	Runoff coefficient	0.470	0.000	0.470	
"	Maximum flow	0.109	0.000	0.109	c.m/sec"
" 40	HYDROGRAPH Add Runoff	"			
"	4 Add Runoff "				
"	0.109 0.10	9 0.000	0.000"		
" 38	START/RE-START TOTALS	10"			
"	3 Runoff Totals on EX	IT"			
	Total Catchment area		0	.420 he	ctare"
п	Total Impervious area		0	.000 he	ctare"
	Total % impervious		0	.000"	
" 19	EXIT"				

<pre>MIDUSS version Version 2.25 rev. 473" MIDUSS created Sunday, February 07, 2010 10 Units used: ie METRIC 30b folder: C:\Users\pgrier\Documents\Work\ 42114 465 Garafraxa 42114 465 Garafraxa 0utput filename: 422144 100-year pre.out" Licensee name: gmbp" Company " Date & Time last used: 1/4/2023 at 8:35:33 AM" 31 TIME PARAMETERS' 180.000 Max. Storm length" 1500.000 Max. Hydrograph" 2 STORM Chicago storm" 4 Organy Constant B 0.998 Exponent C 0.380 Fraction R 180.000 Duration" 1000 Time step multiplier" Maximum intensity 168.777 mm/hr" 6 Oldeyhd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 1 Finangular SCS" 1 1 Gaulenth 97.921 mm" 6 Oldeyhd Hydrograph extension used in this file" 2 Horton equation" 1 0 Catchment 10" 2 Horton equation" 2 Output af Area" 2 Store Flow length 3 CATCHMENT 10 5 Output Area" 2 Horton equation" 3 CATCHMENT 10 6 Oldeyd Hydrograph extension used in this file" 2 Horton equation" 2 Output Area" 2 Horton equation" 3 Output Area" 2 Store Flow length 3 Output Area" 3 Output Ar</pre>	"		MIDUSS Output	>"
<pre>MIDUSS created Sunday, February 07, 2010 ie METRIC"</pre>	"		MIDUSS version	Version 2.25 rev. 473"
10 Units used: ie METRIC Job folder: C:\Users\pgre\Documents\Work\" 422144 465 Garafraxa" Output filename: 422144 100-year pre.out" " Date & Time last used: 1/4/2023 at 8:35:33 AM" " Date & Time last used: 1/4/2023 at 8:35:33 AM" " Date & Time last used: 1/4/2023 at 8:35:33 AM" " Date & Time last used: 1/4/2023 at 8:35:33 AM" " STORM Chicago storm" 1 " 16000 Max. Storm length" " 16.cago storm" 1 " 1 Chicago storm" 1 " 1 Chicago storm" 1 " 34.699 Constant B" " 0.988 Exponent C" " 0.380 Fraction R" " 180.000 Time step multiplier" " 1000 Time step multiplier" " 1 Belohyd Hydrograph extension used in this file" " 1 Catchment 10" 1 " 1 Catchment 20" 1 0.000 Ximpervious <t< td=""><td>"</td><td></td><td>MIDUSS created</td><td>Sunday, February 07, 2010"</td></t<>	"		MIDUSS created	Sunday, February 07, 2010"
Job folder: C:\Users\pgrier\Documents\Work\" 422144 465 Garafraxa" 422144 " Utput filename: 422144 465 Garafraxa" 422144 100-year pre.out" gmbp" " Date & Time last used: 1/4/2023 at 8:35:33 AM" " Date & Time last used: 1/4/2023 at 8:35:33 AM" " TIME PARAMETERS" " " Date & Storm " " STORM Chicago storm" " " 1 Chicago storm" " 0.998 Exponent C" " 0.998 Exponent C" " 1.0000 Time step multiplier" " Maximum intensity 168.777 mm/hr" " 1000 Time step multiplier" " " 1.0000 Time step multiplier"	"	10	Units used:	ie METRIC"
422144 465 Garafaxa" "Output filename: 422144 100-year pre.out" "Licensee name: gmbp" "Date & Time last used: 1/4/2023 at 8:35:33 AM" "J1 TIME PARAMETERS" 180.000 Max. Storm length" 160.000 Max. Hydrograph" "J2 STORM Chicago storm" "I1 Chicago storm" "I1000 Time step multiplier" Maximum intensity 168.777 "I1000 Time step multiplier" "Maximum intensity 168.777 "I1000 Hydrograph extension used in this file" "I1000 Time step "I1 Figura storm 6 1000yd Hydrograph extension used in this file" I2000 Impervious" <td>"</td> <td></td> <td>Job folder:</td> <td>C:\Users\pgrier\Documents\Work\"</td>	"		Job folder:	C:\Users\pgrier\Documents\Work\"
Output filename: 422144 100-year pre.out" Licensee name: gmbp" Company " Date & Time last used: 1/4/2023 at 8:35:33 AM" 31 TIME PARAMETERS" 180.000 Max. Storm length" 1500.000 Max. Storm length" 180.000 Max. Storm length" 32 STORM Chicago storm" 1 Chicago storm" 34.699 Constant B" 0.998 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 168.777 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 168.777 1.000 Time step multiplier" Maximum intensity 168.777 1.000 Time step multiplier" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 0	"			422144 465 Garafraxa"
Licensee name: gmbp" Company " Date & Time last used: 1/4/2023 at 8:35:33 AM" 31 TIME PARAMETERS" * 5.000 Table As Storm length" 1500.000 Max. Hydrograph" * 32 STORM Chicago storm" * 1 6933.019 Coefficient A" * 34.699 0.938 Exponent C" 0.338 Fraction R" * 1.000 * 1.80.000 * 1.000 * 1.000 * 1.80.000 * 1.000 * 1.000 * 1.000 * 1.600 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * <td< td=""><td>"</td><td></td><td>Output filename:</td><td>422144 100-year pre.out"</td></td<>	"		Output filename:	422144 100-year pre.out"
Company Date & Time last used: 1/4/2023 at 8:35:33 AM" 31 TIME PARAMETERS" 1/4/2023 at 8:35:33 AM" 32 STORM Chicago storm" 1 180.000 Max. Hydrograph" 32 5.090 Constant B" 0.938 0.938 Exponent C" 0.380 8.000 Duration" 1.000 1.000 Time step multiplier" mm/nr" 1.000 Time step multiplier" max. * 1.000 Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 1 2 34 Catchment 10" 0.000 X * 0.420 Fortol Area" 25.000 * 0.200 Verland Slope"	"		Licensee name:	gmbp"
Date & Time last used: 1/4/2023 at 8:35:33 AM" 31 TIME PARAMETERS" * 180.000 Max. Storm length" * 1500.000 Max. Hydrograph" * 160.000 Max. Storm length" * 1 Chicago storm" * 1 Chicago storm" * 1 Chicago storm" * 0.998 Exponent C" * 0.998 Exponent C" * 180.000 Duration" * 180.000 Fraction R" * 0.380 Fraction R" * 180.000 Duration" * 1.000 Time step multiplier" * 1.000 Time step multiplier" * 1.000 Harsinum intensity * 2.000 Impervious"	"		Company	· · ·
<pre>31 TIME PARAMETERS"</pre>	"		Date & Time last used:	1/4/2023 at 8:35:33 AM"
<pre>5.000 Time Step" 180.000 Max. Storm length" 1500.000 Max. Storm length" 32 STORM Chicago storm" 1 Chicago storm" 1 Chicago storm" 0933.019 Coefficient A" 34.699 Constant B" 0.938 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 2 ATCHMENT 10" 1 Equal length" 2 Horton equation" 1 Catchment 10" 0.000</pre>	"	31 T	IME PARAMETERS"	
<pre>180.000 Max. Storm length" 1500.000 Max. Hydrograph" 32 STORM Chicago storm" 4 1 Chicago storm" 533.019 Coefficient A" 54.699 Constant B" 50.998 Exponent C" 50.998 Exponent C" 50.000 Duration" 50.000 Duration" 50.000 Duration" 50.000 Duration" 50.000 Duration" 50.000 Additional and the storm of the</pre>	"	5.000	Time Step"	
<pre>1500.000 Max. Hydrograph" 32 STORM Chicago storm" 33 (Chicago storm") 44.699 Constant B" 4.699 Constant B" 4.699 Constant B" 4.699 Constant R" 4.690 Duration" 4.600 Time step multiplier" 4.61 A00Hyd Hydrograph extension used in this file" 4.700 Time step multiplier P.1200 mm" 4.700 Catchment 10" 4.700 Catchment 10" 4.700 Catchment 10" 4.700 Constant 10" 4.7000 Constant</pre>	"	180.000	Max. Storm length"	
<pre>32 STORM Chicago storm" 1 Chicago storm" 6933.019 Coefficient A" 34.699 Constant B" 0.998 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 10 Catchment 10" 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Verland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.600 Impervious length" 2.000 Pervious Manning 'n'" 75.000 Pervious Manning 'n'" 0.550 Pervious Manning 'n'" 0.550 Pervious Manning 'n'" 0.600 Impervious Manning 'n'" 0.500 Pervious Manning 'n'" 0.600 Impervious Manning 'n'"</pre>	"	1500.000	Max. Hvdrograph"	
<pre>1 Chicago storm" 6933.019 Coefficient A" 34.699 Constant B" 0.998 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 33 CATCHMENT 10" 33 CATCHMENT 10" 4 Orton equation" 4 Orton equation" 5 000 % Impervious" 4 Ortoal Area" 5 000 Verland Slope" 4 Ordoa Verland Slope" 5 000 Impervious Area" 5 000 Impervious Slope" 6 0.250 Pervious length" 5 000 Pervious length" 5 000 Pervious length" 5 000 Pervious length" 5 000 Pervious Area" 6 0.250 Pervious Area Thirtation 7 0.250 Pervious Area Thirtation</pre>	"	32 S	TORM Chicago storm"	
<pre>' 6933.019 Coefficient A" '' 34.699 Constant B" '' 0.998 Exponent C" '' 0.380 Fraction R" '' 180.000 Duration" '' 1.000 Time step multiplier" '' Maximum intensity 168.777 mm/hr" '' Total depth 97.921 mm" '' 6 100hyd Hydrograph extension used in this file" '' 33 CATCHMENT 10" '' 1 Equal length" '' 2 Horton equation" '' 0.420 Total Area" '' 2.000 Verland Slope" '' 0.420 Total Area" '' 25.000 Flow length" '' 2.000 Overland Slope" '' 0.420 Pervious Slope" '' 0.420 Pervious length" '' 2.000 Impervious length" '' 2.000 Impervious Slope" '' 0.500 Flow used in filtration" '' 0.500 Pervious Slope" '' 0.500 Pervious Manning 'n'" '' 5.000 Pervious Manning 'n'" '' 5.000 Pervious Manning 'n'" '' 0.550 Pervious Manning 'n'" '' 0.650 Impervious Manning 'n'" '' 0.000 Impervious Manning 'n'" '' 0.000</pre>	"	1	Chicago storm"	
<pre>34.699 Constant B" 9.998 Exponent C" 9.380 Fraction R" 180.000 Duration" 180.000 Duration" 1000 Time step multiplier" Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 10 Catchment 10" 10 Catchment 10" 10 Catchment 10" 10 Catchment 10" 2.000 Flow length" 2.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Impervious length" 2.000 Impervious Slope" 0.000 Impervious Slope" 0.250 Pervious Manning 'n'" 2.000 Pervious Manning 'n'" 3.000 Pervious Max.infiltration" 3.000 Pervious Max.infiltration" 3.000 Impervious Ma</pre>	"	6933.019	Coefficient A"	
 0.998 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 10 Catchment 10" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Impervious Slope" 0.420 Pervious length" 2.000 Pervious Slope" 0.420 Impervious Slope" 0.420 Pervious Slope" 0.420 Pervious Slope" 0.420 Pervious Slope" 0.420 Impervious Slope" 0.420 Pervious Manning 'n'" 2.600 Impervious Slope" 0.250 Pervious Max.infiltration" 0.250 Pervious Max.infiltration" 0.455 Impervious Max.infiltration" 0.455 Impervious Max.infiltration" 0.400 Impervious Max.infiltration" 0.400 Impervious Max.infiltration" 0.600 Impervious Max.infiltration" 		34,699	Constant B"	
 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Pervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Manning 'n'" 35000 Pervious Manning 'n'" 3600 Pervious Lag constant (hours)" 37000 Impervious Manning 'n'" 38000 Pervious Manning 'n'" 39000 Pervious Lag constant (hours)" 30000 Pervious Manning 'n'" 30000 Pervious Manning 'n'" 30000 Pervious Manning 'n'" 30000 Pervious Lag constant (hours)" 30000 Pervious Manning 'n'" 		0.998	Exponent C"	
<pre>180.000 Duration" 1.000 Time step multiplier" Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 10 Catchment 10" 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Max.infiltration" 12.500 Pervious Max.infiltration" 0.250 Pervious Manning 'n'" 0.250 Pervious Depression storage" 0.015 Impervious Max.infiltration" 0.050 Impervious Lag constant (hours)" 0.050 Impervious Lag constant (hours)" 0.050 Impervious Lag constant (hours)"</pre>		0.380	Fraction R"	
 1.000 Time step multiplier" Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 10 Catchment 10" 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Impervious slope" 0.600 Impervious slope" 0.600 Impervious slope" 0.250 Pervious Maning 'n'" 75.000 Pervious Max.infiltration" 2.500 Pervious Max.infiltration" 0.500 Pervious Max.infiltration" 3.600 Impervious Max.infiltration" 	"	180.000	Duration"	
Maximum intensity 168.777 mm/hr" Total depth 97.921 mm" 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 10 Catchment 10" 0.420 Total Area" 25.000 Flow length" 2000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious length" 2.000 Pervious slope" 0.420 Pervious slope" 0.420 Impervious Area" 25.000 Impervious Area" 25.000 Impervious length" 3.000 Pervious length" 3.000 Pervious length" 3.000 Pervious length" 3.000 Pervious length" 3.000 Impervious length" 3.000 Impervious length" 3.000 Pervious length" 3.000 Impervious length" 3.000 Pervious Max.infiltration" 3.000 Pervious Max.infiltration" 3.000 Pervious Max.infiltration" 3.000 Pervious Max.infiltration" 3.000 Impervious Lag constant (hours)" 3.000 Impervious Lag constant (hours)	"	1.000	Time step multiplier"	
Total depth97.921 mm""6 100hyd Hydrograph extension used in this file""1 Triangular SCS""1 Equal length""2 Horton equation""10 Catchment 10""0.000 % Impervious""0.420 Total Area""2.000 Verland Slope""0.420 Pervious Area""2.000 Pervious length""2.000 Impervious Area""2.000 Impervious Slope""0.200 Impervious Slope""0.250 Pervious Manning 'n'""75.000 Pervious Max.infiltration""1.2500 Pervious Max.infiltration""0.250 Pervious Lag constant (hours)""0.001 Impervious Manning 'n'""0.005 Impervious Lag constant (hours)""0.006 Impervious Max.infiltration""0.006 Impervious Area""0.006 Impervious Lag constant (hours)""0.006 Impervious Max.infiltration""0.006 Impervious Area""0.006 Impervious Area""0.006 Pervious Max.infiltration""0.006 Impervious Area""0.006 Impervio	"	M	aximum intensity	168.777 mm/hr"
 6 100hyd Hydrograph extension used in this file" 33 CATCHMENT 10" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 10 Catchment 10" 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Impervious Area" 25.000 Impervious slope" 0.000 Impervious slope" 0.250 Pervious Slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Manning 'n'" 3.000 Pervious Manning 'n'" 3.000 Pervious Lag constant (hours)" 3.000 Impervious Manning 'n'" 0.001 Impervious Manning 'n'" 3.000 Pervious Lag constant (hours)" 3.000 Impervious Manning 'n'" 3.000 Impervious Manning 'n'" 3.000 Impervious Manning 'n'" 3.000 Impervious Manning 'n'" 3.000 Impervious Area 3.000 Pervious Lag constant (hours)" 3.000 Impervious Manning 'n'" 	"	Т	otal depth	97.921 mm"
<pre>33 CATCHMENT 10" " 1 Triangular SCS" " 1 Equal length" " 2 Horton equation" " 0.000 % Impervious" " 0.420 Total Area" " 25.000 Flow length" " 2.000 Overland Slope" " 0.420 Pervious Area" " 25.000 Pervious length" " 2.000 Pervious slope" " 0.420 Pervious slope" " 0.420 Pervious slope" " 0.000 Impervious Area" " 25.000 Impervious length" " 2.000 Impervious length" " 2.000 Impervious length" " 2.000 Impervious Mrea" " 0.000 Impervious length" " 2.000 Pervious Marea" " 25.000 Pervious Maning 'n'" " 5.000 Pervious Maning 'n'" " 0.250 Pervious Maninfiltration" " 0.250 Pervious Lag constant (hours)" " 0.001 Impervious Maning 'n'" " 0.000 Impervious Maninfiltration" " 0.000 Impervious Maning 'n'" " 0.000 Impervious Maninfiltration" " 0.000 Impervious Lag constant (hours)" " 1.500 Impervious Lag constant (hours)"</pre>	"	6	100hvd Hydrograph exte	ension used in this file"
 1 Triangular SCS" 1 Equal length" 2 Horton equation" 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 3.000 Impervious length" 3.000 Impervious length" 3.000 Pervious length" 3.000 Pervious length" 3.000 Pervious length" 3.000 Pervious length" 3.000 Impervious length" 3.000 Impervious length" 3.000 Pervious slope" 3.000 Pervious length" 3.000 Pervious Maning 'n'" 3.000 Pervious Maning 'n'" 3.000 Pervious Lag constant (hours)" 3.000 Impervious Maning 'n'" 3.000 Impervious Lag constant (hours)" 3.500 Impervious Lag constant (hours)" 3.500 Impervious Lag constant (hours)" 3.500 Impervious Lag constant (hours)" 	"	33 Č	ATCHMENT 10"	
 Equal length" Equal length" Horton equation" Catchment 10" Catchment 10" Catchment 10" 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Impervious Area" 2.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 2.500 Pervious Lag constant (hours)" S.000 Impervious Max.infiltration" 0.015 Impervious Max.infiltration" 0.005 Impervious Max.infiltration" 0.006 Impervious Max.infiltration" 0.007 Impervious Max.infiltration" 0.008 Impervious Lag constant (hours)" 0.009 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 		1	Triangular SCS"	
 Horton equation" 10 Catchment 10" 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Max.infiltration" 0.015 Impervious Max.infiltration" 0.050 Pervious Max.infiltration" 0.0615 Impervious Max.infiltration" 0.060 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 1.500 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 1.500 Impervious Max.infiltration" 		1	Equal length"	
 10 Gatchment 10" 10 Gatchment 10" 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious Area" 2.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 2.000 Pervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Man.infiltration" 12.500 Pervious Lag constant (hours)" 5.000 Pervious Manning 'n'" 0.015 Impervious Man.infiltration" 0.006 Impervious Max.infiltration" 0.007 Impervious Max.infiltration" 0.008 Impervious Max.infiltration" 0.009 Impervious Max.infiltration" 0.009 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 		- 2	Horton equation"	
 0.000 % Impervious" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Lag constant (hours)" 5.000 Impervious Manning 'n'" 0.015 Impervious Manning 'n'" 0.000 Impervious Manning 'n'" 0.000 Impervious Manning 'n'" 1.500 Impervious Lag constant (hours)" 1.500 Impervious Max.infiltration" 	"	10	Catchment 10"	
 0.420 Total Area" 0.420 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Lag constant (hours)" 5.000 Impervious Manning 'n'" 0.015 Impervious Manning 'n'" 0.000 Impervious Manning 'n'" 0.000 Impervious Lag constant (hours)" 3.000 Pervious Manning 'n'" 3.000 Impervious Max.infiltration" 3.000 Impervious Manning 'n'" 3.000 Impervious Max.infiltration" 	"	0.000	% Impervious"	
 25.000 Flow length" 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 2.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Max.infiltration" 0.015 Impervious Max.infiltration" 0.001 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 12.500 Pervious Lag constant (hours)" 3.000 Pervious Max.infiltration" 1.500 Impervious Max.infiltration" 	"	0.420	Total Area"	
 2.000 Overland Slope" 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Max.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Manning 'n'" 12.500 Pervious Lag constant (hours)" 3.000 Pervious Lag constant (hours)" 3.000 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 3.000 Impervious Lag constant (hours)" 	"	25.000	Flow length"	
 0.420 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Manning 'n'" 0.000 Impervious Lag constant (hours)" 0.000 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 	"	2.000	Overland Slope"	
<pre>" 25.000 Pervious length" " 2.000 Pervious slope" " 0.000 Impervious Area" " 25.000 Impervious length" " 2.000 Impervious slope" " 0.250 Pervious Manning 'n'" " 75.000 Pervious Max.infiltration" " 12.500 Pervious Max.infiltration" " 0.250 Pervious Lag constant (hours)" " 0.250 Pervious Lag constant (hours)" " 5.000 Pervious Depression storage" " 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Max.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Lag constant (hours)"</pre>	"	0.420	Pervious Area"	
 2.000 Pervious slope" 0.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 15.000 Pervious Depression storage" 15.000 Impervious Max.infiltration" 15.000 Impervious Max.infiltration" 15.000 Impervious Max.infiltration" 15.000 Impervious Lag constant (hours)" 	"	25.000	Pervious length"	
<pre>" 0.000 Impervious Area" " 25.000 Impervious length" " 2.000 Impervious slope" " 0.250 Pervious Manning 'n'" " 75.000 Pervious Max.infiltration" " 12.500 Pervious Min.infiltration" " 0.250 Pervious Lag constant (hours)" " 5.000 Pervious Depression storage" " 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Max.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Lag constant (hours)"</pre>		2,000	Pervious slope"	
<pre>"25.000 Impervious length" "25.000 Impervious slope" "0.250 Pervious Manning 'n'" "75.000 Pervious Max.infiltration" "12.500 Pervious Min.infiltration" "0.250 Pervious Lag constant (hours)" "5.000 Pervious Depression storage" "0.015 Impervious Manning 'n'" "0.000 Impervious Max.infiltration" "0.000 Impervious Min.infiltration" "0.050 Impervious Lag constant (hours)" "1.500 Impervious Depression storage"</pre>	"	0.000	Impervious Area"	
 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Depression storage" 		25,000	Impervious length"	
 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Depression storage" 	"	2.000	Impervious slope"	
 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Depression storage" 		0.250	Pervious Manning 'n'"	
 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Depression storage" 		75 000	Pervious Max infiltratio	מט"
 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Depression storage" 		12 500	Pervious Min infiltratio	יוא מני
<pre>" 5.000 Pervious Depression storage" " 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		0,250	Pervious Lag constant (k	nours)"
<pre>" 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		5 000	Pervious Depression stor	nage"
 " 0.000 Impervious Max.infiltration" " 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage" 		0 015	Tmpervious Manning 'n'"	~D~
<pre>" 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		0.015	Impervious Max infiltrat	-ion"
<pre>" 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		0.000 0 000	Impervious Min infiltrat	ion"
" 1.500 Impervious Depression storage"		0.000 0 050	Impervious Lag constant	(hours)"
	"	1.500	Impervious Depression st	corage"

"			0.132	0.000	3 (000.6	0.00	0 c.	m/sec	"	
"		Catchmer	nt 10		Pervi	ous	Impervio	us T	otal	Area	"
"		Surface	Area		0.420		0.000	0	.420		hectare"
"		Time of	concentrat	ion	9.201		1.613	9	.201		minutes"
"		Time to	Centroid		90.80	9	84.151	9	0.800		minutes"
"		Rainfall	l depth		97.92	1	97.921	9	7.921		mm"
"		Rainfall	l volume		411.2	7	0.00	4	11.27		c.m"
"		Rainfall	losses		47.27	4	2.759	4	7.274		mm"
"		Runoff d	lepth		50.64	7	95.162	5	0.647		mm"
"		Runoff v	volume		212.7	2	0.00	2	12.72		c.m"
"		Runoff c	coefficient	2	0.517		0.000	0	.517		п
"		Maximum	flow		0.132		0.000	0	.132		c.m/sec"
"	40	HYDROGRA	APH Add Rur	off '							
"	2	1 Add R	Runoff "								
"			0.132	0.132	2 (0.000	0.00	0"			
"	38	START/RE	-START TOT	TALS 1	10"						
"	3	3 Runof	f Totals c	on EXI	LT"						
"		Total Ca	atchment ar	rea				0.4	20	hect	are"
"		Total Im	npervious a	area				0.0	00	hect	are"
"		Total %	impervious	5				0.0	00"		
"	19	EXIT"									

465 Garafraxa Street West Township of Centre Wellington Our File: 422144 January 19, 2023

Catchment 100 - Infiltration Gallery

Elevation	Depth	Surface	Incremental	Incremental	Accum.	
		Area	Stone	Storage	Storage	
			Volume	Volume	Volume	
(m)	(m)	(m²)	(m ³)	(m ³)	(m ³)	_
412.55	0.000	42.00	0.00	0.00	0.00	Bottom of Stone
412.56	0.010	42.00	0.42	0.14	0.14	
412.65	0.100	42.00	3.78	1.26	1.40	
412.75	0.200	42.00	4.20	1.40	2.80	
412.85	0.300	42.00	4.20	1.40	4.20	
412.95	0.400	42.00	4.20	1.40	5.60	
413.05	0.500	42.00	4.20	1.40	7.00	
413.15	0.600	42.00	4.20	1.40	8.40	
413.25	0.700	42.00	4.20	1.40	9.80	
413.35	0.800	42.00	4.20	1.40	11.20	
413.45	0.900	42.00	4.20	1.40	12.60	
413.55	1.000	42.00	4.20	1.40	14.00	Top of Stone
413.70	1.150	1.13	0.00	0.00	14.00	
413.85	1.300	1.13	0.00	0.17	14.17	Invert of Overflow
414.10	1.550	1.13	0.00	0.28	14.45	Obvert of Overflow
	(m) 412.55 412.65 412.65 412.75 412.85 412.95 413.05 413.25 413.35 413.55 413.55 413.70 413.85 414.10	Elevation Depth (m) (m) 412.55 0.000 412.56 0.010 412.65 0.100 412.75 0.200 412.85 0.300 412.95 0.400 413.05 0.500 413.15 0.600 413.25 0.700 413.35 1.800 413.45 0.900 413.55 1.000 413.70 1.150 413.85 1.300 414.10 1.550	ElevationDepthStorage Vol(m)(m)(m²)412.550.00042.00412.550.01042.00412.650.10042.00412.650.10042.00412.750.20042.00412.850.30042.00412.950.40042.00413.050.50042.00413.150.60042.00413.250.70042.00413.350.80042.00413.450.90042.00413.551.00042.00413.651.00042.00413.701.1501.13413.851.3001.13414.101.5501.13	Storage Volume Calculations Elevation Depth Surface Incremental Area Stone Volume (m) (m) (m ²) (m ³) 412.55 0.000 42.00 0.00 412.56 0.100 42.00 0.42 412.65 0.100 42.00 3.78 412.75 0.200 42.00 4.20 412.85 0.300 42.00 4.20 412.85 0.300 42.00 4.20 412.85 0.300 42.00 4.20 413.05 0.500 42.00 4.20 413.05 0.500 42.00 4.20 413.15 0.600 42.00 4.20 413.35 0.800 42.00 4.20 413.35 0.800 42.00 4.20 413.35 1.000 42.00 4.20 413.45 0.900 42.00 4.20 413.55 1.000 42.00 4.20 <	Elevation Depth Surface Incremental Incremental Area Stone Storage Volume Volume (m) (m) (m ²) (m ³) (m ³) 412.55 0.000 42.00 0.00 0.00 412.56 0.010 42.00 0.42 0.14 412.65 0.100 42.00 3.78 1.26 412.75 0.200 42.00 4.20 1.40 412.85 0.300 42.00 4.20 1.40 412.85 0.300 42.00 4.20 1.40 412.95 0.400 42.00 4.20 1.40 413.05 0.500 42.00 4.20 1.40 413.15 0.600 42.00 4.20 1.40 413.35 0.800 42.00 4.20 1.40 413.35 0.800 42.00 4.20 1.40 413.35 1.000 42.00 4.20 1.40 413.4	Storage Volume Calculations Elevation Depth Surface Area Incremental Stone Incremental Storage Incremental Volume Accum. (m) (m) (m ²) (m ³) Incremental Storage Storage Storage (m) (m) (m ²) (m ³) (m ³) (m ³) Volume (m) (m) (m ²) (m ³) (m ³) (m ³) (m ³) 412.55 0.000 42.00 0.00 0.00 0.00 412.65 0.100 42.00 3.78 1.26 1.40 412.75 0.200 42.00 4.20 1.40 2.80 412.85 0.300 42.00 4.20 1.40 4.20 412.85 0.300 42.00 4.20 1.40 5.60 413.05 0.500 42.00 4.20 1.40 8.40 413.25 0.700 42.00 4.20 1.40 9.80 413.35 0.800 42.00 4.2

Bottom Infiltrat	ion	Side Infiltration (2 Sid	des Only)		C	verflow P	ipe
L(dw) =	6.00 m	L(dw) =	12.00	m	Q =	0.046	m³/s
W(dw) =	7.00 m	W(dw) =	7.00	m	Cd =	0.6	
D(dw) =	1.00 m	D(dw) =	1.00	m	H =	0.125	m
A(c) =	42.0 sq m	A(c) =	24.0	sq m	2g =	19.62	
VOL(dw)=	42.0 cu m				A =	0.049	m²
VOL(st)=	14.0 cu m				D =	0.250	m
K =	10.0 mm/hr	K =	10.0	mm/hr	D/2 =	0.125	m
	2.78E-04 cm/s		2.78E-04	cm/s			

	Stage/Storage/Discharge Table									
Stage	Storage	Infiltration	Overflow Pipe	Discharge						
(m)	(m ³)	(m³/s)	(m³/s)	(m³/s)						
412.55	0.00	0.0000	0.000	0.0000	Bottom of Stone					
412.56	0.14	0.00012	0.000	0.0001						
412.65	1.40	0.00012	0.000	0.0001						
412.75	2.80	0.00012	0.000	0.0001						
412.85	4.20	0.00013	0.000	0.0001						
412.95	5.60	0.00013	0.000	0.0001						
413.05	7.00	0.00013	0.000	0.0001						
413.15	8.40	0.00014	0.000	0.0001						
413.25	9.80	0.00014	0.000	0.0001						
413.35	11.20	0.00014	0.000	0.0001						
413.45	12.60	0.00015	0.000	0.0001						
413.55	14.00	0.00015	0.000	0.0002	Top of Stone					
413.70	14.00	0.00015	0.000	0.0002						
413.85	14.17	0.00016	0.000	0.0002	Invert of Overflow					
414.10	14.45	0.00017	0.046	0.0463	Obvert of Overflow					

Catchment 200 & 300 - Infiltration Gallery

Elevation	Depth	Surface	Incremental	Incremental	Accum.	
		Area	Stone	Storage	Storage	
			Volume	Volume	Volume	
(m)	(m)	(m²)	(m ³)	(m ³)	(m ³)	
411.80	0.000	95.00	0.00	0.00	0.00	Bottom of Stone
411.81	0.010	95.00	0.95	0.32	0.32	
411.90	0.100	95.00	8.55	2.85	3.17	
412.00	0.200	95.00	9.50	3.17	6.33	
412.10	0.300	95.00	9.50	3.17	9.50	
412.20	0.400	95.00	9.50	3.17	12.67	
412.30	0.500	95.00	9.50	3.17	15.83	
412.40	0.600	95.00	9.50	3.17	19.00	
412.50	0.700	95.00	9.50	3.17	22.17	
412.60	0.800	95.00	9.50	3.17	25.33	
412.70	0.900	95.00	9.50	3.17	28.50	
412.80	1.000	95.00	9.50	3.17	31.67	Top of Stone
413.05	1.250	1.13	0.00	0.00	31.67	
413.10	1.300	1.13	0.00	0.06	31.72	Invert of Overflow
413.35	1.550	1.13	0.00	0.28	32.01	Obvert of Overflow

Bottom Infiltra	tion	Side Infiltration (2 Sides Only)		(Overflow P	ipe
L(dw) =	10.00 m	L(dw) =	20.00	m	Q =	0.046	m³/s
W(dw) =	9.50 m	W(dw) =	9.50	m	Cd =	0.6	
D(dw) =	1.00 m	D(dw) =	1.00	m	H =	0.125	m
A(c) =	95.0 sq m	A(c) =	40.0	sq m	2g =	19.62	
VOL(dw)=	95.0 cu m				A =	0.049	m²
VOL(st)=	31.7 cu m				D =	0.250	m
K =	10.0 mm/ł	nr K =	10.0	mm/hr	D/2 =	0.125	m
	2.78E-04 cm/s		2.78E-04	cm/s			

	Stage/Storage/Discharge Table									
Stage	Storage	Infiltration	Overflow Pipe	Discharge						
(m)	(m ³)	(m³/s)	(m³/s)	(m³/s)	_					
411.80	0.00	0.0000	0.000	0.0000	Bottom of Stone					
411.81	0.32	0.00026	0.000	0.0003						
411.90	3.17	0.00027	0.000	0.0003						
412.00	6.33	0.00028	0.000	0.0003						
412.10	9.50	0.00028	0.000	0.0003						
412.20	12.67	0.00029	0.000	0.0003						
412.30	15.83	0.00029	0.000	0.0003						
412.40	19.00	0.00030	0.000	0.0003						
412.50	22.17	0.00030	0.000	0.0003						
412.60	25.33	0.00031	0.000	0.0003						
412.70	28.50	0.00031	0.000	0.0003						
412.80	31.67	0.00032	0.000	0.0003	Top of Stone					
413.05	31.67	0.00033	0.000	0.0003						
413.10	31.72	0.00034	0.000	0.0003	Invert of Overflow					
413.35	32.01	0.00035	0.046	0.0465	Obvert of Overflow					

Catchment 500 - Parking Lot Ponding

		Storage Volu	me Calculation	S		
Elevation	Depth	Surface	Pipe	Incremental	Accum.	
		Area	Area	Storage	Storage	
				Volume	Volume	
(m)	(m)	(m²)	(m²)	(m ³)	(m ³)	
413.59	0.000	1.13	0.00	0.00	0.00	Invert of Orifice Plate
413.62	0.030	1.13	0.00	0.03	0.03	Invert of Pipe
413.80	0.205	1.13	3.81	4.01	4.04	
413.97	0.380	1.13	3.81	4.01	8.05	
414.15	0.555	1.13	3.81	4.01	12.06	Obvert of Pipe
414.40	0.805	1.13	0.00	0.28	12.34	
414.65	1.055	1.13	0.00	0.28	12.62	
414.90	1.305	1.13	0.00	0.28	12.91	
415.02	1.430	0.36	0.00	0.09	13.00	T/G DCB.6
415.05	1.460	4.0	0.00	0.07	13.06	
415.10	1.510	13.0	0.00	0.43	13.49	
415.15	1.560	29.0	0.00	1.05	14.54	
415.20	1.610	53.0	0.00	2.05	16.59	
415.25	1.660	86.0	0.00	3.48	20.06	
415.32	1.730	139.0	0.00	7.87	27.94	Weir
415.37	1.780	205.0	0.00	8.60	36.54	
415.42	1.830	215.0	0.00	10.50	47.04	
415.47	1.880	241.0	0.00	11.40	58.44	Overflow

Ov Elev	verflow We	ir .25	inve	Orifice ert = 413.2	25
d1 =	1.88	m	Q =	0.023	m³/s
h =	1.73	m	Cd =	0.6	
H =	0.15	m	H =	1.84	m
2g =	19.62		2g =	19.62	
L =	6	m	A =	0.006	m²
Q =	0.482	m³/s	D =	0.090	m
			D/2 =	0.045	m

Stage	Storage	Orifice	Weir	Total	
		Discharge	Discharge	Discharge	
(m)	(m ³)	(m³/s)	(m³/s)	(m³/s)	
413.59	0.00	0.000	0.000	0.000	Invert of Orifice Plate
413.62	0.03	0.002	0.000	0.002	Invert of Pipe
413.80	4.04	0.007	0.000	0.007	
413.97	8.05	0.010	0.000	0.010	
414.15	12.06	0.012	0.000	0.012	Obvert of Pipe
414.40	12.34	0.015	0.000	0.015	
414.65	12.62	0.017	0.000	0.017	
414.90	12.91	0.019	0.000	0.019	
415.02	13.00	0.020	0.000	0.020	T/G DCB.6
415.05	13.06	0.020	0.000	0.020	
415.10	13.49	0.020	0.000	0.020	
415.15	14.54	0.021	0.000	0.021	
415.20	16.59	0.021	0.000	0.021	
415.25	20.06	0.021	0.000	0.021	
415.32	27.94	0.022	0.000	0.022	Weir
415.37	36.54	0.022	0.476	0.498	
415.42	47.04	0.023	0.479	0.502	
415.47	58.44	0.023	0.482	0.505	Overflow

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder: C:	:\Users\pgrier\Documents\Work\"
"		422	2144 465 Garafraxa\2023-01-18"
"		Output filename:	422144 2-year post.out"
"		Licensee name:	gmbp"
"		Company	
"		Date & Time last used:	1/18/2023 at 11:42:18 AM"
"	31 T	TIME PARAMETERS"	
"	5.000	Time Step"	
п	180.000	Max. Storm length"	
п	1500.000	Max. Hvdrograph"	
п	32 S	STORM Chicago storm"	
п	1	Chicago storm"	
	695.047	Coefficient A"	
	6.387	Constant B"	
	0.793	Exponent C"	
	0.380	Eraction R"	
	180 000	Duration"	
	1 000	Time sten multinlier"	
	±.000	Maximum intensity 93 292	mm/hr"
	Т	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	mm"
п	6	002bvd Hydrograph extension use	d in this file"
	33 0	ATCHMENT 100"	
	1	Triangulan SCS"	
п	1	Faual length"	
п	1	Honton equation"	
	100	Catchment 100"	
	100 000	% Impenvious"	
	0 030	Total Area"	
	25 000	Flow longth"	
п	23.000	Ovenland Slope"	
	2.000	Bonvious Anos"	
п	25 000	Pervious length"	
	23.000	Pervious religin	
	2.000	Impopuique Apop"	
	25.000	Impervious Area	
	25.000	Impervious length	
	2.000	Impervious stope	
	0.250	Pervious Manning n	
	/5.000	Pervious Max.inflitration	
	12.500	Pervious Min.inflitration	
	0.250	Pervious Lag constant (nours)	
	5.000	Terry Louis Depression Storage	
	0.015	Impervious Manning 'n'"	
	0.000	Impervious Max.intiltration"	
	0.000	Impervious Min.intiltration	
	0.050	Impervious Lag constant (hours)"	
"	1.500	Impervious Depression storage"	

"	0.006 0.00	0.000	0.000	c.m/sec"		
"	Catchment 100	Pervious	Impervious	Total Area		
"	Surface Area	0.000	0.030	0.030	hectare"	
"	Time of concentration	24.993	2.044	2.044	minutes"	
"	Time to Centroid	93.891	86.566	86.566	minutes"	
"	Rainfall depth	33.014	33.014	33.014	mm"	
"	Rainfall volume	0.00	9.90	9.90	c.m"	
"	Rainfall losses	32.003	1.926	1.926	mm"	
"	Runoff depth	1.010	31.087	31.087	mm"	
"	Runoff volume	0.00	9.33	9.33	c.m"	
"	Runoff coefficient	0.000	0.942	0.942		
"	Maximum flow	0.000	0.006	0.006	c.m/sec"	
"	40 HYDROGRAPH Add Runoff					
"	4 Add Runoff "					
"	0.006 0.00	0.000	0.000"			
"	54 POND DESIGN"					
"	0.006 Current peak flow	c.m/sec"				
"	0.003 Target outflow o	.m/sec"				
"	9.3 Hydrograph volume	c.m"				
"	15. Number of stages"					
"	0.000 Minimum water level	metre"				
"	3.000 Maximum water level	metre"				
"	0.000 Starting water leve	el metre"				
"	0 Keep Design Data: 1	L = True; 0 =	= False"			
"	Level Discharge	Volume"				
"	412.550 0.000	0.000"				
"	412.560 0.00012	0.1400"				
"	412.650 0.00012	1.400"				
"	412.750 0.00012	2.800"				
"	412.850 0.00013	4.200"				
"	412.950 0.00013	5.600"				
"	413.050 0.00013	7.000"				
"	413.150 0.00014	8.400"				
"	413.250 0.00014	9.800"				
"	413.350 0.00014	11.200"				
"	413.450 0.00015	12.600"				
"	413.550 0.00015	14.000"				
"	413.700 0.00016	14.000"				
"	413.850 0.00016	14.170"				
"	414.100 0.04629	14.450"				
"	Peak outflow	0.00	00 c.m/se	ec"		
"	Maximum level	413.13	30 metre'	1		
"	Maximum storage	8.12	25 c.m"			
"	Centroidal lag	10.64	15 hours"			
"	0.006 0.006	0.000	0.000 c.m,	/sec"		
"	40 HYDROGRAPH Combine	1"				
"	6 Combine "					
"	1 Node #"					
"	Infiltrated on-site	2"				
"	Maximum flow	0.00	00 c.m/se	ec"		
"	ŀ	Hydrograph volume	9.32	26 c.m"		
---	---------	-----------------------	---------------	------------	------------	----------
		0.006 0.0	06 0.000	0.000"		
"	40 H	IYDROGRAPH Start - Ne	w Tributary"			
	2	Start - New Tribut	ary"			
		0.006 0.0	00 0.000	0.000"		
"	33 (CATCHMENT 200"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	2	Horton equation"				
"	200	Catchment 200"				
"	100.000	% Impervious"				
"	0.030	Total Area"				
"	25.000	Flow length"				
"	2.000	Overland Slope"				
"	0.000	Pervious Area"				
"	25.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.030	Impervious Area"				
"	25.000	Impervious length"				
"	2.000	Impervious slope"				
"	0.250	Pervious Manning '	n'"			
"	75.000	Pervious Max.infil	tration"			
"	12.500	Pervious Min.infil	tration"			
"	0.250	Pervious Lag const	ant (hours)"			
"	5.000	Pervious Depressio	n storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.inf	iltration"			
"	0.000	Impervious Min.inf	iltration"			
"	0.050	Impervious Lag con	stant (hours))"		
"	1.500	Impervious Depress	ion storage"			
"		0.006 0.0	00 0.000	0.000	c.m/sec"	
"	(Catchment 200	Pervious	Impervious	Total Area	п
"	9	Surface Area	0.000	0.030	0.030	hectare"
"	٦	ime of concentration	24.993	2.044	2.044	minutes"
"	٦	ime to Centroid	93.891	86.566	86.566	minutes"
"	F	Rainfall depth	33.014	33.014	33.014	mm''
"	F	Rainfall volume	0.00	9.90	9.90	c.m"
"	F	Rainfall losses	32.003	1.926	1.926	mm"
"	F	Runoff depth	1.010	31.087	31.087	mm"
"	F	Runoff volume	0.00	9.33	9.33	c.m"
"	F	Runoff coefficient	0.000	0.942	0.942	п
"	Ν	1aximum flow	0.000	0.006	0.006	c.m/sec"
"	40 H	HYDROGRAPH Add Runoff	н			
"	4	Add Runoff "				
"		0.006 0.0	06 0.000	0.000"		
"	33 (CATCHMENT 300"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	2	Horton equation"				
"	300	Catchment 300"				

```
...
        100.000
                   % Impervious"
...
                   Total Area"
          0.036
н
         25.000
                   Flow length"
...
          2.000
                   Overland Slope"
...
                   Pervious Area"
          0.000
...
         25.000
                   Pervious length"
...
          2.000
                   Pervious slope"
...
                   Impervious Area"
          0.036
...
                   Impervious length"
         25.000
...
          2.000
                   Impervious slope"
...
          0.250
                   Pervious Manning 'n'"
...
         75.000
                   Pervious Max.infiltration"
...
         12.500
                   Pervious Min.infiltration"
...
          0.250
                   Pervious Lag constant (hours)"
...
          5.000
                   Pervious Depression storage"
...
          0.015
                   Impervious Manning 'n'"
...
          0.000
                   Impervious Max.infiltration"
...
          0.000
                   Impervious Min.infiltration"
...
          0.050
                   Impervious Lag constant (hours)"
...
          1.500
                   Impervious Depression storage"
...
                         0.007
                                     0.006
                                                0.000
                                                            0.000 c.m/sec"
...
                                                                                 п
                Catchment 300
                                          Pervious
                                                       Impervious Total Area
...
                Surface Area
                                          0.000
                                                       0.036
                                                                    0.036
                                                                                 hectare"
...
                Time of concentration
                                          24.993
                                                       2.044
                                                                    2.044
                                                                                 minutes"
...
                Time to Centroid
                                          93.891
                                                       86.566
                                                                    86.566
                                                                                 minutes"
н
                                                       33.014
                                                                    33.014
                                                                                 mm"
                Rainfall depth
                                          33.014
...
                Rainfall volume
                                          0.00
                                                       11.88
                                                                    11.88
                                                                                 c.m"
...
                Rainfall losses
                                           32.003
                                                                                 mm"
                                                       1.926
                                                                    1.926
...
                Runoff depth
                                           1.010
                                                       31.087
                                                                    31.087
                                                                                 mm"
...
                Runoff volume
                                          0.00
                                                       11.19
                                                                    11.19
                                                                                 c.m"
...
                Runoff coefficient
                                                                                 н
                                          0.000
                                                       0.942
                                                                    0.942
...
               Maximum flow
                                                                                 c.m/sec"
                                          0.000
                                                       0.007
                                                                    0.007
...
                HYDROGRAPH Add Runoff "
  40
...
                   Add Runoff "
              4
...
                                                0.000
                                     0.013
                                                            0.000"
                         0.007
..
  54
                POND DESIGN"
...
          0.013
                   Current peak flow
                                            c.m/sec"
...
          0.003
                   Target outflow
                                        c.m/sec"
...
           20.5
                                            c.m"
                   Hydrograph volume
...
            15.
                   Number of stages"
...
          0.000
                   Minimum water level
                                              metre"
...
          3.000
                                              metre"
                   Maximum water level
...
          0.000
                   Starting water level
                                               metre"
...
              0
                   Keep Design Data: 1 = True; 0 = False"
...
                      Level Discharge
                                            Volume"
...
                   411.800
                                 0.000
                                             0.000"
...
                   411.810
                               0.00026
                                            0.3200"
...
                               0.00027
                   411.900
                                             3.170"
...
                                             6.330"
                   412.000
                               0.00027
...
                   412.100
                               0.00028
                                             9.500"
```

		412.200	0.00029	12.670"	
"		412.300	0.00029	15.830"	
"		412.400	0.00030	19.000"	
		412.500	0.00030	22.170"	
		412.600	0.00031	25.330"	
		412.700	0.00031	28.500"	
		412.800	0.00032	31.670"	
		413,050	0.00033	31.670"	
		413,100	0.00034	31.720"	
		413.350	0.04647	32.010"	
"	Р	eak outflo	N CICLCI	0.000	c.m/sec"
	M	aximum leve	-]	412.365	metre"
	M	aximum sto	rage	17.884	
	ſ	entroidal	lag	10 650	hours"
	C	0 007	0 013	A AAA	0 000 c m/sec"
	40 н		Combine	1"	0.000 c.m/scc
	40 1	Combine		Ŧ	
	0	Node #"			
	T	Tofiltos	tod on-site	п	
п	м	avimum flo		0 000	c m/coc"
	14 L	aximum 1100	volumo	20.000	c m"
	п	yurograph v		29.045	0.000"
	10 L		Stant Now	Tnibutany"	0.000
	40 N	Stant I	Now Tributa	nv"	
	2			ny A A A A A A	0 000"
	22 C	ATCHMENT A	07 0.000 07 0.000	0.000	0.000
	55 C	AICHMENI 40	00 00 505"		
	1		ar SCS		
	1	Equal le	igui austion"		
	2 400				
	400		L 400		
	0.000	7 Imperv.			
	0.130	TOLAL Are	2d ~+ 6 "		
	45.000	FIOW Leng	gun Slene"		
	2.000	Dopuiana	Stope		
	0.130	Pervious	Area		
	45.000	Pervious	rengen		
	2.000	Pervious	stope		
	0.000	Impervio	us Area		
	45.000	Impervio	us iength		
	2.000	Imperviou	us siope Manaina 'n		
	0.250	Pervious	Manning n		
	/5.000	Pervious	Max.infilt	ration	
	12.500	Pervious	M1n.1n+11t	ration"	
	0.250	Pervious	Lag constal	nt (nours)"	
	5.000	Pervious	Depression	storage"	
	0.015	Impervio	us Manning	`n`" 1++ ' "	
	0.000	Impervio	us Max.infi	itration"	
	0.000	Impervio	us Min.inti.	itration"	
	0.050	Impervio	us Lag const	tant (nours)"	
	1.500	Impervio	us Depressio	on storage"	

"		0.001	0.000	0.000	0.000	c.m/sec"	
"	Catchm	ent 400		Pervious	Impervious	Total Area	п
"	Surfac	e Area		0.130	0.000	0.130	hectare"
"	Time c	of concentrat	tion	35.561	2.909	35.560	minutes"
"	Time t	o Centroid		101.605	87.888	101.605	minutes"
"	Rainfa	ll depth		33.014	33.014	33.014	mm"
"	Rainfa	ill volume		42.92	0.00	42.92	c.m"
"	Rainfa	ll losses		32.002	2.087	32.002	mm"
"	Runoff	[:] depth		1.012	30.926	1.012	mm"
"	Runoff	volume		1.32	0.00	1.32	c.m"
"	Runoff	coefficient	t	0.031	0.000	0.031	"
"	Maximu	ım flow		0.001	0.000	0.001	c.m/sec"
"	40 HYDROG	RAPH Add Rur	noff "	1			,
"	4 Add	l Runoff "					
"		0.001	0.001	0.000	0.000"		
"	40 HYDROG	RAPH Copy to	o Outf	low"			
	8 Con	v to Outflow	v"				
		0.001	0.001	0.001	0.000"		
"	40 HYDROG	RAPH Combi	ine	2"			
"	6 Cor	bine "					
"	2 Nod	le #"					
"	Off	-Site"					
"	Maximu	um flow		0.0	01 c.m/se	≥c"	
	Hvdrog	raph volume		1.3	15 c.m"		
"		0.001	0.001	0.001	0.001"		
"	40 HYDROG	RAPH Start ·	- New	Tributarv"			
"	2 Sta	nrt - New Tri	ibutar	יע"			
		0.001	0.000	0.001	0.001"		
"	33 CATCHM	IENT 500"					
"	1 Tri	angular SCS'					
"	1 Eau	al length"					
"	2 Hor	ton equation	ר"				
"	500 Cat	chment 500"					
"	95.000 % I	mpervious"					
"	0.194 Tot	al Area"					
"	25.000 Flo	w length"					
"	2.000 Ove	erland Slope'	•				
"	0.010 Per	vious Area"					
"	25.000 Per	vious length	า"				
"	2.000 Per	vious slope'					
"	0.184 Imp	ervious Area	а"				
"	25.000 Imp	ervious lena	gth"				
"	2.000 Imp	ervious slor	be"				
"	0.250 Per	vious Mannir	ng 'n'	п			
"	75.000 Per	vious Max.ir	nfiltr	ration"			
"	12.500 Per	vious Min.ir	nfiltr	ration"			
"	0.250 Per	vious Lag co	onstar	nt (hours)"			
"	5.000 Per	vious Depres	ssion	storage"			
"	0.015 Imp	ervious Mann	ning '	'n'"			
"	0.000 Imp	ervious Max.	.infil	ltration"			
	•						

"	0.000	Impervious	Min.infi	ltration"			
"	0.050	Impervious	Lag const	tant (hours))"		
"	1.500	Impervious	Depressio	on storage"			
"		0.037	0.00	0.001	0.001 0	.m/sec"	
"	Cat	chment 500	1	Pervious	Impervious	Total Area	
"	Sur	face Area		0.010	0.184	0.194	hectare"
"	Tim	e of conce	ntration	24.993	2.044	2.084	minutes"
"	Tim	e to Centr	oid	93.891	86.566	86.579	minutes"
"	Rai	nfall dept	h	33.014	33.014	33.014	mm"
"	Rai	nfall volu	me	3.20	60.84	64.05	c.m"
"	Rai	nfall loss	es	32.003	1.926	3.430	mm"
"	Run	off depth		1.010	31.087	29.584	mm"
"	Run	off volume	1	0.10	57.29	57.39	c.m"
"	Run	off coeffi	cient	0.031	0.942	0.896	
"	Max	imum flow		0.000	0.037	0.037	c.m/sec"
"	40 HYD	ROGRAPH Ad	d Runoff '				
"	4	Add Runoff					
"		0.037	0.037	7 0.001	0.001"		
"	54 PON	D DESIGN"					
"	0.037	Current pe	ak flow	c.m/sec"			
"	0.002	Target out	flow c	.m/sec"			
	57.4	Hydrograph	volume	c.m"			
	18.	Number of	stages"				
	0.000	Minimum wa	ter level	metre"			
	3.000	Maximum wa	ter level	metre"			
	0.000	Starting w	ater leve.	L metre"			
	0	Keep Desig	n Data: 1	= True; 0 =	= False"		
		Level Di	scharge	Volume"			
		413.590	0.000	0.000"			
		413.620	0.00200	0.03000"			
	•	413.800	0.00/00	4.040			
	•	413.970	0.01000	8.050			
		414.150	0.01200	12.000			
	4	414.400	0.01500	12.340			
	4	414.050	0.01700	12.020			
		414.900	0.01900	12.910			
		415.020	0.02000	13 060"			
		415.050	0.02000	13 /90"			
		415.100	0.02000	11 510"			
		415 200	0.02100	16 590"			
		415 250	0.02100	20.050			
		415 320	0.02100	20.000			
		415.370	0.4980	36.540"			
		415,420	0.5020	47,040"			
		415 470	0.5020	58 440"			
	Pea	k outflow	3.3030	0.02	21 c.m/se	°C"	
	Max	imum level		415.1	53 metre'		
	Max	imum stora	ge	14.66	59 c.m"		
	<u> </u>	+noidal la		1 61	l houns"		

	40	0.037 0.037 0.021 0.001 C.m/Sec
	40	HYDROGRAPH COMDINE 2
		6 Combine "
		2 Node #"
		Off-Site"
"		Maximum flow 0.021 c.m/sec"
"		Hydrograph volume 58.678 c.m"
"		0.037 0.037 0.021 0.021"
"	40	HYDROGRAPH Confluence 1"
"		7 Confluence "
"		1 Node #"
"		Infiltrated on-site"
"		Maximum flow 0.000 c.m/sec"
"		Hydrograph volume 29.843 c.m"
"		0.037 0.000 0.021 0.000"
"	40	HYDROGRAPH Copy to Outflow"
"		8 Copy to Outflow"
"		0.037 0.000 0.000 0.000"
"	40	HYDROGRAPH Combine 3"
n	-	6 Combine "
		3 Node #"
		Maximum flow 0.000 c.m/sec"
		Hydrograph volume 29 843 cm"
	10	HVDROGRAPH Confluence 2"
	40	7 Confluence "
		2 Node #"
		Off Sito"
		$Maximum flow \qquad \qquad$
		Hydrograph yolumo 52679 c m ⁴
	10	UVDROCRADU Conv. to Outflou"
	40	HYDROGRAPH COPY TO OUTTOW
	40	0.03/ 0.021 0.021 0.000
	40	HYDROGRAPH COMDINE 3
		6 Compine
		3 NODE #
		Maximum flow 0.022 c.m/sec"
		Hydrograph volume 88.521 c.m"
		0.03/ 0.021 0.021 0.022"
	40	HYDRUGRAPH Contluence 3"
		7 Confluence "
"		3 Node #"
"		TOTAL"
"		Maximum flow 0.022 c.m/sec"
"		Hydrograph volume 88.521 c.m"
"		0.037 0.022 0.021 0.000"
"	38	START/RE-START TOTALS 3"

	3 Runoff Totals on EXIT"		
"	Total Catchment area	0.420	hectare"
"	Total Impervious area	0.280	hectare"
н	Total % impervious	66.738"	
" 19	EXIT"		

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	C:\Users\pgrier\Documents\Work\"
"			422144 465 Garafraxa\2023-01-18"
"		Output filename:	422144 5-year post.out"
"		Licensee name:	gmbp"
"		Company	
"		Date & Time last used:	1/18/2023 at 11:46:09 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
п	180.000	Max. Storm length"	
п	1500.000	Max. Hydrograph"	
п	32 S	STORM Chicago storm"	
п	1	Chicago storm"	
	1459.072	Coefficient A"	
	13,690	Constant B"	
	0.850	Exponent C"	
	0.380	Eraction R"	
	180 000	Duration"	
п	1 000	Time sten multinlier"	
п	1.000 M	lavinum intensity 113	586 mm/hr"
	Т	otal denth 49	792 mm"
	6	005byd Hydrograph extension	used in this file"
	33 (ATCHMENT 100"	
	1	Triangular SCS"	
п	1	Faual length"	
п	1	Honton equation"	
	100	Catchment 100"	
	100 000	% Impervious"	
	0 030	Total Area"	
	25 000	Flow longth"	
п	23.000	Ovenland Slope"	
	2.000	Bonvious Anop"	
п	25 000	Penvious length"	
	23.000	Pervious clope"	
	2.000	Transvious Anas"	
	25.000	Impervious Area	
	25.000	Impervious rengen	
	2.000	Impervious slope	
	0.250	Pervious Manning n	
	75.000	Pervious Max.inflitration	
	12.500	Pervious Min.inflitration	
	0.250	Pervious Lag constant (nours))
	5.000	Terrorious Depression storage	
	0.015	Impervious Manning 'n'"	
	0.000	Impervious Max.intiltration"	
	0.000	Impervious Min.intiltration"	\ !!
	0.050	Impervious Lag constant (hour	°S) "
"	1.500	Impervious Depression storage	2"

"	0.008 0.0	00 0.000	0.000	c.m/sec"	
"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.000	0.030	0.030	hectare"
"	Time of concentration	13.471	1.890	1.890	minutes"
"	Time to Centroid	90.770	85.354	85.354	minutes"
"	Rainfall depth	49.792	49.792	49.792	mm"
"	Rainfall volume	0.00	14.94	14.94	c.m"
"	Rainfall losses	39.012	2.179	2.179	mm"
"	Runoff depth	10.780	47.613	47.613	mm"
"	Runoff volume	0.00	14.28	14.28	c.m"
"	Runoff coefficient	0.000	0.956	0.956	
"	Maximum flow	0.000	0.008	0.008	c.m/sec"
"	40 HYDROGRAPH Add Runoff	п			
"	4 Add Runoff "				
"	0.008 0.0	08 0.000	0.000"		
"	54 POND DESIGN"				
	0.008 Current peak flow	c.m/sec"			
	0.003 Target outflow	c.m/sec"			
	14.3 Hydrograph volume	c.m"			
	15. Number of stages"				
	0 000 Minimum water leve	1 metre"			
	3.000 Maximum water leve	1 metre"			
	0 000 Starting water lev	el metre"			
	0 Keen Design Data	1 = True: 0 =	= False"		
	Level Discharge	Volume"	1 dibe		
	412,550 0,000	0.000"			
	412 560 0 00012	0.000			
	412,650 0,00012	1,400"			
	412 750 0 00012	2 800"			
	412,850 0,00013	4,200"			
	412 950 0 00013	5 600"			
	413,050 0,00013	7,000"			
	413 150 0 00014	8 400"			
	413 250 0 00014	9 800"			
	413 350 0 00014	11 200"			
	413 450 0 00015	12 600"			
	413 550 0 00015	14 000"			
	413 700 0 00016	14 000"			
	413 850 0 00016	14 170"			
	414 100 0 04629	14 450"			
	Peak outflow	A 90	20 cm/s	<u>م</u> د"	
	Maximum level	/13 /	50 c.m/sc 50 motro		
	Maximum storage	12 60	23 cm"		
	Controidal lag	12.00	24 hours"		
		0 000	0 000 c m	/	
	AQ HVDPOCPADU Combine	1"	0.000 (.11)	JEL	
	40 HIDROURAPH COMDINE	Ŧ			
	1 Node #"				
	I NOUE # Infiltnated on cit	٥"			
	INTICALEU ON-SIL		20 cm/c		
	MAXIIIUIII FIUW	0.00	ບບ ເ.ແ/S6	-L	

"	I	Hydrograph volume	11.9	15 c.m"		
		0.008 0.	0.000 0.000	0.000"		
"	40	HYDROGRAPH Start - N	ew Tributary"			
	2	Start - New Tribu	tary"			
		0.008 0.0	000 0.000	0.000"		
	33	CATCHMENT 200"				
	1	Triangular SCS"				
	1	Equal length"				
	2	Horton equation"				
	200	Catchment 200"				
	100.000	% Impervious"				
	0.030	lotal Area"				
	25.000	Flow length"				
	2.000	Overland Slope"				
	0.000	Pervious Area"				
	25.000	Pervious length"				
	2.000	Pervious slope"				
	0.030	Impervious Area				
	25.000	Impervious length				
	2.000	Impervious slope	1			
	0.250	Pervious Manning	· N · ·· 1++			
	/5.000	Pervious Max. 1nti.	ltration			
	12.500	Pervious Min. Inti.	ltration			
	0.250	Pervious Lag cons	cant (nours)			
	5.000	Tenonyious Monnin	on storage			
	0.015	Impervious Manning	g n filtpotion"			
	0.000	Impervious Max.In	filtnation"			
	0.000		nctant (bound	<u>\ "</u>		
	1 500		rion stonago")		
	1.500		aaa aaa	0 000 0	m/sec"	
		Catchment 200	Pervious	Tmpervious	Total Area	
		Surface Area	0 000	1 Mper v1003		hoctano"
		Time of concentration	n 13 471	1 890	1 890	minutes"
		Time to Centroid	90 770	85 354	85 354	minutes"
		Rainfall denth	49,792	49,792	49,792	mm"
		Rainfall volume	0.00	14.94	14.94	c"
		Rainfall losses	39,012	2.179	2.179	mm"
		Runoff depth	10.780	47.613	47.613	mm"
		Runoff volume	0.00	14.28	14.28	c.m"
"		Runoff coefficient	0.000	0.956	0.956	"
"		Maximum flow	0.000	0.008	0.008	c.m/sec"
"	40	HYDROGRAPH Add Runof	f "			,
"	4	Add Runoff "				
"		0.008 0.0	008 0.000	0.000"		
"	33	CATCHMENT 300"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	2	Horton equation"				
"	300	Catchment 300"				

```
...
        100.000
                   % Impervious"
...
                   Total Area"
          0.036
н
         25.000
                   Flow length"
...
          2.000
                   Overland Slope"
...
                   Pervious Area"
          0.000
...
         25.000
                   Pervious length"
...
          2.000
                   Pervious slope"
...
                   Impervious Area"
          0.036
...
                   Impervious length"
         25.000
...
          2.000
                   Impervious slope"
...
          0.250
                   Pervious Manning 'n'"
...
         75.000
                   Pervious Max.infiltration"
...
         12.500
                   Pervious Min.infiltration"
...
          0.250
                   Pervious Lag constant (hours)"
...
          5.000
                   Pervious Depression storage"
...
          0.015
                   Impervious Manning 'n'"
...
          0.000
                   Impervious Max.infiltration"
...
          0.000
                   Impervious Min.infiltration"
...
          0.050
                   Impervious Lag constant (hours)"
...
          1.500
                   Impervious Depression storage"
...
                         0.009
                                     0.008
                                                0.000
                                                            0.000 c.m/sec"
...
                                                                                 п
                Catchment 300
                                          Pervious
                                                       Impervious Total Area
...
                Surface Area
                                          0.000
                                                       0.036
                                                                    0.036
                                                                                 hectare"
...
                Time of concentration
                                                       1.890
                                          13.471
                                                                    1.890
                                                                                 minutes"
...
                Time to Centroid
                                          90.770
                                                       85.354
                                                                    85.354
                                                                                 minutes"
н
                                                                    49.792
                                                                                 mm"
                Rainfall depth
                                          49.792
                                                       49.792
...
                Rainfall volume
                                          0.00
                                                       17.92
                                                                    17.93
                                                                                 c.m"
...
                Rainfall losses
                                           39.012
                                                       2.179
                                                                    2.179
                                                                                 mm"
...
                Runoff depth
                                           10.780
                                                       47.613
                                                                    47.613
                                                                                 mm"
...
                Runoff volume
                                          0.00
                                                       17.14
                                                                    17.14
                                                                                 c.m"
...
                Runoff coefficient
                                                                                 н
                                          0.000
                                                       0.956
                                                                    0.956
...
               Maximum flow
                                                                                 c.m/sec"
                                          0.000
                                                       0.009
                                                                    0.009
...
                HYDROGRAPH Add Runoff "
  40
...
                   Add Runoff "
              4
...
                         0.009
                                     0.017
                                                0.000
                                                            0.000"
..
  54
                POND DESIGN"
...
          0.017
                   Current peak flow
                                            c.m/sec"
...
          0.003
                   Target outflow
                                        c.m/sec"
...
           31.4
                                            c.m"
                   Hydrograph volume
...
            15.
                   Number of stages"
...
          0.000
                   Minimum water level
                                              metre"
...
          3.000
                                              metre"
                   Maximum water level
...
          0.000
                   Starting water level
                                               metre"
...
              0
                   Keep Design Data: 1 = True; 0 = False"
...
                      Level Discharge
                                            Volume"
...
                   411.800
                                 0.000
                                             0.000"
...
                   411.810
                               0.00026
                                            0.3200"
...
                               0.00027
                   411.900
                                             3.170"
...
                                             6.330"
                   412.000
                               0.00027
...
                   412.100
                               0.00028
                                             9.500"
```

п		412 200	a aaa29	12 670"	
		412 300	0.00029	15 830"	
		412.300	0.00025	19 000"	
		412.400	0.00030	22 170"	
		412.500	0.00030	25 330"	
		412.000	0.00031	29.550	
		412.700	0.00031	31 670"	
		412.000	0.00032	31 670"	
		413.050	0.00033	31.070	
		413.100	0.00034	22 010"	
	Do	413.350	0.04047	22.010	c m/coc"
	re: Ma:	ak Outlio vimum lov	~ ^]	412 702	motho"
	Ma. Maj	ximum iev	el el	412.702	metre
	ria. Co	ximum sto ntnoidol	lage	20.004	C.III
	Ce		1ag	12.209	
	40	0.009	0.01/ Combine	0.000	0.000 C.m/sec
	40 HY	DRUGRAPH	Combine	T	
	6	Combine			
	1	Node #"			
		Infiltra	tea on-site"		/ II
	Ma	XIMUM TIO	W	0.000	c.m/sec
	Hy	arograph	volume	37.823	C.M.
	40	0.0	09 0.01/	0.000	0.000"
	40 HY	DROGRAPH	Start - New	Iributary"	
	2	Start -	New Iributar	'y"	
		0.0	09 0.000	0.000	0.000"
	33 CA	TCHMENT 4	00"		
	1	Triangul	ar SCS"		
	1	Equal le	ngth"		
	2	Horton e	quation"		
	400	Catchmen	t 400"		
	0.000	% Imperv	ious"		
"	0.130	Total Ar	ea"		
"	45.000	Flow len	gth"		
"	2.000	Overland	Slope"		
"	0.130	Pervious	Area"		
"	45.000	Pervious	length"		
"	2.000	Pervious	slope"		
"	0.000	Impervio	us Area"		
"	45.000	Impervio	us length"		
"	2.000	Impervio	us slope"		
"	0.250	Pervious	Manning 'n'	"	
"	75.000	Pervious	Max.infiltr	ation"	
"	12.500	Pervious	Min.infiltr	ation"	
"	0.250	Pervious	Lag constan	t (hours)"	
"	5.000	Pervious	Depression	storage"	
"	0.015	Impervio	us Manning '	n'"	
"	0.000	Impervio	us Max.infil	tration"	
"	0.000	Impervio	us Min.infil	tration"	
"	0.050	Impervio	us Lag const	ant (hours)"	
"	1.500	Impervio	us Depressio	n storage"	

"		0.008	0.000	0.000	0.000 0	.m/sec"	
"	Catch	nment 400		Pervious	Impervious	Total Area	н
"	Surfa	ace Area		0.130	0.000	0.130	hectare"
"	Time	of concentrat	ion	19.167	2.689	19.167	minutes"
"	Time	to Centroid		96.350	86.563	96.350	minutes"
"	Rainf	fall depth		49.792	49.792	49.792	mm"
"	Rainf	fall volume		64.73	0.00	64.73	c.m"
"	Rainf	fall losses		39.010	2.419	39.010	mm"
"	Runof	ff depth		10.782	47.373	10.782	mm"
"	Runof	ff volume		14.02	0.00	14.02	c.m"
"	Runof	ff coefficient		0.217	0.000	0.217	"
"	Maxim	num flow		0.008	0.000	0.008	c.m/sec"
"	40 HYDRO)GRAPH Add Run	off "				
"	4 Ac	ld Runoff "					
"		0.008	0.008	0.000	0.000"		
"	40 HYDRC)GRAPH Copy to	0utf	low"			
"	8 Cc	opy to Outflow	<i>ו</i> "				
"		0.008	0.008	0.008	0.000"		
"	40 HYDRC)GRAPH Combi	ne	2"			
"	6 Cc	ombine "					
"	2 No	ode #"					
"	Of	ff-Site"					
"	Maxim	num flow		0.00	08 c.m/se	ec"	
"	Hydro	ograph volume		14.01	L6 c.m"		
		0.008	0.008	0.008	0.008"		
	40 HYDRC)GRAPH Start -	New	Tributary"			
	2 St	art - New Tri	.butar	у"			
		0.008	0.000	0.008	0.008"		
	33 CATCH	IMENT 500"					
	1 Ir	riangular SCS"					
		luai length"					
	2 HC	orton equation	1				
		Tmpopuious"					
	95.000 %	Impervious					
	25 000 51	low longth"					
	2 2 2 0 0 0	verland Slone"	ı				
	2.000 0V 0.010 Dc	rvious Area"					
	25 000 Pe	ervious length					
	2000 Pe	ervious slone"	•				
	0.184 Tr	nervious Area					
	25,000 Tr	npervious leng	rth"				
	23.000 In 2.000 In	mpervious slop)e"				
	0.250 Pe	ervious Mannin	ig 'n'				
	75.000 Pe	ervious Max.in	filtr	ation"			
"	12.500 Pe	ervious Min.in	filtr	ation"			
	0.250 Pe	ervious Lag co	nstan	t (hours)"			
"	5.000 Pe	ervious Depres	sion	storage"			
"	0.015 Im	npervious Mann	ing '	n'"			
"	0.000 Im	npervious Max.	infil	tration"			

"	0.000	Impervious	s Min.infi	ltration"			
"	0.050	Impervious	s Lag cons	stant (hours)"		
"	1.500	Impervious	s Depressi	on storage"			
"		0.048	3 0.00	0.008	0.008	c.m/sec"	
"	Ca	tchment 500)	Pervious	Impervious	Total Area	
"	Su	irface Area		0.010	0.184	0.194	hectare"
"	Ti	me of conce	entration	13.471	1.890	2.026	minutes"
"	Ti	me to Centr	roid	90.770	85.354	85.417	minutes"
"	Ra	infall dept	:h	49.792	49.792	49.792	mm"
"	Ra	infall volu	ume	4.83	91.77	96.60	c.m"
"	Ra	infall loss	ses	39.012	2.179	4.020	mm"
"	Ru	unoff depth		10.780	47.613	45.771	mm"
"	Ru	Inoff volume	2	1.05	87.75	88.80	c.m"
"	Ru	unoff coeffi	icient	0.217	0.956	0.919	
"	Ma	aximum flow		0.001	0.047	0.048	c.m/sec"
"	40 HY	DROGRAPH A	dd Runoff	п			
"	4	Add Runof	- "				
"	-	0.048	3 0.04	8 0.008	0.008"		
"	54 PC	ND DESIGN"					
"	0.048	Current pe	eak flow	c.m/sec"			
"	0.002	Target out	flow c	.m/sec"			
"	88.8	Hvdrograph	n volume	c.m"			
"	18.	Number of	stages"				
"	0.000	Minimum wa	ater level	. metre"			
"	3,000	Maximum wa	ater level	metre"			
"	0.000	Starting v	water leve	el metre"			
"	0	Keep Desig	n Data: 1	= True: 0	= False"		
"	-	Level D	ischarge	Volume"			
"		413,590	0.000	0.000"			
"		413.620	0.00200	0.03000"			
"		413.800	0.00700	4.040"			
"		413.970	0.01000	8.050"			
"		414.150	0.01200	12.060"			
"		414.400	0.01500	12.340"			
"		414.650	0.01700	12.620"			
"		414.900	0.01900	12.910"			
"		415.020	0.02000	13.000"			
"		415.050	0.02000	13.060"			
"		415.100	0.02000	13.490"			
"		415.150	0.02100	14.540"			
"		415.200	0.02100	16.590"			
"		415.250	0.02100	20.060"			
"		415.320	0.02200	27.940"			
"		415.370	0.4980	36.540"			
"		415.420	0.5020	47.040"			
"		415.470	0.5050	58.440"			
"	Pe	ak outflow		0.0	22 c.m/s	ec"	
"	Ma	aximum level	L	415.3	15 metre		
"	Ma	aximum stora	age	27.4	12 c.m"		
"	Ce	entroidal la	ag	1.6	50 hours"		

		0.019 0.019	0 022 0	009 c m/coc"	
	40	UNDROCRADU Combino	ש.שבע ש. סיי	.008 C.m/sec	
	40	AYDROGRAPH COMDINE .	2		
		2 Node #			
		Utt-Site"		<i>,</i> "	
		Maximum +low	0.030	c.m/sec"	
		Hydrograph volume	102.829	c.m"	
"		0.048 0.048	0.022	0.030"	
"	40	HYDROGRAPH Confluence	1"		
"		7 Confluence "			
"		1 Node #"			
"		Infiltrated on-site"			
"		Maximum flow	0.000	c.m/sec"	
"		Hydrograph volume	37.823	c.m"	
"		0.048 0.000	0.022	0.000"	
"	40	HYDROGRAPH Copy to Outfle	ow"		
"		8 Copy to Outflow"			
"		0.048 0.000	0.000	0.000"	
"	40	HYDROGRAPH Combine	3"		
"		6 Combine "			
"		3 Node #"			
"		TOTAL"			
"		Maximum flow	0.000	c.m/sec"	
"		Hydrograph volume	37.823	c.m"	
"		0.048 0.000	0.000	0.000"	
"	40	HYDROGRAPH Confluence	2"		
"		7 Confluence "			
"		2 Node #"			
		Off-Site"			
		Maximum flow	0.030	c.m/sec"	
		Hydrograph volume	102.829	c.m"	
		0.048 0.030	0.000	0.000"	
	40	HYDROGRAPH Copy to Outfl	ow"		
		8 Copy to Outflow"			
		0.048 0.030	0.030	0.000"	
	40	HYDROGRAPH Combine	ייי	01000	
		6 Combine "			
		3 Node #"			
		Maximum flow	0 030	c m/sec"	
		Hydrograph volume	140 653	c m"	
			0 030	0 030"	
	10	HVDROGRADH Confluence	9.030 2"	0.010	
	40	7 Confluence "	ر		
		2 Nodo #"			
			0.000	c m/coc!!	
		mdX1mum T10W	0.030	c.m/sec	
		nyurograph volume	140.653		
	20		0.030	0.000	
	38	START/RE-START TOTALS 3"			

	3 Runoff Totals on EXIT"		
"	Total Catchment area	0.420	hectare"
"	Total Impervious area	0.280	hectare"
н	Total % impervious	66.738"	
" 19	EXIT"		

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder: C:\	<pre>\Users\pgrier\Documents\Work\"</pre>
"		4221	L44 465 Garafraxa\2023-01-18"
"		Output filename:	422144 10-year post.out"
"		Licensee name:	gmbp"
"		Company	с.
"		Date & Time last used:	1/18/2023 at 11:48:58 AM"
"	31 T	TIME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hvdrograph"	
"	32 S	STORM Chicago storm"	
"	1	Chicago storm"	
	2327,596	Coefficient A"	
"	19.500	Constant B"	
"	0.894	Exponent C"	
"	0.380	Fraction R"	
	180,000	Duration"	
	1,000	Time sten multinlier"	
	_1000 M	Maximum intensity 126.171	mm/hr"
	Т	Total depth 61.359	mm"
	6	010hvd Hvdrograph extension used	in this file"
	33 Č	ATCHMENT 100"	
	1	Triangular SCS"	
	- 1	Foual length"	
	- 2	Horton equation"	
	100	Catchment 100"	
	100,000	% Impervious"	
	0.030	Total Area"	
	25,000	Flow length"	
	2,000	Overland Slone"	
	0,000	Pervious Area"	
	25,000	Pervious length"	
	2 000	Pervious slone"	
	0,030	Impervious Area"	
	25,000	Impervious length"	
	2,000	Impervious slope"	
	2.000 0.250	Pervious Manning 'n'"	
	75 000	Pervious Max infiltration"	
	12 500	Pervious Min infiltration"	
	a 250	Pervious Lag constant (hours)"	
	5 000	Pervious Denression storage"	
	0 015	Tmnervious Manning 'n'"	
	0.013	Impervious Max infiltration"	
	0.000 0 000	Impervious Min infiltration"	
	0.000	Impervious lag constant (hours)"	
	1 500	Impervious Depression storage"	
	1.500	Timber Aroas peblicaston acounde	

"	0.009 0.000	0.000	0.000 0	c.m/sec"	
"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.000	0.030	0.030	hectare"
"	Time of concentration	12.045	1.812	1.812	minutes"
"	Time to Centroid	90.582	84.870	84.870	minutes"
"	Rainfall depth	61.359	61.359	61.359	mm"
"	Rainfall volume	0.00	18.41	18.41	c.m"
"	Rainfall losses	41.728	2.332	2.332	mm"
"	Runoff depth	19.631	59.027	59.027	mm"
"	Runoff volume	0.00	17.71	17.71	c.m"
"	Runoff coefficient	0.000	0.962	0.962	"
"	Maximum flow	0.000	0.009	0.009	c.m/sec"
"	40 HYDROGRAPH Add Runoff "	I			
"	4 Add Runoff "				
"	0.009 0.009	0.000	0.000"		
"	54 POND DESIGN"				
"	0.009 Current peak flow	c.m/sec"			
"	0.003 Target outflow c.	m/sec"			
"	17.7 Hydrograph volume	c.m"			
"	15. Number of stages"				
"	0.000 Minimum water level	metre"			
"	3.000 Maximum water level	metre"			
"	0.000 Starting water level	. metre"			
"	0 Keep Design Data: 1	= True; 0 =	= False"		
"	Level Discharge	Volume"			
"	412.550 0.000	0.000"			
"	412.560 0.00012	0.1400"			
"	412.650 0.00012	1.400"			
"	412.750 0.00012	2.800"			
"	412.850 0.00013	4.200"			
"	412.950 0.00013	5.600"			
"	413.050 0.00013	7.000"			
"	413.150 0.00014	8.400"			
	413.250 0.00014	9.800"			
	413.350 0.00014	11.200"			
	413.450 0.00015	12.600"			
	413.550 0.00015	14.000"			
	413.700 0.00016	14.000"			
	413.850 0.00016	14.170"			
	414.100 0.04629	14.450"			
	Peak outflow	0.00	01 c.m/se	ec"	
	Maximum level	413.85	56 metre'	•	
	Maximum storage	14.17	76 c.m"		
	Centroidal lag	14.27	77 hours"	<i>,</i>	
	0.009 0.009	0.001	0.000 c.m,	sec"	
	40 HYDROGRAPH Next Link "				
	5 Next Link "	0.004	0.000"		
	0.009 0.001	0.001	0.000"		
	56 DIVERSION"				
	100 Node number"				

"	" 0.000 0)verflow threshold"				
"	" 1.000 R	Required diverted fr	action"			
"	" 0 C	Conduit type; 1=Pipe	;2=Channel"	1		
"	" Peak	c of diverted flow	0.00	01 c.m/se	ec"	
"	" Volu	me of diverted flow	ı 2.03	38 c.m"		
"	" DIV0)0100.010hyd"				
"	" Majo	r flow at 100"				
"	II	0.009 0.001	0.000	0.000 0	.m/sec"	
"	" 40 HYDR	OGRAPH Combine	1"			
"	" 6 C	Combine "				
"	" 1 N	lode #"				
"	" I	infiltrated on-site	I			
"	" Maxi	.mum flow	0.00	00 c.m/se	ec"	
"	" Hydr	ograph volume	12.44	17 c.m"		
"	I	0.009 0.001	0.000	0.000"		
"	" 40 HYDR	OGRAPH Start - New	Tributary"			
"	"2 S	itart - New Tributar	`Y"			
"	11	0.009 0.000	0.000	0.000"		
"	" 33 CATC	HMENT 200"				
"	" 1 T	ʻriangular SCS"				
"	" 1 E	qual length"				
"	" 2 H	lorton equation"				
"	" 200 C	atchment 200"				
"	" 100.000 %	5 Impervious"				
"	" 0.030 T	'otal Area"				
	" 25.000 F	low length"				
	" 2.000 O	verland Slope"				
	" 0.000 P	ervious Area"				
	" 25.000 P	'ervious length"				
	" 2.000 P	'ervious slope"				
	" 0.030 I	mpervious Area				
	25.000 I	mpervious length"				
	2.000 I	mpervious siope"				
	0.250 P	'ervious Manning n	• • • • • • "			
	/5.000 P	ervious Max.intiltr	ation"			
	12.500 P	Pervious Min.infiltr	alion			
	U.250 P	Pervious Lag Constan	stonago"			
	О О О О Г О О О 1 5 Т	monvious Depression	storage			
	0.013 I	impervious Manning Impervious Max infil	"			
	0.000 I 0.000 I	impervious Max.infil	tration"			
	" 0.000 I	mpervious lag const	ant (hours)			
	" 1 500 I	impervious Lag const impervious Depressic	n storage")		
	п т. 200 т		a a a a a a a a a a a a a a a a a a a	0 000 0	m/sec"	
	" Cato	hment 200	Pervious	Tmnervious	Total Area	
	" Surf	ace Area	0.000	0.030	0.030	hectare"
	" Time	of concentration	12.045	1.812	1.812	minutes"
	" Time	to Centroid	90.582	84.870	84.870	minutes"
	" Rain	fall depth	61.359	61.359	61.359	mm"
"	" Rain	ifall volume	0.00	18.41	18.41	c.m"

"		Rainfall losses	41.7	728	2.332	2.332	mm''
"		Runoff depth	19.6	531	59.027	59.027	mm"
"		Runoff volume	0.00)	17.71	17.71	c.m"
"		Runoff coefficient	0.00	90	0.962	0.962	п
"		Maximum flow	0.00	90	0.009	0.009	c.m/sec"
"	40	HYDROGRAPH Add Rund	off "				
"	4	Add Runoff "					
"		0.009 0	0.009	0.000	0.000"		
"	33	CATCHMENT 300"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	2	Horton equation'					
	300	Catchment 300"					
	100.000	% Impervious"					
	0.036	Total Area"					
	25.000	Flow length"					
	2.000	Overland Slope"					
	0.000	Pervious Area					
	25.000	Pervious length					
	2.000	Pervious slope"					
	0.030	Impervious Area	- h "				
	25.000	Impervious lenge	L11 5"				
	2.000	Denvious Manning	: ז'ח' ד				
	75 000	Pervious Manning Pervious Max inf	5 II Filtnatia	מר"			
	12 500	Pervious Max.in	Filtratio	ות מר"			
	0 250	Pervious Lag cor	nstant (k	nours)"			
	5.000	Pervious Depress	sion stor	nage"			
	0.015	Impervious Manni	ing 'n'"	480			
"	0.000	Impervious Max.	infiltrat	ion"			
"	0.000	Impervious Min.	infiltrat	ion"			
"	0.050	Impervious Lag o	constant	(hours)) "		
"	1.500	Impervious Depre	ession st	corage"			
"		0.011 0	0.009	0.000	0.000 0	.m/sec"	
"		Catchment 300	Perv	/ious	Impervious	Total Area	"
"		Surface Area	0.00	90	0.036	0.036	hectare"
"		Time of concentrati	ion 12.0	945	1.812	1.812	minutes"
"		Time to Centroid	90.5	582	84.870	84.870	minutes"
"		Rainfall depth	61.3	359	61.359	61.359	mm"
"		Rainfall volume	0.00	9	22.09	22.09	c.m"
"		Rainfall losses	41.7	728	2.332	2.332	mm''
		Runoff depth	19.6	531	59.027	59.027	mm"
		Runoff volume	0.00)	21.25	21.25	c.m"
		Runott coetticient	0.00	90	0.962	0.962	
	4.0	Maximum flow	0.06	90	0.011	0.011	c.m/sec"
	40	HYDRUGKAPH Add Rund	Dtt "				
	4	Add KUNOTT "	2 020	0 000	0.000"		
	54		0.020	0.000	0.000		
	רע ע מרמ מ	CURPORT POOL FI					
	0.020	current peak IIC	JW C.I	IT SEC			

"	0.003	Target outflow c	.m/sec"		
"	39.0	Hydrograph volume	c.m"		
"	15.	Number of stages"			
"	0.000	Minimum water level	metre"		
"	3.000	Maximum water level	metre"		
"	0.000	Starting water leve	l metre"		
"	0	Keep Design Data: 1	= True; 0 =	False"	
"		Level Discharge	Volume"		
"		411.800 0.000	0.000"		
"		411.810 0.00026	0.3200"		
"		411.900 0.00027	3.170"		
"		412.000 0.00027	6.330"		
"		412.100 0.00028	9.500"		
"		412.200 0.00029	12.670"		
"		412.300 0.00029	15.830"		
"		412.400 0.00030	19.000"		
"		412.500 0.00030	22.170"		
"		412.600 0.00031	25.330"		
"		412.700 0.00031	28.500"		
"		412.800 0.00032	31.670"		
"		413.050 0.00033	31.670"		
"		413.100 0.00034	31.720"		
"		413.350 0.04647	32.010"		
"	Pea	ak outflow	0.002	c.m/sec"	
"	Мах	kimum level	413.111	metre"	
"	Мах	kimum storage	31.733	c.m"	
"	Cer	ntroidal lag	15.130	hours"	
"		0.011 0.020	0.002	0.000 c.m/sec"	
"	40 HYD	DROGRAPH Next link "			
"	5	Next link "			
"		0.011 0.00	0.002	0.000"	
"	56 DI\	/ERSION"			
"	300	Node number"			
"	0.000	Overflow threshold"			
	1.000	Required diverted f	raction"		
	0	Conduit type; 1=Pip	e;2=Channel"		
	Pea	ak of diverted flow	0.002	c.m/sec"	
	Vol	lume of diverted flo	w 4.796	c.m"	
	DIV	/00300.010hyd"			
	Maj	jor flow at 300"			
		0.011 0.00	0.000	0.000 c.m/sec"	
	40 HYD	DROGRAPH Combine	1"		
	6	Combine "			
	1	Node #"			
		intiltrated on-site		<i>,</i>	
	Мах	(imum †low	0.001	c.m/sec"	
	Нус	rograph volume	38.473	C.M"	
		0.011 0.00	0.000	0.001"	
	40 HYD	DRUGRAPH Start - New	"Iributary"		
"	2	Start - New Tributa	ry"		

"		0.011 0.	000	0.000	0.001"		
"	33 CA	TCHMENT 400"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	2	Horton equation"					
"	400	Catchment 400"					
"	0.000	% Impervious"					
"	0.130	Total Area"					
"	45.000	Flow length"					
"	2.000	Overland Slope"					
"	0.130	Pervious Area"					
"	45.000	Pervious length"					
"	2.000	Pervious slope"					
"	0.000	Impervious Area"					
"	45.000	Impervious length	ו"				
"	2.000	Impervious slope'					
	0.250	Pervious Manning	'n'"				
	75.000	Pervious Max.infi	 Itrati	on"			
	12,500	Pervious Min.infi	ltrati	on"			
	0.250	Pervious Lag cons	stant (hours)"			
	5 000	Pervious Denressi	ion sto	nour 5) rage"			
	0 015	Impervious Mannir	ισ 'n'"	uge			
	0.015	Impervious Max ir	'5 '' hfiltra	tion"			
	0.000	Impervious Min ir	filtra	tion"			
	0.000	Impervious Lag co	nstant	(hours)			
	1 500	Impervious Denres	sion s	torage"			
	1.500		000	0 000	0 001 0	m/sec"	
	Ca	10.014 0.014	.000 Per	vious	Impervious	Total Area	
	Ca Su	nface Area	0 1	30	a aaa	0 130	hoctoro"
	Ju Ti	me of concentration	0.1 n 17	138	2 578	17 138	minutes"
	т <u>і</u>	me to Controid	۰۱۱ ۲۲. ۵۵	550	2.578	17.130 05 550	minutes
	Ra	infall denth	61	359	61 359	61 359	mm"
	Ra	infall volume	70	77	01.555	79 77	
	Ra	infall losses	/5.	654	2 661	/ 1 65/	C • III mm"
	Na Pu	noff donth	41. 10	705		10 705	
	Ru	noff volume	19. 25	62	0 00	25 62	
	Ru	noff coofficient	25.	21	0.00	23.02	
	Ku Ma		0.5		0.000	0.521	c m/coc"
		NINUN IIOW	יים. בריי	14	0.000	0.014	C.III/ SEC
		Add Bunoff "	1				
	4		014	0 000	0 001"		
	10 UV	$\mathbf{DPOCPADH} \mathbf{Conv} \mathbf{to} 0$	014)u+flow		0.001		
		Conv to Outflow"	JULIIOW				
	õ		014	0 014	0 001"		
	10 UV	DROCRADU Combine	שבש. סיי	0.014	0.001		
		Combine "	e 2				
	D C	Compilie Nodo #"					
	Z	NUULE #					
	Ma	vinum flow		0 01	1 ~ ~ ~ /~	۰ ۲	
	Ma	dhoghorb volume		20.01	L4 C.III/SE	:0	
	ну	urograph vorume		22.01	L7 C.III		

"			0.014		0.014	0.014	6).014"
"	40	HY	DROGRAPH St	art ·	- New T	ributary"		
"		2	Start - Ne	w Tri	ibutary			
"			0.014		0.000	0.014	6).014"
"	47	FI	LEI O Read/	0pen	DIV001	00.010hyd	u –	
"		1	1=read/ope	n; 2=	=write/	save"		
"		2	1=rainfall	; 2=ł	nvdrogr	aph"		
"		1	1=runoff:	, 2=inf	flow: 3	=outflow:	4=iur	oction"
"		DI	V00100.010	vd"	- , -	···· ,	J -	
"		Ма	ior flow at	100'				
"		То	tal volume			2.0	38	c.m"
"		Ma	ximum flow			0.0	ð1	c.m/sec"
"			0.001	0.0	900	0.014	0.01	4 c.m/sec"
"	40	НҮ	DROGRAPH Ad	d Rur	noff "	•••		,
"		4	Add Runoff					
			0.001		0.001	0.014	e).014"
	47	FT	IFT O Read/	Onen	DTV003	00.010hvd		
	.,	1	1=read/one	n: 2=	=write/	save"		
		2	1=rainfall	: 2=ł	nvdrogr	anh"		
		1	1=runoff:	2=in1	Flow: 3	=outflow:	4=iur	uction"
		- TD	V99399.019	vd"	1100, 5	04011007	i jui	
		Ma	ior flow at	ິ 300'				
		То	tal volume	500		4.79	96	c.m"
		Ma	ximum flow			0.0	32	c.m/sec"
		r ia	0 002	au	201	0 014	 	4 c m/sec
	40	ну	DROGRAPH Ad	d Rur	hoff "	0.014	0.01	.+ c.m/see
	40	4	Add Runoff					
		·	0.002		0.003	0,014	¢	014"
	33	CA	TCHMENT 500	п	0.005	01011		
	55	1	Triangular	505				
		- 1	Foual leng	th"				
		2	Horton eau	ation	า"			
		500	Catchment	500"	•			
		95,000	% Impervic	us"				
		0.194	Total Area	"				
		25.000	Flow lengt	h"				
		2,000	Overland S	 lone'				
		0.010	Pervious A	rea"				
		25,000	Pervious 1	engti	า"			
		2,000	Pervious s	lone'				
		0.184	Impervious	Δrea	a"			
		25 000	Impervious	leng	∽ oth"			
		2 9 9 9 9 9	Impervious	slor	າວ"			
		0 250	Pervious M	lannir	ος ησ 'n'"			
		75,000	Pervious M	ax ir	ים. hfiltra	tion"		
		12 500	Pervious M	in in	nfiltra	tion"		
		0,250	Pervious I		nstant	(hours)"		
		5,000	Pervious C	enre	ssion c	torage"		
		0 015	Impervious	Manr	ning 'n	1		
		0.015	Impervious	Mav	infil+	ration"		
		0.000		- I I G A	• エリリ エエレ			

"	0.000	Impervious	6 Min.infi	ltration"			
"	0.050	Impervious	Lag cons	tant (hours)"		
"	1.500	Impervious	5 Depressi	on storage"			
"		0.055	0.00	3 0.014	0.014	c.m/sec"	
"	Ca	atchment 500)	Pervious	Impervious	Total Area	
"	Su	irface Area		0.010	0.184	0.194	hectare"
"	Ti	me of conce	entration	12.045	1.812	1.988	minutes"
"	Ti	me to Centr	roid	90.582	84.870	84.968	minutes"
"	Ra	ainfall dept	:h	61.359	61.359	61.359	mm"
"	Ra	ainfall volu	ıme	5.95	113.09	119.04	c.m"
"	Ra	ainfall loss	es	41.728	2.332	4.302	mm"
"	Ru	unoff depth		19.631	59.027	57.057	mm"
"	Ru	inoff volume	<u>.</u>	1.90	108.79	110.69	c.m"
"	Ru	ınoff coeffi	.cient	0.320	0.962	0.930	
"	Ma	aximum flow		0.001	0.055	0.055	c.m/sec"
"	40 HY	DROGRAPH Ad	ld Runoff	п			
"	4	Add Runoff					
"		0.055	0.05	5 0.014	0.014"		
"	54 PC)ND DESIGN"					
"	0.055	Current pe	ak flow	c.m/sec"			
"	0.002	Target out	flow c	.m/sec"			
"	117.5	Hydrograph	n volume	c.m"			
"	18.	Number of	stages"				
"	0.000	Minimum wa	iter level	metre"			
"	3.000	Maximum wa	ter level	metre"			
"	0.000	Starting w	ater leve	1 metre"			
"	0	Keep Desig	n Data: 1	= True; 0	= False"		
"		Level Di	.scharge	Volume"			
"		413.590	0.000	0.000"			
"		413.620	0.00200	0.03000"			
"		413.800	0.00700	4.040"			
"		413.970	0.01000	8.050"			
"		414.150	0.01200	12.060"			
"		414.400	0.01500	12.340"			
"		414.650	0.01700	12.620"			
"		414.900	0.01900	12.910"			
"		415.020	0.02000	13.000"			
"		415.050	0.02000	13.060"			
"		415.100	0.02000	13.490"			
"		415.150	0.02100	14.540"			
"		415.200	0.02100	16.590"			
"		415.250	0.02100	20.060"			
"		415.320	0.02200	27.940"			
"		415.370	0.4980	36.540"			
		415.420	0.5020	47.040"			
		415.470	0.5050	58.440"			
	Pe	ak outflow		0.0	40 c.m/s	ec"	
	Ma	aximum level		415.3	23 metre		
	Ma	iximum stora	ige	28.4	42 c.m"		
"	Ce	entroidal la	Ig	1.7	15 hours"		

	10	HVDROGRADH Combine 2"
	40	Combine "
		2 Nodo #"
		Utt-Site"
		Maximum flow 0.050 c.m/sec"
		Hydrograph volume 141.329 c.m"
		0.055 0.055 0.040 0.050"
	40	HYDROGRAPH Confluence 1"
		7 Confluence "
"		1 Node #"
"		Infiltrated on-site"
"		Maximum flow 0.001 c.m/sec"
"		Hydrograph volume 38.473 c.m"
"		0.055 0.001 0.040 0.000"
"	40	HYDROGRAPH Copy to Outflow"
"		8 Copy to Outflow"
"		0.055 0.001 0.001 0.000"
"	40	HYDROGRAPH Combine 3"
"		6 Combine "
"		3 Node #"
"		TOTAL"
"		Maximum flow 0.001 c.m/sec"
"		Hydrograph volume 38.473 c.m"
"		0.055 0.001 0.001 0.001"
"	40	HYDROGRAPH Confluence 2"
"		7 Confluence "
"		2 Node #"
"		Off-Site"
"		Maximum flow 0.050 c.m/sec"
"		Hydrograph volume 141.329 c.m"
"		0.055 0.050 0.001 0.000"
"	40	HYDROGRAPH Copy to Outflow"
"	-	8 Copy to Outflow"
"		0.055 0.050 0.050 0.000"
"	40	HYDROGRAPH Combine 3"
		6 Combine "
		3 Node #"
		TOTAL "
		Maximum flow 0.051 c.m/sec"
		Hydrograph volume 179.801 c.m"
		0 055 0 050 0 050 0 051"
	40	HYDROGRAPH Confluence 3"
		7 Confluence "
		3 Node #"
		Maximum flow 0.051 c m/sec"
		Hudrograph volume 170 801 cm"
		1/2.001 C.III 0 055 0 051 0 050 0 000"
	20	
	20	JIANI/NE-JIANI IVIALJ J

	3 Runoff Totals on EXIT"		
"	Total Catchment area	0.420	hectare"
"	Total Impervious area	0.280	hectare"
н	Total % impervious	66.738"	
" 19	EXIT"		

<pre>MIDUSS version Version 2.25 rev. 473" MIDUSS created Sunday, February 07, 2010 10 Units used: ie METRIC 30b folder: C:\USers\pgrier\Documents\Work\ 422144 465 Garafraxa\2023.0-1.8" 422144 465 Garafraxa\2023.0-1.8" 2000 Totat filename: 422144 25-year post.out" Licensee name: gmbp" Company mbr Bate & Time last used: 1/18/2023 at 11:51:50 AM 31 TIME PARAMETERS' 10 ARAMETERS' 10 ARAMETERS' 11 TIME PARAMETERS' 12 STORM Chicago storm" 13 Corfice of the store of the stor</pre>	"		MIDUSS Output	>"
<pre>MIDUSS created Sunday, February 07, 2010 ie METRIC"</pre>	"		MIDUSS version	Version 2.25 rev. 473"
<pre>10 Units used:</pre>	"		MIDUSS created	Sunday, February 07, 2010"
Job folder: C:\Users\pgrier\Documents\Work\" 422144 465 Garafraxa\2023-01-18" Utput filename: 422144 25-yeen post.out" "Date & Time last used: 1/18/2023 at 11:51:50 AM" "Date & Time last used: 1/18/2023 at 11:51:50 AM" "IME PARAMETERS" "IME PARAMETERS" "Job 000 Max. Storm length" "Job 000 Max. Storm length" "Job 000 Max. Storm length" "Job 000 Max. Mydrograph" "Job 000 Max. Storm" "Job 000 Maximu intensity 180.000 Duration" "Job 000 Time step multiplier" "Maximum intensity 143.371 "Job 000 Time step multiplier" "Job 0000 Time step multiplier" "Job 0000 Time step multiplier" "Job 00000	"	10	Units used:	ie METRIC"
422144 465 Garafraxa\2023-01-18" " Output filename: 422144 25-year post.out" " Date & Time last used: 1/18/2023 at 11:51:50 AM" " Date & Time last used: 1/18/2023 at 11:51:50 AM" " Jate & Time Step" " " Jate & Tome Step" " " Jate & Totago storm" " " Jate & Coefficient A" " " Jate & Coefficient A" " " Jate & Totago storm" " " Jate & Totago store	"		Job folder:	C:\Users\pgrier\Documents\Work\"
Output filename: 422144 25-year post.out" Licensee name: gmbp" Company " Date & Time last used: 1/18/2023 at 11:51:50 AM" 31 TIME PARAMETERS" "5.000 Max. Storm length" "180.000 Max. Storm length" "1500.000 Max. Hydrograph" "32 STORM Chicago storm" "1 Chicago storm" "3701.648 Coefficient A" "25.500 Constant B" 0.937 Exponent C" "0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" "Maximum intensity 143.371 "1000 Time step multiplier" "Maximum intensity 143.371 "11 Triangular SCS" "1 Equal length" 2 Horton equation" 100 Catchment 100" "2 Horton equation" 100 Catchment 100" "2 Horton equation" 2.000	"			422144 465 Garafraxa\2023-01-18"
Licensee name: gmbp" Company " Date & Time last used: 1/18/2023 at 11:51:50 AM" 31 TIME PARAMETERS" * 5.000 Time Step" * 1000 * 11000 * 12000 * 12000 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 0.338 * 737 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.0000	"		Output filename:	422144 25-year post.out"
Company Date & Time last used: 1/18/2023 at 11:51:50 AM" 31 TIME PARAMETERS" 5.000 Time Step" 180.000 Max. Storm length" 32 STORM Chicago storm" 1 Chicago storm" 3701.648 Coefficient A" 25.500 Constant B" 0.937 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 1 Triangular SCS" 1 Equal length" 25.000 Flow length" 20.000 % Impervious" 25.000 Flow length" 25.000 Pervious length" 25.000 Pervious slope" 0.030 Total Area" 25.000 Pervious slope" 25.000 Impervious slope" 25.000 Pervious slope" 25.000 Pervious slope" 25.000 Pervious slope" 25.000 Impervious slope" 25.000 Pervious slope" 25.000 Pervious Marea" 25.000 Pervious Marea" 25.000 Pervious Maning 'n'" 35.000 Pervious Maning 'n''' 35.000 Pervious Maning 'n'''''''''''''''''''''''''''''''''	"		Licensee name:	gmbp"
Date & Time last used: 1/18/2023 at 11:51:50 AM" 31 TIME PARAMETERS" * 180.000 Max. Storm length" * 1500.000 Max. Hydrograph" * 1 Chicago storm" * 1 Chicago storm" * 1 Chicago storm" * 3701.648 Coefficient A" * 25.500 Constant B" * 0.937 Exponent C" * 0.330 Fraction R" * 0.937 Exponent C" * 0.380 Fraction R" * 1.000 Time step multiplier" * 1.80.000 Duration" * 1.80.000 Hydrograph extension used in this file" * 6 025hyd Hydrograph extension used in this file" * 1 Triangular SCS" 1 * 1 Triangular SCS" 1 * 1 Equal length" 2 * 2.000 Xorenea"	"		Company	
<pre>31 TIME PARAMETERS"</pre>	"		Date & Time last used:	1/18/2023 at 11:51:50 AM"
<pre>5.000 Time Step" 180.000 Max. Storm length" 1500.000 Max. Storm length" 32 STORM Chicago storm" 1 Chicago storm" 1 Chicago storm" 0.320 Constant B" 0.937 Exponent C" 0.380 Fraction R" 1.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 1 Triangular SCS" 1 Equal length" 100 Catchment 100" 100.000 % Impervious" 0.030 Total Area" 25.000 Pervious length" 2.000 Pervious lope" 0.030 Impervious length" 2.000 Pervious lope" 0.030 Impervious length" 2.000 Pervious length" 2.000 Impervious length" 2.000 Pervious length" 3.000 Pintention Pintention" 3.000 Pintention Pintention" 3.000 Pintention Pintention" 3.000 Pintention Pintention" 3.000 Pintentions Pintention" 3.00</pre>	"	31 T	IME PARAMETERS"	
<pre>180.000 Max. Storm length" 1500.000 Max. Hydrograph" 32 STORM Chicago storm" 1 Chicago storm" 3701.648 Coefficient A" 25.500 Constant B" 0.937 Exponent C" 0.380 Fraction R" 180.000 Duration" 180.000 Duration" 10.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 10 Catchment 100" 100.000 % Impervious" 0.030 Total Area" 25.000 Flow length" 20.000 Pervious Aloge" 0.030 Impervious length" 2.000 Pervious length" 2.000 Pervious length" 2.000 Pervious length" 2.000 Impervious length" 2.000 Pervious length" 3.000 Pervious length PERVIPUENT PERVIPUEN</pre>	"	5.000	Time Step"	
<pre>" 1500.000 Max. Hydrograph" " 32 STORM Chicago storm" " 1 Chicago storm" " 3701.648 Coefficient A" " 25.500 Constant B" " 0.937 Exponent C" " 0.380 Fraction R" " 180.000 Duration" " 1.000 Time step multiplier" " Maximum intensity 143.371 mm/hr" " Total depth 75.581 mm" " 6 025hyd Hydrograph extension used in this file" " 33 CATCHMENT 100" " 1 Triangular SCS" " 1 Equal length" " 2 Horton equation" " 1000 Catchment 100" " 100.000 % Impervious" " 0.030 Total Area" " 2.000 Overland Slope" " 0.030 Impervious Area" " 25.000 Impervious slope" " 0.330 Impervious slope" " 0.350 Pervious length" " 2.000 Pervious length" " 2.000 Impervious Slope" " 0.250 Pervious Manning 'n'" " 5.000 Pervious Max.infiltration" " 0.250 Pervious Max.infiltration" " 0.250 Pervious Max.infiltration" " 0.050 Pervious Max.infiltration" " 0.060 Impervious Max.infiltration"</pre>	"	180.000	Max. Storm length"	
<pre>32 STORM Chicago storm"</pre>	"	1500.000	Max. Hvdrograph"	
<pre>1 Chicago storm" 3701.648 Coefficient A" 25.500 Constant B" 0.937 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 33 CATCHMENT 100" 31 Triangular SCS" 4 Equation 100" 4 Horton equation" 4 Dorton equation 5 Dorton Equation 5 Dorton et al. Equation equation 5 Dorton equation equation 5 Dorton equation equation 5 Dorton ervious slope 5 Dorton ervious Lag constant (hours)" 5 Dorton ervious Man.infiltration 5 Dorton Empervious Areae" 5 Dorton Empervious Man.infiltration 5 Dorton Empervious Man.infiltration 5 Dorton Empervious Man.infiltration 5 Dorton Empervious Depression storage" 5 Dorton Empervious Man.infiltration 5 Dorton Empervious Man.infiltration 5 Dorton Empervious Depression storage" 5 Dorton Empervious Man.infiltration 5 Dorton Empervious Man.infiltration 5 Dorton Empervious Depression storage 5 Dorton Empervious Man.empervious Man.empervious 5 Dorton Empervious Man.infiltration 5 Dorton Empervi</pre>	"	32 S	TORM Chicago storm"	
<pre>" 3701.648 Coefficient A" " 25.500 Constant B" " 0.937 Exponent C" " 0.380 Fraction R" " 180.000 Duration" " 1.000 Time step multiplier" " Maximum intensity 143.371 mm/hr" " Total depth 75.581 mm" " 6 025hyd Hydrograph extension used in this file" " 33 CATCHMENT 100" " 1 Friangular SCS" " 1 Equal length" " 2 Horton equation" " 100 Catchment 100" " 100.000 % Impervious" " 0.030 Total Area" " 25.000 Flow length" " 2.000 Overland Slope" " 0.000 Pervious length" " 2.000 Pervious length" " 2.000 Impervious length" " 2.000 Impervious Slope" " 0.500 Pervious Manning 'n'" " 5.000 Pervious Manning 'n'" " 5.000 Pervious Manning 'n'" " 5.000 Pervious Manning 'n'" " 0.600 Impervious Manning 'n'" " 0.600 Impervious Lag constant (hours)" " 0.000 Impervious Manning 'n'" " 0.000 Imp</pre>	"	1	Chicago storm"	
<pre>25.500 Constant B" 0.337 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100 Catchment 100" 100.000 % Impervious" 0.330 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.030 Total Area" 25.000 Pervious Area" 25.000 Pervious length" 2.000 Impervious length" 2.000 Pervious alope" 0.330 Impervious Slope" 0.330 Impervious Slope" 0.350 Pervious Manning 'n'" 7.500 Pervious Manning 'n'" 7.500 Pervious Max.infiltration" 0.250 Pervious Max.infiltration" 0.041 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 0.060 Impervious Max.infiltration" 0.660 Impervious Max.i</pre>	"	3701.648	Coefficient A"	
 0.937 Exponent C" 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100.000 % Impervious" 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.030 Total Area" 25.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious length" 2.000 Pervious Slope" 0.350 Impervious Slope" 0.500 Pervious Slope" 0.500 Pervious Lag constant (hours)" 5.000 Pervious Max.infiltration" 0.500 Impervious Max.infiltration" 0.601 Impervious Max.infiltration" 0.600 Impervious Max.infiltration" 	"	25.500	Constant B"	
 0.380 Fraction R" 180.000 Duration" 1.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100 Catchment 100" 100.000 % Impervious" 0.030 Total Area" 25.000 Pervious Area" 25.000 Pervious Slope" 0.030 Impervious Slope" 0.300 Impervious Slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Manning 'n'" 75.000 Pervious Manning 'n'" 75.000 Pervious Manning 'n'" 0.500 Pervious Manning 'n'" 0.600 Pervious Lag constant (hours)" 0.600 Impervious Manning 'n'" 0.600 Impervious Manning 'n'" 0.600 Impervious Manning 'n'" 0.600 Impervious Manning 'n'" 0.600 Pervious Lag constant (hours)" 0.600 Impervious Manning 'n'" 	"	0.937	Exponent C"	
<pre>180.000 Duration" 1.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100 Catchment 100" 100 Catchment 100" 100 Catchment 100" 2.000 Flow length" 2.000 Verland Slope" 0.030 Total Area" 25.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.030 Impervious slope" 0.030 Impervious slope" 0.250 Pervious Manning 'n'" 1.2500 Pervious Max.infiltration" 1.2500 Pervious Max.infiltration" 0.250 Pervious Manning 'n'" 0.050 Impervious Manning 'n'" 0.060 Impervious Manning 'n'" 0.050 Impervio</pre>	"	0.380	Fraction R"	
 1.000 Time step multiplier" Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100 Catchment 100" 100.000 % Impervious" 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.030 Inpervious Area" 25.000 Impervious slope" 0.030 Impervious slope" 0.030 Impervious slope" 0.030 Impervious slope" 0.030 Impervious slope" 0.250 Pervious Maning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Max.infiltration" 0.250 Pervious Max.infiltration" 0.250 Pervious Manning 'n'" 0.060 Impervious Max.infiltration" 0.250 Pervious Max.infiltration" 0.600 Impervious Areage" 0.015 Impervious Max.infiltration" 0.026 Pervious Manning 'n'" 0.030 Impervious Areage" 0.041 Impervious Manning 'n'" 0.050 Impervious Manning 'n'" 0.060 Impervious Manning 'n'" 0.060 Impervious Manning 'n'" 0.600 Impervious Max.infiltration" 		180.000	Duration"	
Maximum intensity 143.371 mm/hr" Total depth 75.581 mm" 6 025hyd Hydrograph extension used in this file" 7 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100 Catchment 100" 100 Catchment 100" 100 Catchment 100" 100 Catchment 100" 100 Catchment 100" 100 Catchment 100" 100 Ooverland Slope" 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.000 Pervious Area" 25.000 Pervious Slope" 0.030 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 3.000 Pervious Slope" 0.250 Pervious Max.infiltration" 3.000 Pervious Max.infiltration" 3.000 Pervious Lag constant (hours)" 3.000 Impervious Max.infiltration" 3.000 Impervious Max.infiltration" 3.0000 Impervious Max.infiltration" 3.		1.000	Time step multiplier"	
Total depth75.581mm""6025hydHydrograph extension used in this file""33CATCHMENT 100""1Triangular SCS""1Equal length""2Horton equation""100Catchment 100""100Catchment 100""2.000Flow length""2.000Pervious Area""2.000Pervious Slope""0.000Impervious Slope""0.250Pervious Max.infiltration""0.250Pervious Max.infiltration""0.250Pervious Lag constant (hours)""0.000Impervious Max.infiltration""0.000Impervious Lag constant (hours)""0.050Impervious Lag constant (hours)"<		M	laximum intensity	143.371 mm/hr"
 6 025hyd Hydrograph extension used in this file" 33 CATCHMENT 100" 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100 Catchment 100" 100 Coatchment 10		Т	otal denth	75.581 mm"
<pre>33 CATCHMENT 100" " 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100 Catchment 100" 100 Overland Slope" 20.000 Flow length" 20.000 Pervious Area" 25.000 Pervious length" 25.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious Area" 25.000 Impervious length" 20.000 Impervious length" 20.000 Pervious slope" 0.250 Pervious Max.infiltration" 25.000 Pervious Max.infiltration" 25.000 Pervious Lag constant (hours)" 5.000 Impervious Manning 'n'" 0.050 Impervious Manning 'n'" 0.050 Impervious Manning 'n'" 0.050 Impervious Lag constant (hours)" 0.050 Impervious Manning 'n'" 0.050 Impervious Manning 'n'' 0.050 Impervious Manning 'n'' 0.500 Imp</pre>		6	025hvd Hvdrograph extens	sion used in this file"
 1 Triangular SCS" 1 Equal length" 2 Horton equation" 100 Catchment 100" 100.000 % Impervious" 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Pervious slope" 0.030 Impervious length" 2.000 Pervious slope" 0.030 Impervious flength" 2.000 Pervious slope" 0.030 Impervious length" 2.000 Pervious slope" 0.030 Impervious length" 2.000 Pervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Impervious Manning 'n'" 0.015 Impervious Manning 'n'" 0.000 Impervious Maning 'n'" 0.000 Impervious Maninfiltration" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 1.500 Impervious Manning 'n'" 		33 Č	ATCHMENT 100"	
 Equal length" Equal length" Horton equation" 100 Catchment 100" 100.000 % Impervious" 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.000 Pervious Area" 25.000 Pervious length" 2.000 Overland Slope" 0.030 Impervious length" 2.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.030 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Manning 'n'" 0.015 Impervious Man.infiltration" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.001 Impervious Max.infiltration" 0.005 Impervious Manning 'n'" 0.005 Impervious Max.infiltration" 0.015 Impervious Max.infiltration" 0.005 Impervious Max.infiltration" 0.006 Impervious Max.infiltration" 0.007 Impervious Max.infiltration" 0.008 Impervious Max.infiltration" 0.009 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 		1	Triangular SCS"	
 Horton equation" 100 Catchment 100" 100.000 % Impervious" 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Max.infiltration" 0.015 Impervious Max.infiltration" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.015 Impervious Max.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Lag constant (hours)" 	"	1	Equal length"	
 100 Catchment 100" 100.000 % Impervious" 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious length" 2.000 Pervious slope" 0.30 Impervious length" 2.000 Pervious length" 3.000 Pervious slope" 0.30 Impervious length" 2.000 Impervious length" 3.000 Pervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 3.000 Pervious Lag constant (hours)" 5.000 Pervious Manning 'n'" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 1.500 Impervious Max.infiltration" 		2	Horton equation"	
<pre>100.000 % Impervious" 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.000 Pervious Area" 2.000 Pervious length" 0.030 Impervious slope" 0.030 Impervious Area" 2.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Max.infiltration" 12.500 Pervious Max.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 1.500 Impervious Lag constant (hours)" 1.500 Impervious Lag cons</pre>	"	100	Catchment 100"	
 0.030 Total Area" 25.000 Flow length" 2.000 Overland Slope" 0.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious Area" 25.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 2.500 Pervious Lag constant (hours)" 5.000 Impervious Manning 'n'" 0.015 Impervious Manning 'n'" 0.005 Impervious Max.infiltration" 0.050 Impervious Manning 'n'" 0.060 Impervious Lag constant (hours)" 0.050 Impervious Manning 'n'" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 0.050 Impervious Max.infiltration" 	"	100.000	% Impervious"	
 25.000 Flow length" 2.000 Overland Slope" 0.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Max.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Max.infiltration" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 15.000 Pervious Max.infiltration" 1500 Impervious Max.infiltration" 	"	0.030	Total Area"	
 2.000 Overland Slope" 0.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious length" 2.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 12.500 Pervious Lag constant (hours)" 13.000 Pervious Manning 'n'" 14.000 Impervious Max.infiltration" 15.000 Pervious Max.infiltration" 15.000 Impervious Lag constant (hours)" 	"	25.000	Flow length"	
 0.000 Pervious Area" 25.000 Pervious length" 2.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Manning 'n'" 0.000 Impervious Manning 'n'" 1.500 Impervious Max.infiltration" 		2.000	Overland Slope"	
<pre>" 25.000 Pervious length" " 2.000 Pervious slope" " 0.030 Impervious Area" " 25.000 Impervious length" " 2.000 Impervious slope" " 0.250 Pervious Manning 'n'" " 75.000 Pervious Max.infiltration" " 12.500 Pervious Max.infiltration" " 0.250 Pervious Lag constant (hours)" " 0.250 Pervious Lag constant (hours)" " 5.000 Pervious Depression storage" " 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Max.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Lag constant (hours)"</pre>	"	0.000	Pervious Area"	
 2.000 Pervious slope" 0.030 Impervious Area" 25.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 15.000 Impervious Max.infiltration" 1500 Impervious Max.infiltration" 	"	25.000	Pervious length"	
 0.030 Impervious Area" 25.000 Impervious length" 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Max.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Lag constant (hours)" 		2.000	Pervious slope"	
<pre>"25.000 Impervious length" "25.000 Impervious slope" "0.250 Pervious Manning 'n'" "75.000 Pervious Max.infiltration" "12.500 Pervious Min.infiltration" "0.250 Pervious Lag constant (hours)" "5.000 Pervious Depression storage" "0.015 Impervious Manning 'n'" "0.000 Impervious Max.infiltration" "0.000 Impervious Min.infiltration" "0.050 Impervious Lag constant (hours)" "1.500 Impervious Depression storage"</pre>	"	0.030	Impervious Area"	
 2.000 Impervious slope" 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Depression storage" 		25.000	Impervious length"	
 0.250 Pervious Manning 'n'" 75.000 Pervious Max.infiltration" 12.500 Pervious Min.infiltration" 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Depression storage" 		2.000	Impervious slope"	
<pre>" 75.000 Pervious Max.infiltration" " 12.500 Pervious Min.infiltration" " 0.250 Pervious Lag constant (hours)" " 0.000 Pervious Depression storage" " 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		0.250	Pervious Manning 'n'"	
<pre>" 12.500 Pervious Min.infiltration" " 0.250 Pervious Lag constant (hours)" " 5.000 Pervious Depression storage" " 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		75,000	Pervious Max infiltration	,
 0.250 Pervious Lag constant (hours)" 5.000 Pervious Depression storage" 0.015 Impervious Manning 'n'" 0.000 Impervious Max.infiltration" 0.000 Impervious Min.infiltration" 0.050 Impervious Lag constant (hours)" 1.500 Impervious Depression storage" 		12,500	Pervious Min infiltration	,
<pre>" 5.000 Pervious Depression storage" " 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		0.250	Pervious Lag constant (ho	urs)"
<pre>" 0.015 Impervious Manning 'n'" " 0.000 Impervious Max.infiltration" " 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		5,000	Pervious Depression storage	ze"
<pre>" 0.000 Impervious Max.infiltration" " 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		0,015	Tmpervious Manning 'n'"	<u>-</u>
<pre>" 0.000 Impervious Min.infiltration" " 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		0.015	Impervious Max infiltration	n"
<pre>" 0.050 Impervious Lag constant (hours)" " 1.500 Impervious Depression storage"</pre>		0.000	Impervious Min infiltratio	 nn"
" 1.500 Impervious Depression storage"		0,050	Impervious Lag constant (nours)"
	"	1.500	Impervious Depression stor	rage"

"	0.010 0.000	0.000	0.000 0	.m/sec"	
"	Catchment 100	Pervious	Impervious	Total Area	"
"	Surface Area	0.000	0.030	0.030	hectare"
"	Time of concentration	10.252	1.722	1.722	minutes"
"	Time to Centroid	90.488	84.485	84.485	minutes"
"	Rainfall depth	75.581	75.581	75.581	mm"
"	Rainfall volume	0.00	22.67	22.67	c.m"
"	Rainfall losses	44.281	2.520	2.520	mm"
"	Runoff depth	31.300	73.061	73.061	mm"
"	Runoff volume	0.00	21.92	21.92	c.m"
"	Runoff coefficient	0.000	0.967	0.967	п
"	Maximum flow	0.000	0.010	0.010	c.m/sec"
"	40 HYDROGRAPH Add Runoff "				
"	4 Add Runoff "				
"	0.010 0.010	0.000	0.000"		
"	54 POND DESIGN"				
"	0.010 Current peak flow	c.m/sec"			
"	0.003 Target outflow c.	m/sec"			
"	21.9 Hydrograph volume	c.m"			
"	15. Number of stages"				
"	0.000 Minimum water level	metre"			
"	3.000 Maximum water level	metre"			
"	0.000 Starting water level	metre"			
"	0 Keep Design Data: 1	= True; 0 =	= False"		
"	Level Discharge	Volume"			
"	412.550 0.000	0.000"			
"	412.560 0.00012	0.1400"			
"	412.650 0.00012	1.400"			
"	412.750 0.00012	2.800"			
"	412.850 0.00013	4.200"			
"	412.950 0.00013	5.600"			
"	413.050 0.00013	7.000"			
"	413.150 0.00014	8.400"			
"	413.250 0.00014	9.800"			
"	413.350 0.00014	11.200"			
"	413.450 0.00015	12.600"			
"	413.550 0.00015	14.000"			
"	413.700 0.00016	14.000"			
"	413.850 0.00016	14.170"			
"	414.100 0.04629	14.450"			
"	Peak outflow	0.00	04 c.m/se	ec"	
"	Maximum level	413.87	75 metre'	1	
"	Maximum storage	14.19	97 c.m"		
"	Centroidal lag	12.45	59 hours"		
"	0.010 0.010	0.004	0.000 c.m/	'sec"	
"	40 HYDROGRAPH Next link "		,		
"	5 Next link "				
"	0.010 0.004	0.004	0.000"		
"	56 DIVERSION"				
"	100 Node number"				

"	' 0.000 0	verflow threshold"				
"	' 1.000 R	equired diverted fr	action"			
"	' 0 C	onduit type; 1=Pipe	;2=Channel"	1		
"	' Peak	of diverted flow	0.00	04 c.m/se	ec"	
"	' Volu	me of diverted flow	ı 5 . 76	57 c.m"		
"	' DIV0	0100.025hyd"				
"	' Majo	r flow at 100"				
"	ı	0.010 0.004	0.000	0.000 0	.m/sec"	
"	'40 HYDR	OGRAPH Combine	1"			
"	' 6 C	ombine "				
"	' 1 N	ode #"				
"	' I	nfiltrated on-site"	1			
"	' Maxi	mum flow	0.00	00 c.m/se	ec"	
"	' Hydr	ograph volume	12.53	38 c.m"		
"	I	0.010 0.004	0.000	0.000"		
"	'40 HYDR	OGRAPH Start - New	Tributary"			
"	' 2 S	tart - New Tributar	`У"			
"	I	0.010 0.000	0.000	0.000"		
"	' 33 CATC	HMENT 200"				
"	' 1 T	riangular SCS"				
"	' 1 E	qual length"				
"	' 2 H	orton equation"				
	' 200 C	atchment 200"				
	' 100.000 %	Impervious"				
	' 0.030 T	otal Area"				
	' 25.000 F	low length"				
	2.000 0	verland Slope"				
	0.000 P	ervious Area				
	25.000 P	ervious length"				
	2.000 P	ervious slope				
	0.030 I	mpervious Area				
	25.000 1	mpervious tengen				
		mpervious siope opvious Manning 'n'				
	0.250 P	ervious Manning II onvious Max infiltr	ation"			
	75.000 F	ervious Max.infiltr ervious Min infiltr	ación"			
	' 0 250 P	ervious lag constan	t (hours)"			
	5 000 P	ervious Lag constan	storage"			
	' 0.015 T	mnervious Manning '	n'"			
	' 0.015 I	mpervious Max infil	"tration"			
	' 0.000 I	mpervious Min.infil	tration"			
	' 0.050 I	mpervious lag const	ant (hours)) "		
	' 1.500 I	mpervious Depressio	on storage"	/		
	'	0.010 0.000	0.000	0.000	.m/sec"	
"	' Catc	hment 200	Pervious	Impervious	Total Area	п
"	' Surf	ace Area	0.000	0.030	0.030	hectare"
"	' Time	of concentration	10.252	1.722	1.722	minutes"
"	' Time	to Centroid	90.488	84.485	84.485	minutes"
"	' Rain	fall depth	75.581	75.581	75.581	mm"
"	' Rain	fall volume	0.00	22.67	22.67	c.m"

"	I	Rainfall losses		44.281	2.520	2.520	mm"
"	I	Runoff depth		31.300	73.061	73.061	mm"
"	I	Runoff volume		0.00	21.92	21.92	c.m"
"	I	Runoff coefficient		0.000	0.967	0.967	п
"	I	Maximum flow		0.000	0.010	0.010	c.m/sec"
"	40 I	HYDROGRAPH Add Runc	off "				
"	4	Add Runoff "					
"		0.010 6	0.010	0.000	0.000"		
"	33 (CATCHMENT 300"					
	1	Triangular SCS"					
	1	Equal length"	-				
	2	Horton equation"	•				
	300	Catchment 300"					
	100.000	% Impervious"					
	0.036	lotal Area"					
	25.000	Flow length"					
	2.000	Overland Slope"					
	0.000	Pervious Area"					
	25.000	Pervious length"					
	2.000	Pervious siope					
	0.030	Impervious Area	- 6 "				
	25.000	Impervious lengu	-[] \"				
	2.000	Penvious Manning	: , 'n'				
	75 000	Pervious Max inf	5 " Filtn	ation"			
	12 500	Pervious Min inf	Filtr	ation"			
	a 250	Pervious lag cor	istan	t (hours)"			
"	5.000	Pervious Depress	sion	storage"			
"	0.015	Impervious Manni	ing '	n'"			
	0.000	Impervious Max.i	infil	 tration"			
	0.000	Impervious Min.i	infil	tration"			
"	0.050	Impervious Lag c	const	ant (hours)			
"	1.500	Impervious Depre	essio	n storage"			
"		0.012 0	0.010	0.000	0.000 (.m/sec"	
"	(Catchment 300		Pervious	Impervious	Total Area	н
"		Surface Area		0.000	0.036	0.036	hectare"
"	-	Time of concentrati	ion	10.252	1.722	1.722	minutes"
"	-	Time to Centroid		90.488	84.485	84.485	minutes"
"	I	Rainfall depth		75.581	75.581	75.581	mm"
"	I	Rainfall volume		0.00	27.21	27.21	c.m"
"	I	Rainfall losses		44.281	2.520	2.520	mm"
"	I	Runoff depth		31.300	73.061	73.061	mm"
"	I	Runoff volume		0.00	26.30	26.30	c.m"
"	I	Runoff coefficient		0.000	0.967	0.967	"
"	I	Maximum flow		0.000	0.012	0.012	c.m/sec"
	40 I	HYDROGRAPH Add Runc	off "				
	4	Add Runoff "		.			
	F 4	0.012 0	0.023	0.000	0.000"		
	54	YUND DESIGN"		• • · / • · · · · · ·			
-	0.023	current peak flo	W	c.m/sec"			

"	0.003	Target outflow	c.m/sec"		
"	48.2	Hydrograph volume	c.m"		
"	15.	Number of stages"			
"	0.000	Minimum water leve	l metre"		
"	3.000	Maximum water leve	l metre"		
"	0.000	Starting water lev	el metre"		
"	0	Keep Design Data:	1 = True; 0 =	False"	
"		Level Discharge	Volume"		
"		411.800 0.000	0.000"		
"		411.810 0.00026	0.3200"		
"		411.900 0.00027	3.170"		
"		412.000 0.00027	6.330"		
"		412.100 0.00028	9.500"		
"		412.200 0.00029	12.670"		
"		412.300 0.00029	15.830"		
"		412.400 0.00030	19.000"		
"		412.500 0.00030	22.170"		
"		412.600 0.00031	25.330"		
"		412.700 0.00031	28.500"		
"		412.800 0.00032	31.670"		
"		413.050 0.00033	31.670"		
"		413.100 0.00034	31.720"		
"		413.350 0.04647	32.010"		
"	Pea	ak outflow	0.008	c.m/sec"	
"	Max	ximum level	413.151	metre"	
"	Max	ximum storage	31.779	c.m"	
"	Cei	ntroidal lag	12.657	hours"	
"		0.012 0.023	0.008	0.000 c.m/sec"	
"	40 HYI	DROGRAPH Next link	п		
"	5	Next link "			
"		0.012 0.0	0.008	0.000"	
"	56 DI'	VERSION"			
"	300	Node number"			
"	0.000	Overflow threshold	11		
"	1.000	Required diverted	fraction"		
"	0	Conduit type; 1=Pi	.pe;2=Channel"		
"	Pea	ak of diverted flow	0.008	c.m/sec"	
"	Vo	lume of diverted fl	.ow 13.855	c.m"	
"	DI	V00300.025hyd"			
"	Maj	jor flow at 300"			
"		0.012 0.0	08 0.000	0.000 c.m/sec"	
"	40 HYI	DROGRAPH Combine	1"		
"	6	Combine "			
"	1	Node #"			
"		Infiltrated on-sit	e"		
"	Max	ximum flow	0.001	c.m/sec"	
"	Hyd	drograph volume	38.620	c.m"	
"		0.012 0.0	0.000	0.001"	
"	40 HYI	DROGRAPH Start - Ne	w Tributary"		
"	2	Start - New Tribut	ary"		

"		0.012	0.000	0.000	0.001"		
"	33 CA	TCHMENT 400"					
"	1	Triangular SCS					
"	1	Equal length"					
"	2	Horton equatio	n"				
"	400	Catchment 400"					
"	0.000	% Impervious"					
"	0.130	Total Area"					
"	45.000	Flow length"					
"	2.000	Overland Slope					
"	0.130	Pervious Area"					
"	45.000	Pervious lengt	h"				
"	2.000	Pervious slope					
"	0.000	Impervious Are	a"				
"	45.000	Impervious len	gth"				
"	2.000	Impervious slo	pe"				
	0.250	Pervious Manni	r- ng 'n'				
	75.000	Pervious Max.i	nfiltr	ration"			
	12.500	Pervious Min.i	nfiltr	ration"			
	0.250	Pervious Lag c	onstar	nt (hours)"			
	5,000	Pervious Denre	ssion	storage"			
	0.015	Impervious Man	ning '	'n'"			
	0.015	Impervious Max	infil	" ltration"			
	0.000	Impervious Min	infil	ltration"			
	0.000	Impervious Lag	const	tant (hours)			
	1 500	Impervious Den	ressio	on storage"	/		
	1.500	0 023	a aaa		0 001 d		
	(a	tchment 400	0.000	Pervious	Tmnervious	Total Area	
	Cu Su	rface Area		0 130	a aaa	0 130	hectare"
	Ju Ti	me of concentra	tion	1/ 587	2 450	1/ 587	minutos"
	Ti	me to Centroid	CION	Q/ Q12	2.4J0 85 513	Q/ Q12	minutes
	Ra	infall denth		75 581	75 581	75 581	mm"
	Ra	infall volume		98 25	0 00	98 26	c ""
	Ra	infall losses		90.25 AA 16A	2 905	98.20 11 161	C•III mm"
	Na Pu	noff denth		21 /17	2,905	21 /17	mm"
	Ru	noff volume		10 81	0 00	10 81	
	Ru Du	noff coofficion	+	40.04	0.00	40.04	
	Ku Ma	vinum flow	L	0.410	0.000	0.410	c m/coc"
		NDUCDADH Add Du	noff '	0.025	0.000	0.025	C.III/SEC
		Add Bupoff "					
	4		0 025	0 0 0 0 0	0 001"		
	10 UV	DROCRADY Conv +	0.023	5 0.000	0.001		
		Conv to Outflo	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	TOM			
	0		ພ ດດວະ		0 001"		
	10 UV	U.UZJ DROCRADU Comb	0.023 ino	כבשיש כ יי	0.001		
		DRUGRAPH COMD	тпе	Z			
	b n	COMDILIE					
	Z	NOUE #					
	M -	VIT-SILE		0.07)) ~ ~ ~ / - /		
	ма			0.02	25 C.M/Se	:C	
-	Ну	urograph volume		40.84	+∠ C.M"		

"			0.023	0.023	0.023	0.023"
"	40	HY	DROGRAPH Start	- New T	'ributary"	
"		2	Start - New T	ributary	,"	
"			0.023	0.000	0.023	0.023"
"	47	FI	LEI O Read/Ope	n DIV001	.00.025hyd"	
"		1	1=read/open;	2=write/	'save"	
"		2	1=rainfall; 2	- hvdrogr	aph"	
"		1	1=runoff: 2=i	nflow: 3	=outflow:	4=iunction"
"		DI	V00100.025hvd"	- , -	,	J
"		Ma	ior flow at 10	0"		
"		То	tal volume	-	5.76	7 c.m"
"		Ma	ximum flow		0.00	4 c.m/sec"
			0.004 0	.000	0.023	0.023 c.m/sec"
	40	НҮ	DROGRAPH Add R	unoff "	0.010	,
	10	4	Add Runoff "			
		·	0.004	0.004	0.023	0.023"
	47	FT	IFT O Read/One	n DTV003	00 025hvd"	01025
	17	1	1=read/open:	2=write/	'save"	
		2	1=rainfall· 2	=hvdrogr	anh"	
		1	1=runoff· 2=i	nflow · 3	s=outflow.	4=junction"
		- דם	V00300 025hvd"		-outriow,	June erom
		Ma	ior flow at 30	a"		
		To	tal volume	0	13 85	5 cm"
		Ma	ximum flow		0 00	s cm/sec"
		114	A AAS A	001	0 023	0 023 c m/sec"
	10	ну	DROGRAPH Add R	unoff "	0.025	0.025 C.m/ SCC
	40	4	Add Runoff "	unori		
		-	A 008	0 012	Q Q23	Q Q23"
	22	CA	TCHMENT 500"	0.012	0.025	0.025
	55	1	Triangular SC	۲"		
		1	Foual length"	5		
		2	Horton equati	on"		
		500	Catchment 500	"		
		95 000	% Impervious"			
		0 194	Total Area"			
		25 000	Flow length"			
		2 9 9 9 9	Overland Slon	۵"		
		2.000 0 010	Pervious Area	"		
		25 000	Pervious leng	th"		
		20.000	Pervious slop	۵"		
		2.000 0 184	Tmnervious Ar	د مع"		
		25 000	Impervious la	ca nath"		
		23.000	Impervious ie	one"		
		0 250	Denvious Mann	ing 'n'"	I.	
		75 000	Dervious May	105 11 infil+na	tion"	
		12 500	Donvious Min	infil+~~	tion"	
		12.200 T2.200	Popyious Las	TULTTCL,9	(house)"	
		U.250 E 000	Pervious Lag		(nours)	
		D.000	Tervious Depr	essina la	un age	
		0.012	Impervious Ma	nning n	 	
		0.000	impervious Ma	x.intiit	ration	

"	0.000	Impervious	s Min.infi	iltration"			
"	0.050	Impervious	s Lag cons	stant (hours	5)"		
"	1.500	Impervious	s Depressi	ion storage'	1		
"		0.065	5 0.01	L2 0.023	8 0.02	3 c.m/sec"	
"	Ca	atchment 500	9	Pervious	Impervio	us Total Area	"
"	Su	urface Area		0.010	0.184	0.194	hectare"
"	Ti	ime of conce	entration	10.252	1.722	1.910	minutes"
"	Ti	ime to Centr	roid	90.488	84.485	84.617	minutes"
"	Ra	ainfall dept	th	75.581	75.581	75.581	mm"
"	Ra	ainfall volι	ume	7.33	139.30	146.63	c.m"
"	Ra	ainfall loss	ses	44.281	2.520	4.608	mm"
"	Ru	unoff depth		31.300	73.061	70.973	mm"
"	Ru	unoff volume	2	3.04	134.65	137.69	c.m"
"	Ru	unoff coeffi	icient	0.414	0.967	0.939	"
"	Ma	aximum flow		0.002	0.064	0.065	c.m/sec"
"	40 HY	/DROGRAPH Ac	dd Runoff	п			
"	4	Add Runoff	F "				
"		0.065	5 0.06	65 0.02	8 0.02	3"	
"	54 PC	OND DESIGN"					
"	0.065	Current pe	eak flow	c.m/sec"			
"	0.002	Target out	tflow d	c.m/sec"			
"	157.3	Hydrograph	n volume	c.m"			
"	18.	Number of	stages"				
"	0.000	Minimum wa	ater level	L metre"			
"	3.000	Maximum wa	ater level	l metre"			
"	0.000	Starting v	vater leve	el metre'	1		
"	0	Keep Desią	gn Data: 1	L = True; 0	= False"		
"		Level Di	ischarge	Volume"			
"		413.590	0.000	0.000"			
"		413.620	0.00200	0.03000"			
"		413.800	0.00700	4.040"			
"		413.970	0.01000	8.050"			
"		414.150	0.01200	12.060"			
"		414.400	0.01500	12.340"			
"		414.650	0.01700	12.620"			
"		414.900	0.01900	12.910"			
"		415.020	0.02000	13.000"			
"		415.050	0.02000	13.060"			
"		415.100	0.02000	13.490"			
"		415.150	0.02100	14.540"			
"		415.200	0.02100	16.590"			
"		415.250	0.02100	20.060"			
"		415.320	0.02200	27.940"			
"		415.370	0.4980	36.540"			
"		415.420	0.5020	47.040"			
		415.470	0.5050	58.440"			
	Pe	eak outflow		0.0)65 c.m,	/sec"	
	Ma	aximum leve]	L	415.3	324 meti	re"	
	Ma	aximum stora	age	28.7	709 c.m		
"	Ce	entroidal la	ag	1.7	'01 hours	5"	

				0.02 cm/coc''	
	10		ש כסש.ש יי	.023 C.m/Sec	
	40	HYDROGRAPH COMDINE 2			
		6 COMDINE			
		2 Node #			
		Off-Site"	0.076	/ u	
		Maximum flow	0.076	c.m/sec"	
		Hydrograph volume	199.3/1	C.M"	
		0.065 0.065	0.065	0.076"	
	40	HYDROGRAPH Confluence	1"		
		7 Confluence "			
"		1 Node #"			
"		Infiltrated on-site"			
"		Maximum flow	0.001	c.m/sec"	
"		Hydrograph volume	38.620	c.m"	
"		0.065 0.001	0.065	0.000"	
"	40	HYDROGRAPH Copy to Outflow	w"		
"		8 Copy to Outflow"			
"		0.065 0.001	0.001	0.000"	
"	40	HYDROGRAPH Combine 3			
"		6 Combine "			
"		3 Node #"			
"		TOTAL"			
"		Maximum flow	0.001	c.m/sec"	
"		Hydrograph volume	38.620	c.m"	
"		0.065 0.001	0.001	0.001"	
"	40	HYDROGRAPH Confluence	2"		
"		7 Confluence "			
"		2 Node #"			
"		Off-Site"			
"		Maximum flow	0.076	c.m/sec"	
"		Hydrograph volume	199.371	c.m"	
"		0.065 0.076	0.001	0.000"	
"	40	HYDROGRAPH Copy to Outflow	w"		
"		8 Copy to Outflow"			
"		0.065 0.076	0.076	0.000"	
"	40	HYDROGRAPH Combine 3			
"		6 Combine "			
"		3 Node #"			
"		TOTAL"			
"		Maximum flow	0.076	c.m/sec"	
"		Hydrograph volume	237.992	c.m"	
"		0.065 0.076	0.076	0.076"	
"	40	HYDROGRAPH Confluence	3"		
"		7 Confluence "			
"		3 Node #"			
"		TOTAL"			
"		Maximum flow	0.076	c.m/sec"	
"		Hydrograph volume	237.992	c.m"	
"		0.065 0.076	0.076	0.000"	
"	38	START/RE-START TOTALS 3"			

	3 Runoff Totals on EXIT"		
"	Total Catchment area	0.420	hectare"
"	Total Impervious area	0.280	hectare"
"	Total % impervious	66.738"	
" 19	EXIT"		
"		MIDUSS Output	>"
---	----------------	--------------------------	----------------------------------
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	C:\Users\pgrier\Documents\Work\"
"			422144 465 Garafraxa\2023-01-18"
"		Output filename:	422144 50-year post.out"
"		Licensee name:	gmbp"
"		Company	"
"		Date & Time last used:	1/18/2023 at 11:55:29 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hvdrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
	5089,418	Coefficient A"	
	30,000	Constant B"	
"	0.967	Exponent C"	
"	0.380	Fraction R"	
	180.000	Duration"	
	1.000	Time step multiplier"	
"	M	laximum intensity	156.350 mm/hr"
"	Т	otal depth	86.737 mm"
	6	050hvd Hvdrograph exte	nsion used in this file"
	33 Č	ATCHMENT 100"	
	1	Triangular SCS"	
	- 1	Faual length"	
	- 2	Horton equation"	
	100	Catchment 100"	
"	100.000	% Impervious"	
"	0.030	Total Area"	
	25.000	Flow length"	
"	2.000	Overland Slope"	
	0.000	Pervious Area"	
"	25.000	Pervious length"	
	2.000	Pervious slope"	
"	0.030	Impervious Area"	
"	25.000	Impervious length"	
	2.000	Impervious slope"	
	0.250	Pervious Manning 'n'"	
	75,000	Pervious Max infiltratio	n"
	12 500	Pervious Min infiltratio	""
	0,250	Pervious Lag constant (h	 ours)"
	5,000	Pervious Depression stor	age"
	0 015	Impervious Manning 'n'"	~D~
	0.015	Impervious Max infiltrat	ion"
	a aaa	Impervious Min infiltrat	ion"
	0.000 0 050	Impervious Lag constant	(hours)"
	1,500	Impervious Depression st	orage"
	±.500		~ <u>D</u> -

"	0.011 0.000	0.000	0.000 0	.m/sec"	
"	Catchment 100	Pervious	Impervious	Total Area	
"	Surface Area	0.000	0.030	0.030	hectare"
"	Time of concentration	9.574	1.663	1.663	minutes"
"	Time to Centroid	90.779	84.291	84.291	minutes"
"	Rainfall depth	86.737	86.737	86.737	mm"
"	Rainfall volume	0.00	26.02	26.02	c.m"
"	Rainfall losses	45.966	2.621	2.621	mm"
"	Runoff depth	40.771	84.116	84.116	mm"
"	Runoff volume	0.00	25.23	25.23	c.m"
"	Runoff coefficient	0.000	0.970	0.970	п
"	Maximum flow	0.000	0.011	0.011	c.m/sec"
"	40 HYDROGRAPH Add Runoff "				
"	4 Add Runoff "				
"	0.011 0.011	0.000	0.000"		
"	54 POND DESIGN"				
"	0.011 Current peak flow	c.m/sec"			
"	0.003 Target outflow c.	m/sec"			
"	25.2 Hydrograph volume	c.m"			
"	15. Number of stages"				
"	0.000 Minimum water level	metre"			
"	3.000 Maximum water level	metre"			
"	0.000 Starting water level	metre"			
"	0 Keep Design Data: 1	= True: 0 =	= False"		
"	Level Discharge	Volume"			
"	412.550 0.000	0.000"			
"	412.560 0.00012	0.1400"			
"	412.650 0.00012	1.400"			
"	412.750 0.00012	2.800"			
"	412.850 0.00013	4.200"			
"	412.950 0.00013	5.600"			
"	413.050 0.00013	7.000"			
"	413.150 0.00014	8.400"			
"	413.250 0.00014	9.800"			
"	413.350 0.00014	11.200"			
"	413.450 0.00015	12.600"			
"	413.550 0.00015	14.000"			
"	413.700 0.00016	14.000"			
"	413.850 0.00016	14.170"			
"	414.100 0.04629	14.450"			
"	Peak outflow	0.00)6 c.m/se	ec"	
"	Maximum level	413.89)1 metre'		
"	Maximum storage	14.21	L6 c.m"		
"	Centroidal lag	11.51	lo hours"		
"	0.011 0.011	0.006	0.000 c.m/	'sec"	
	40 HYDROGRAPH Next link "				
"	5 Next link "				
"	0.011 0.006	0.006	0.000"		
	56 DIVERSION"				
"	100 Node number"				

"	" 0.000 Ov	verflow threshold"				
"	" 1.000 Re	equired diverted fr	action"			
"	" 0 Cc	onduit type; 1=Pipe	;2=Channel"	1		
"	" Peak	of diverted flow	0.00	06 c.m/se	ec"	
"	" Volum	ne of diverted flow	ı 8.70)3 c.m"		
"	" DIV00	0100.050hyd"				
"	" Major	r flow at 100"				
"	11	0.011 0.006	6.000	0.000 0	.m/sec"	
"	" 40 HYDRC)GRAPH Combine	1"			
"	" 6 Cc	ombine "				
"	" 1 Nc	ode #"				
"	"Ir	filtrated on-site	I			
"	" Maxim	num flow	0.00	00 c.m/se	ec"	
"	" Hydro	ograph volume	12.57	′1 c.m"		
"		0.011 0.006	0.000	0.000"		
"	" 40 HYDRC	OGRAPH Start - New	Tributary"			
"	" 2 St	art - New Tributar	`Y"			
"	11	0.011 0.000	0.000	0.000"		
"	" 33 CATCH	IMENT 200"				
"	" 1 Tr	riangular SCS"				
"	" 1 Ec	ual length"				
"	" 2 Ho	orton equation"				
	" 200 Ca	atchment 200"				
	" 100.000 %	Impervious"				
	" 0.030 To	otal Area"				
	" 25.000 F1	low length"				
	" 2.000 Ov	verland Slope"				
	" 0.000 Pe	ervious Area				
	" 25.000 Pe	ervious length"				
	2.000 PE	ervious siope				
	۲۳ ۵۰۵۵۵ U	pervious Area				
	25.000 III	pervious tengen				
		pervious siope				
	0.250 PE	nvious Manning n	ation"			
	" 12 500 Pe	nvious Min infiltr	ación"			
	" 0.250 Pe	rvious lag constar	t (hours)"			
	" 5.000 Pe	prvious Depression	storage"			
	" 0.015 Tm	nervious Manning '	n'"			
	" 0.000 In	pervious Max infil	tration"			
	" 0.000 In	pervious Min.infil	tration"			
	" 0.050 In	pervious Lag const	ant (hours)			
	" 1.500 In	nervious Depressio	on storage"	,		
	"	0.011 0.000	0.000	0.000	.m/sec"	
"	" Catch	nment 200	Pervious	Impervious	Total Area	
"	" Surfa	ace Area	0.000	0.030	0.030	hectare"
"	" Time	of concentration	9.574	1.663	1.663	minutes"
"	" Time	to Centroid	90.779	84.291	84.291	minutes"
"	" Rainf	all depth	86.737	86.737	86.737	mm"
"	" Rainf	all volume	0.00	26.02	26.02	c.m"

"		Rainfall losses		45.966	2.621	2.621	mm"
"	l	Runoff depth		40.771	84.116	84.116	mm''
"	I	Runoff volume		0.00	25.23	25.23	c.m"
"	l	Runoff coefficient		0.000	0.970	0.970	"
"	I	Maximum flow		0.000	0.011	0.011	c.m/sec"
"	40 I	HYDROGRAPH Add Run	off '	•			
"	4	Add Runoff "					
"		0.011	0.011	L 0.000	0.000"		
"	33	CATCHMENT 300"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	2	Horton equation					
"	300	Catchment 300"					
"	100.000	% Impervious"					
"	0.036	Total Area"					
"	25.000	Flow length"					
"	2.000	Overland Slope"					
"	0.000	Pervious Area"					
"	25.000	Pervious length					
"	2.000	Pervious slope"					
"	0.036	Impervious Area					
"	25.000	Impervious leng	th"				
"	2.000	Impervious slop	e"				
"	0.250	Pervious Mannin	g 'n'				
"	75.000	Pervious Max.in	filtr	ration"			
"	12.500	Pervious Min.in	filtr	ration"			
"	0.250	Pervious Lag co	nstar	nt (hours)"			
	5.000	Pervious Depres	sion	storage"			
"	0.015	Impervious Mann	ing '	'n'"			
	0.000	Impervious Max.	infi	ltration"			
	0.000	Impervious Min.	infi	ltration"	·		
	0.050	Impervious Lag	const	ant (hours))"		
	1.500	Impervious Depr	essio	on storage"		<i>,</i>	
		0.014	0.011	L 0.000	- 0.000 (c.m/sec"	
		Catchment 300		Pervious	Impervious	Total Area	
	-	Surface Area		0.000	0.036	0.036	hectare"
		lime of concentrat	lon	9.5/4	1.663	1.663	minutes"
		lime to Centroid		90.779	84.291	84.291	minutes"
		Rainfall depth		86./3/	86./3/	86./3/	mm
		Rainfall volume		0.00	31.23	31.23	c.m.
		Rainfall losses		45.966	2.621	2.621	mm "
		Runott depth		40.771	84.116	84.116	mm
		RUNOTT VOLUME		0.00	30.28	30.28	C.m
		RUNOTT COETTICIENT		0.000	0.970	0.970	o
	10		• د د	0.000 '	0.014	0.014	c.m/sec
	40	HIDKUGKAPH Add RUN	UTT .				
	4	AUU KUNOTT	0 0 2 7	- 0.000	0 000"		
	54	0.014 DOND DESTON"	0.025	0.000	0.000		
	ן אר ה אר	CURRENT ROOM LI	0.4				
	0.025	ситенс реак ти	UW	C.III/ SEC			

"	0.003	Target outflow	c.m/sec"		
"	55.5	Hydrograph volume	c.m"		
"	15.	Number of stages"			
"	0.000	Minimum water leve	1 metre"		
"	3.000	Maximum water leve	l metre"		
"	0.000	Starting water lev	el metre"		
"	0	Keep Design Data:	1 = True; 0 =	False"	
"		Level Discharge	Volume"		
"		411.800 0.000	0.000"		
"		411.810 0.00026	0.3200"		
"		411.900 0.00027	3.170"		
"		412.000 0.00027	6.330"		
"		412.100 0.00028	9.500"		
"		412.200 0.00029	12.670"		
"		412.300 0.00029	15.830"		
"		412.400 0.00030	19.000"		
"		412.500 0.00030	22.170"		
"		412.600 0.00031	25.330"		
"		412.700 0.00031	28.500"		
"		412.800 0.00032	31.670"		
"		413.050 0.00033	31.670"		
"		413.100 0.00034	31.720"		
"		413.350 0.04647	32.010"		
"	Pe	ak outflow	0.013	c.m/sec"	
"	Ma	ximum level	413.186	metre"	
"	Ma	ximum storage	31.820	c.m"	
"	Ce	ntroidal lag	11.684	hours"	
"		0.014 0.025	0.013	0.000 c.m/sec"	
"	40 HY	DROGRAPH Next link	п		
"	5	Next link "			
"		0.014 0.0	13 0.013	0.000"	
"	56 DI'	VERSION"			
"	300	Node number"			
"	0.000	Overflow threshold	п		
"	1.000	Required diverted	fraction"		
"	0	Conduit type; 1=Pi	pe;2=Channel"		
"	Pe	ak of diverted flow	0.013	c.m/sec"	
"	Vo	lume of diverted fl	ow 20.356	c.m"	
"	DI	V00300.050hyd"			
"	Ma	jor flow at 300"			
"		0.014 0.0	13 0.000	0.000 c.m/sec"	
"	40 HY	DROGRAPH Combine	1"		
"	6	Combine "			
"	1	Node #"			
"		Infiltrated on-sit	e"		
"	Ма	ximum flow	0.001	c.m/sec"	
"	Hy	drograph volume	38.688	c.m"	
"	-	0.014 0.0	13 0.000	0.001"	
"	40 HY	DROGRAPH Start - Ne	w Tributary"		
"	2	Start - New Tribut	ary"		

"		0.014	0.000	0.000	0.001"		
"	33 CA	TCHMENT 400"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	2	Horton equation					
"	400	Catchment 400"					
"	0.000	% Impervious"					
"	0.130	Total Area"					
"	45.000	Flow length"					
"	2.000	Overland Slope"					
"	0.130	Pervious Area"					
"	45.000	Pervious length					
	2.000	Pervious slope"					
	0.000	Impervious Area					
	45.000	Impervious leng	th"				
	2.000	Impervious slop	е"				
	0.250	Pervious Mannin	ς σ'n'"				
	75 000	Pervious Max in	в " filtra	tion"			
	12 500	Pervious Min in	filtra	tion"			
	0 250	Pervious Lag co	nstant	(hours)"			
	5 000	Pervious Denres	cion c	tonage"			
	0 015	Tmnervious Mann	ing 'r	'"			
	0.015	Impervious Max	infilt	" "nation"			
	0.000	Impervious Min	infilt	ration"			
	0.000	Impervious Lag	consta	nacion nt (bounc)	п		
	1 500	Impervious Lag	occion	nit (nours)			
	1.500		622101	a aga	0 001		
	()	0.029 tchmont 400	0.000 Г		Tmpopyious	Total Anoa	
	Ca		P C		TillbellAtions	o 120	ho otono"
	Su T:	rtace Area	ton 1	2 622	0.000	12 622	nectare
	11	me or concentrat	100 1	105	2.300	13.622	minutes
	1 I D a	me to centroid	5		00.207	95.105	minutes
	Ra	infall depth	2	36./3/	86./3/	86./3/	mm
	Ra	infall volume	L	12.76	0.00	112.76	C.M
	Ка	infall losses	4	15./35	3.110	45./35	mm
	RU	nott depth	4	1.002	83.62/	41.002	mm ¹
	Ru	nott volume	5	3.30	0.00	53.30	c.m.
	Ru	nott coetticient	e	0.4/3	0.000	0.4/3	
	Ма	ximum +low	6	0.029	0.000	0.029	c.m/sec"
	40 HY	DROGRAPH Add Run	ott "				
	4	Add Runoff "					
		0.029	0.029	0.000	0.001"		
"	40 HY	DROGRAPH Copy to	Outf1	_ow"			
"	8	Copy to Outflow					
		0.029	0.029	0.029	0.001"		
"	40 HY	DROGRAPH Combi	ne	2"			
"	6	Combine "					
"	2	Node #"					
"		Off-Site"					
"	Ма	ximum flow		0.02	9 c.m/se	ec"	
"	Hy	drograph volume		53.30	2 c.m"		

... 0.029 0.029 0.029 0.029" .. 40 HYDROGRAPH Start - New Tributary" н 2 Start - New Tributary" ... 0.029 0.000 0.029 0.029" н 47 FILEI_O Read/Open DIV00100.050hyd" ... 1 1=read/open; 2=write/save" ... 2 1=rainfall; 2=hydrograph" ... 1=runoff; 2=inflow; 3=outflow; 4=junction" 1 ... DIV00100.050hyd" ... Major flow at 100" ... Total volume 8.703 c.m" ... c.m/sec" Maximum flow 0.006 ... 0.006 0.000 0.029 0.029 c.m/sec" ... HYDROGRAPH Add Runoff " 40 ... 4 Add Runoff " ... 0.029" 0.006 0.006 0.029 ... 47 FILEI O Read/Open DIV00300.050hyd" ... 1=read/open; 2=write/save" 1 ... 1=rainfall; 2=hydrograph" 2 1=runoff; 2=inflow; 3=outflow; 4=junction" 1 ... DIV00300.050hyd" ... Major flow at 300" . Total volume 20.356 c.m" ... Maximum flow c.m/sec" 0.013 ... 0.013 0.006 0.029 0.029 c.m/sec" н HYDROGRAPH Add Runoff " 40 ... Add Runoff " 4 ... 0.029" 0.013 0.019 0.029 33 CATCHMENT 500" ... 1 Triangular SCS" ... 1 Equal length" ... 2 Horton equation" ... 500 Catchment 500" ... 95.000 % Impervious" ... 0.194 Total Area" ... Flow length" 25.000 ... 2.000 Overland Slope" ... Pervious Area" 0.010 ... Pervious length" 25.000 ... 2.000 Pervious slope" ... 0.184 Impervious Area" ... 25.000 Impervious length" ... 2.000 Impervious slope" ... Pervious Manning 'n'" 0.250 ... Pervious Max.infiltration" 75.000 ... Pervious Min.infiltration" 12.500 ... Pervious Lag constant (hours)" 0.250 ... 5.000 Pervious Depression storage" ... 0.015 Impervious Manning 'n'" ... 0.000 Impervious Max.infiltration"

"	0.000	Impervious	s Min.infi	ltration"			
"	0.050	Impervious	a Lag cons	tant (hours)"		
"	1.500	Impervious	5 Depressi	on storage"			
"		0.072	0.01	.9 0.029	0.029	c.m/sec"	
"	Ca	atchment 500)	Pervious	Impervious	Total Area	
"	Su	urface Area		0.010	0.184	0.194	hectare"
"	Ti	ime of conce	entration	9.574	1.663	1.860	minutes"
"	Ti	ime to Centr	roid	90.779	84.291	84.452	minutes"
"	Ra	ainfall dept	:h	86.737	86.737	86.737	mm"
"	Ra	ainfall volu	ume	8.41	159.86	168.27	c.m"
"	Ra	ainfall loss	ses	45.966	2.621	4.788	mm"
"	Ru	unoff depth		40.771	84.116	81.948	mm"
"	Ru	unoff volume	2	3.95	155.03	158.98	c.m"
"	Ru	unoff coeffi	lcient	0.470	0.970	0.945	
"	Ma	aximum flow		0.003	0.070	0.072	c.m/sec"
"	40 HY	DROGRAPH AC	ld Runoff	п			
"	4	Add Runoff	- "				
"		0.072	0.07	2 0.029	0.029"		
"	54 PC	OND DESIGN"					
"	0.072	Current pe	ak flow	c.m/sec"			
"	0.002	Target out	flow c	.m/sec"			
"	188.0	Hydrograph	n volume	c.m"			
"	18.	Number of	stages"				
"	0.000	Minimum wa	ater level	. metre"			
"	3.000	Maximum wa	ater level	. metre"			
"	0.000	Starting v	water leve	el metre"			
"	0	Keep Desią	gn Data: 1	. = True; 0	= False"		
"		Level Di	scharge	Volume"			
"		413.590	0.000	0.000"			
"		413.620	0.00200	0.03000"			
"		413.800	0.00700	4.040"			
"		413.970	0.01000	8.050"			
"		414.150	0.01200	12.060"			
"		414.400	0.01500	12.340"			
		414.650	0.01700	12.620"			
		414.900	0.01900	12.910"			
		415.020	0.02000	13.000"			
		415.050	0.02000	13.060"			
		415.100	0.02000	13.490"			
		415.150	0.02100	14.540"			
		415.200	0.02100	16.590"			
		415.250	0.02100	20.060"			
		415.320	0.02200	27.940"			
		415.370	0.4980	36.540"			
		415.420	0.5020	47.040"			
		415.470	0.5050	58.440"			
	Pe	ak outflow	1	0.0	/2 c.m/s	ec"	
	Ma	aximum level	L	415.3	25 metre		
	Ma	aximum stora	age	28.8	34 C.M"		
	Ce	entroidal la	ag	1.6	86 hours"		

			0 072 0	020 c m/coc"	
	10	HVDROGRADH Combine 2	" "	.029 C.III/SEC	
	40	ATDROGRAFH COMDITIE 2			
		8 Combine			
		UTT-Site	0 007	/ H	
		Maximum flow	0.08/	c.m/sec	
		Hydrograph volume	238.934	C.m.	
		0.072 0.072	0.072	0.087"	
	40	HYDROGRAPH Confluence	1"		
"		7 Confluence "			
"		1 Node #"			
"		Infiltrated on-site"			
"		Maximum flow	0.001	c.m/sec"	
"		Hydrograph volume	38.688	c.m"	
"		0.072 0.001	0.072	0.000"	
"	40	HYDROGRAPH Copy to Outflo	w"		
"		8 Copy to Outflow"			
"		0.072 0.001	0.001	0.000"	
"	40	HYDROGRAPH Combine 3			
"		6 Combine "			
"		3 Node #"			
"		TOTAL"			
"		Maximum flow	0.001	c.m/sec"	
"		Hydrograph volume	38.688	c.m"	
"		0.072 0.001	0.001	0.001"	
"	40	HYDROGRAPH Confluence	2"		
"		7 Confluence "			
"		2 Node #"			
"		Off-Site"			
"		Maximum flow	0.087	c.m/sec"	
		Hydrograph volume	238,934	C.m"	
		0.072 0.087	0.001	0.000"	
	40	HYDROGRAPH Conv to Outflo	w"	0.000	
		8 Conv to Outflow"	~		
		0 072 0 087	0 087	a aaa"	
	10	HVDROGRAPH Combine 3	"	0.000	
п		6 Combine "			
п		3 Node #"			
		Maximum flow	0 000		
		Hudnognaph volumo	000.0 27 572	c.m/sec	
			2//.022		
	40		0.08/	0.088	
	40	TIDKUGKAPH CONTIUENCE	3		
		/ CONTLUENCE			
		IOIAL"	• • • • •	,	
		Maximum flow	0.088	c.m/sec"	
		Hydrograph volume	277.622	C.M"	
		0.072 0.088	0.087	0.000"	
"	38	START/RE-START TOTALS 3"			

	3 Runoff Totals on EXIT"		
"	Total Catchment area	0.420	hectare"
"	Total Impervious area	0.280	hectare"
н	Total % impervious	66.738"	
" 19	EXIT"		

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	C:\Users\pgrier\Documents\Work\"
"			422144 465 Garafraxa\2023-01-18"
"		Output filename:	422144 100-year post.out"
"		Licensee name:	gmbp"
"		Company	
"		Date & Time last used:	1/18/2023 at 11:57:15 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hvdrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
"	6933.019	Coefficient A"	
"	34,699	Constant B"	
"	0.998	Exponent C"	
"	0.380	Fraction R"	
	180,000	Duration"	
	1,000	Time sten multinlier"	
	M	laximum intensity 1	68.777 mm/hr"
	Т	otal depth	97.921 mm"
	6	100hvd Hvdrograph extens	ion used in this file"
	33 C	ATCHMENT 100"	
	1	Triangular SCS"	
	- 1	Foual length"	
	- 2	Horton equation"	
	100	Catchment 100"	
	100,000	% Impervious"	
	0.030	Total Area"	
	25,000	Flow length"	
	2,000	Overland Slope"	
	9,000	Pervious Area"	
	25,000	Pervious length"	
	2,000	Pervious slope"	
	2.000 0.030	Tmnervious Area"	
	25,000	Impervious length"	
	2 999	Impervious slope"	
	0.250	Pervious Manning 'n'"	
	75 000	Pervious Max infiltration"	
	12 500	Pervious Min infiltration"	
	0 250	Pervious Lag constant (hou	ns)"
	5 000	Pervious Depression storage	e"
	0 015	Tmpervious Menning 'n'"	
	0.013	Impervious May infiltration	n"
	0.000 0 000	Impervious Min infiltratio	n"
	0.000 0 050	Impervious Lag constant (h	ours)"
	1,500	Impervious Depression stor	age"
	1.000		~0~

"	0.012 0.000	0.000	0.000 0	.m/sec"	
"	Catchment 100	Pervious	Impervious	Total Area	"
"	Surface Area	0.000	0.030	0.030	hectare"
"	Time of concentration	9.201	1.613	1.613	minutes"
"	Time to Centroid	90.800	84.151	84.151	minutes"
"	Rainfall depth	97.921	97.921	97.921	mm"
"	Rainfall volume	0.00	29.38	29.38	c.m"
"	Rainfall losses	47.274	2.759	2.759	mm"
"	Runoff depth	50.647	95.162	95.162	mm"
"	Runoff volume	0.00	28.55	28.55	c.m"
"	Runoff coefficient	0.000	0.972	0.972	"
"	Maximum flow	0.000	0.012	0.012	c.m/sec"
"	40 HYDROGRAPH Add Runoff '				
"	4 Add Runoff "				
"	0.012 0.012	2 0.000	0.000"		
"	54 POND DESIGN"				
"	0.012 Current peak flow	c.m/sec"			
"	0.003 Target outflow c	.m/sec"			
"	28.5 Hydrograph volume	c.m"			
"	15. Number of stages"				
"	0.000 Minimum water level	metre"			
"	3.000 Maximum water level	metre"			
"	0.000 Starting water level	l metre"			
"	0 Keep Design Data: 1	= True; 0 =	= False"		
"	Level Discharge	Volume"			
"	412.550 0.000	0.000"			
"	412.560 0.00012	0.1400"			
"	412.650 0.00012	1.400"			
"	412.750 0.00012	2.800"			
"	412.850 0.00013	4.200"			
"	412.950 0.00013	5.600"			
"	413.050 0.00013	7.000"			
"	413.150 0.00014	8.400"			
"	413.250 0.00014	9.800"			
"	413.350 0.00014	11.200"			
"	413.450 0.00015	12.600"			
"	413.550 0.00015	14.000"			
	413.700 0.00016	14.000"			
	413.850 0.00016	14.170"			
	414.100 0.04629	14.450"			
	Peak outflow	0.00	09 c.m/se	ec"	
	Maximum level	413.90	05 metre'	•	
	Maximum storage	14.23	32 c.m"		
	Centroidal lag	9.26	56 hours"		
	0.012 0.012	0.009	0.000 c.m/	'sec"	
	40 HYDROGRAPH Next link "				
	5 Next link "				
	0.012 0.009	9 0.009	0.000"		
	56 DIVERSION"				
"	100 Node number"				

"	" 0.000 Ov	erflow threshold"				
"	" 1.000 Re	quired diverted fr	raction"			
"	" 0 Co	nduit type; 1=Pip@	e;2=Channel"	1		
"	" Peak	of diverted flow	0.00	09 c.m∕se	ec"	
"	" Volum	e of diverted flow	v 12.89	94 c.m"		
"	" DIV00	100.100hyd"				
"	" Major	flow at 100"				
"	п	0.012 0.009	9 0.000	0.000 0	.m/sec"	
"	" 40 HYDRO	GRAPH Combine	1"			
"	" 6 Co	mbine "				
"	" 1 No	de #"				
"	" In	filtrated on-site'	1			
"	" Maxim	um flow	0.00	00 c.m/se	ec"	
"	" Hydro	graph volume	12.60	03 c.m"		
"	II.	0.012 0.009	9 0.000	0.000"		
"	" 40 HYDRO	GRAPH Start - New	Tributary"			
"	" 2 St	art - New Tributar	^у"			
"	"	0.012 0.000	0.000	0.000"		
"	" 33 CATCH	MENT 200"				
"	" 1 Tr	iangular SCS"				
"	" 1 Eq	ual length"				
"	" 2 Ho	rton equation"				
	" 200 Ca	tchment 200"				
	" 100.000 %	Impervious"				
	" 0.030 To	tal Area"				
	" 25.000 F1	ow length"				
		erland Slope"				
	" 0.000 Pe	rvious Area				
	25.000 Pe	rvious length"				
	2.000 Pe	rvious siope				
	0.030 IM	pervious Area				
	25.000 III " 2.000 Im	pervious rengen				
	2.000 III " 0.250 Do	pervious siope puious Manning 'n'				
	0.230 Pe	nvious Manning II	aation"			
	75.000 FE	nvious Min infilt	ación nation"			
	" 0.250 Pe	nvious lag constar	ación at (bours)"			
	" 5 000 Pe	rvious Denression	storage"			
	" 0.015 Tm	nervious Manning	'n'"			
	" 0.015 Im	pervious Max infi	ltration"			
	" 0.000 Im	pervious Min.infi	ltration"			
	" 0.050 Im	nervious lag const	tant (hours)) "		
	" 1.500 Im	pervious Depressio	on storage"	/		
	"	0.012 0.000	a 0.000	0.000	.m/sec"	
"	" Catch	ment 200	Pervious	Impervious	Total Area	п
	" Surfa	ce Area	0.000	0.030	0.030	hectare"
	" Time	of concentration	9.201	1.613	1.613	minutes"
"	" Time	to Centroid	90.800	84.151	84.151	minutes"
"	" Rainf	all depth	97.921	97.921	97.921	mm"
"	" Rainf	all volume	0.00	29.38	29.38	c.m"

"		Rainfall losses	4	47.274	2.759	2.759	mm"
"		Runoff depth	[50.647	95.162	95.162	mm"
"		Runoff volume	(0.00	28.55	28.55	c.m"
"		Runoff coefficient	(0.000	0.972	0.972	"
"	1	Maximum flow	(0.000	0.012	0.012	c.m/sec"
"	40 1	HYDROGRAPH Add Runo	off "				
"	4	Add Runoff "					
"		0.012 0	0.012	0.000	0.000"		
"	33	CATCHMENT 300"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	2	Horton equation"					
"	300	Catchment 300"					
"	100.000	% Impervious"					
"	0.036	Total Area"					
"	25.000	Flow length"					
"	2.000	Overland Slope"					
"	0.000	Pervious Area"					
"	25.000	Pervious length"	•				
"	2.000	Pervious slope"					
"	0.036	Impervious Area"	•				
"	25.000	Impervious lengt	:h"				
"	2.000	Impervious slope	2"				
"	0.250	Pervious Manning	g 'n''				
"	75.000	Pervious Max.inf	iltra	ation"			
"	12.500	Pervious Min.inf	iltra	ation"			
"	0.250	Pervious Lag con	istant	t (hours)"			
"	5.000	Pervious Depress	sion s	storage"			
"	0.015	Impervious Manni	ing 'r	n'"			
"	0.000	Impervious Max.i	infil	tration"			
"	0.000	Impervious Min.i	Infil	tration"			
"	0.050	Impervious Lag c	consta	ant (hours)			
"	1.500	Impervious Depre	ession	n storage"			
"		0.015 0	0.012	0.000	0.000 0	:.m/sec"	
"	(Catchment 300	F	Pervious	Impervious	Total Area	"
		Surface Area	(0.000	0.036	0.036	hectare"
"		Time of concentrati	lon 9	9.201	1.613	1.613	minutes"
		Time to Centroid	0	90.800	84.151	84.151	minutes"
"		Rainfall depth	<u>c</u>	97.921	97.921	97.921	mm"
		Rainfall volume	(0.00	35.25	35.25	c.m"
"		Rainfall losses	4	47.274	2.759	2.759	mm"
"		Runoff depth	-	50.647	95.162	95.162	mm"
		Runoff volume	(0.00	34.26	34.26	c.m"
		Runoff coefficient	(0.000	0.972	0.972	
"	I	Maximum flow	(0.000	0.015	0.015	c.m/sec"
"	40 I	HYDROGRAPH Add Runo	off "				
	4	Add Runoff "					
		0.015 0	0.027	0.000	0.000"		
	54	POND DESIGN"		,			
"	0.027	Current peak flo	W	c.m/sec"			

"	0.003	Target outflow	c.m/sec"		
"	62.8	Hydrograph volume	c.m"		
"	15.	Number of stages"			
"	0.000	Minimum water leve	el metre"		
"	3.000	Maximum water leve	el metre"		
"	0.000	Starting water lev	vel metre"		
"	0	Keep Design Data:	1 = True; 0 =	False"	
"		Level Discharge	Volume"		
"		411.800 0.000	0.000"		
"		411.810 0.00026	0.3200"		
"		411.900 0.00027	3.170"		
"		412.000 0.00027	6.330"		
"		412.100 0.00028	9.500"		
"		412.200 0.00029	12.670"		
"		412.300 0.00029	15.830"		
"		412.400 0.00030	19.000"		
"		412.500 0.00030	22.170"		
"		412.600 0.00031	25.330"		
"		412.700 0.00031	28.500"		
"		412.800 0.00032	31.670"		
"		413.050 0.00033	31.670"		
"		413.100 0.00034	31.720"		
"		413.350 0.04647	32.010"		
"	Pe	eak outflow	0.020	c.m/sec"	
"	Ma	aximum level	413.218	metre"	
"	Ma	aximum storage	31.857	c.m"	
"	Ce	entroidal lag	9.408	hours"	
"		0.015 0.027	0.020	0.000 c.m/sec"	
"	40 HY	YDROGRAPH Next link	"		
"	5	Next link "			
"		0.015 0.0	0.020	0.000"	
"	56 DI	IVERSION"			
"	300	Node number"			
"	0.000	Overflow threshold	d"		
"	1.000	Required diverted	fraction"		
"	0	Conduit type; 1=P:	ipe;2=Channel"		
"	Pe	eak of diverted flow	N 0.020	c.m/sec"	
"	Vo	olume of diverted f	low 29.618	c.m"	
"	D	EV00300.100hyd"			
"	Ma	ajor flow at 300"			
"		0.015 0.0	0.000	0.000 c.m/sec"	
"	40 H	YDROGRAPH Combine	1"		
"	6	Combine "			
"	1	Node #"			
"		Infiltrated on-sit	te"		
"	Ma	aximum flow	0.001	c.m/sec"	
"	Hy	ydrograph volume	38.752	c.m"	
"		0.015 0.0	0.000	0.001"	
"	40 H	/DROGRAPH Start - Ne	ew Tributary"		
"	2	Start - New Tribut	tary"		

"		0.015	0.000	0.000	0.001"		
"	33 CA	TCHMENT 400"					
"	1	Triangular SCS					
"	1	Equal length"					
"	2	Horton equation	n"				
"	400	Catchment 400"					
"	0.000	% Impervious"					
"	0.130	Total Area"					
"	45.000	Flow length"					
"	2.000	Overland Slope					
"	0.130	Pervious Area"					
"	45.000	Pervious lengt	n"				
"	2.000	Pervious slope					
"	0.000	Impervious Area	а"				
"	45.000	Impervious len	gth"				
"	2.000	Impervious slo	be"				
"	0.250	Pervious Manni	ng 'n'				
"	75.000	Pervious Max.i	nfiltr	ration"			
"	12.500	Pervious Min.i	nfiltr	ration"			
"	0.250	Pervious Lag co	onstar	nt (hours)"			
"	5.000	Pervious Depres	ssion	storage"			
"	0.015	Impervious Man	ning '	'n'"			
"	0.000	İmpervious Max	.infi]	ltration"			
"	0.000	Impervious Min	.infi]	ltration"			
"	0.050	İmpervious Lag	const	tant (hours)) "		
"	1.500	Impervious Dep	ressio	on storage"			
"		0.035	0.000	0.000	0.001 0	.m/sec"	
"	Са	tchment 400		Pervious	Impervious	Total Area	
"	Su	rface Area		0.130	0.000	0.130	hectare"
"	Ti	me of concentra [.]	tion	13.091	2.295	13.091	minutes"
"	Ti	me to Centroid		94.931	85.055	94.931	minutes"
"	Ra	infall depth		97.921	97.921	97.921	mm''
"	Ra	infall volume		127.30	0.00	127.30	c.m"
"	Ra	infall losses		47.175	3.229	47.175	mm''
"	Ru	noff depth		50.747	94.693	50.747	mm''
"	Ru	noff volume		65.97	0.00	65.97	c.m"
"	Ru	noff coefficien [.]	t	0.518	0.000	0.518	"
"	Ма	ximum flow		0.035	0.000	0.035	c.m/sec"
"	40 HY	DROGRAPH Add Rui	noff '	•			-
"	4	Add Runoff "					
"		0.035	0.035	5 0.000	0.001"		
"	40 HY	DROGRAPH Copy to	o Outi	Flow"			
"	8	Copy to Outflow	N ''				
"		0.035	0.035	5 0.035	0.001"		
"	40 HY	DROGRAPH Comb:	ine	2"			
"	6	Combine "					
"	2	Node #"					
"		Off-Site"					
"	Ма	ximum flow		0.03	35 c.m/se	ec"	
"	Hy	drograph volume		65.97	71 c.m"		

... 0.035 0.035 0.035" 0.035 .. 40 HYDROGRAPH Start - New Tributary" н 2 Start - New Tributary" ... 0.000 0.035 0.035" 0.035 FILEI_O Read/Open DIV00100.100hyd" н 47 ... 1 1=read/open; 2=write/save" ... 2 1=rainfall; 2=hydrograph" ... 1=runoff; 2=inflow; 3=outflow; 4=junction" 1 ... DIV00100.100hyd" ... Major flow at 100" ... Total volume 12.894 c.m" ... c.m/sec" Maximum flow 0.009 ... 0.009 0.000 0.035 0.035 c.m/sec" ... HYDROGRAPH Add Runoff " 40 ... 4 Add Runoff " ... 0.035" 0.009 0.009 0.035 ... 47 FILEI O Read/Open DIV00300.100hyd" ... 1=read/open; 2=write/save" 1 ... 1=rainfall; 2=hydrograph" 2 1=runoff; 2=inflow; 3=outflow; 4=junction" 1 ... DIV00300.100hyd" ... Major flow at 300" . Total volume 29.618 c.m" ... Maximum flow c.m/sec" 0.020 ... 0.020 0.009 0.035 0.035 c.m/sec" н HYDROGRAPH Add Runoff " 40 ... Add Runoff " 4 ... 0.020 0.029 0.035 0.035" ... 33 CATCHMENT 500" ... 1 Triangular SCS" ... 1 Equal length" ... 2 Horton equation" ... 500 Catchment 500" ... 95.000 % Impervious" ... 0.194 Total Area" ... Flow length" 25.000 ... 2.000 Overland Slope" ... Pervious Area" 0.010 ... Pervious length" 25.000 ... 2.000 Pervious slope" ... 0.184 Impervious Area" ... 25.000 Impervious length" ... 2.000 Impervious slope" ... Pervious Manning 'n'" 0.250 ... Pervious Max.infiltration" 75.000 ... Pervious Min.infiltration" 12.500 ... 0.250 Pervious Lag constant (hours)" ... 5.000 Pervious Depression storage" ... 0.015 Impervious Manning 'n'" ... 0.000 Impervious Max.infiltration"

"	0.000	Impervious	s Min.inf	iltration"			
"	0.050	Impervious	s Lag cons	stant (hours	5)"		
"	1.500	Impervious	s Depress	ion storage"	I		
"		0.078	3 0.02	29 0.035	0.035	c.m/sec"	
"	Ca	atchment 500	9	Pervious	Imperviou	is Total Area	
"	Su	urface Area		0.010	0.184	0.194	hectare"
"	Ti	ime of conce	entration	9.201	1.613	1.820	minutes"
"	Ti	ime to Centr	roid	90.800	84.151	84.332	minutes"
"	Ra	ainfall dept	th	97.921	97.921	97.921	mm"
"	Ra	ainfall volu	ume	9.50	180.47	189.97	c.m"
"	Ra	ainfall loss	ses	47.274	2.759	4.985	mm''
"	Ru	unoff depth		50.647	95.162	92.936	mm"
"	Ru	unoff volume	2	4.91	175.38	180.30	c.m"
"	Ru	unoff coeffi	icient	0.517	0.972	0.949	
"	Ma	aximum flow		0.003	0.077	0.078	c.m/sec"
"	40 HY	/DROGRAPH Ad	dd Runoff	"			
"	4	Add Runoff	F "				
"		0.078	3 0.08	89 0.03 5	0.035	, n	
"	54 PC	OND DESIGN"					
"	0.089	Current pe	eak flow	c.m/sec"			
"	0.002	Target out	tflow d	c.m/sec"			
"	222.8	Hydrograph	n volume	c.m"			
"	18.	Number of	stages"				
"	0.000	Minimum wa	ater leve	l metre"			
"	3.000	Maximum wa	ater leve	l metre"			
"	0.000	Starting v	vater leve	el metre"	I		
"	0	Keep Desią	gn Data: 1	1 = True; 0	= False"		
"		Level Di	ischarge	Volume"			
"		413.590	0.000	0.000"			
"		413.620	0.00200	0.03000"			
"		413.800	0.00700	4.040"			
"		413.970	0.01000	8.050"			
"		414.150	0.01200	12.060"			
"		414.400	0.01500	12.340"			
"		414.650	0.01700	12.620"			
"		414.900	0.01900	12.910"			
"		415.020	0.02000	13.000"			
"		415.050	0.02000	13.060"			
"		415.100	0.02000	13.490"			
"		415.150	0.02100	14.540"			
"		415.200	0.02100	16.590"			
"		415.250	0.02100	20.060"			
"		415.320	0.02200	27.940"			
"		415.370	0.4980	36.540"			
"		415.420	0.5020	47.040"			
"		415.470	0.5050	58.440"			
"	Pe	ak outflow		0.0	089 c.m/	sec"	
"	Ma	aximum level	L	415.3	27 metr	'e"	
"	Ma	aximum stora	age	29.1	.42 c.m"		
"	Ce	entroidal la	ag	1.6	67 hours	, П)	

		0 079 0 090 0	090 Q	AZE a m/coac"
	10	UVDPOCPADU Combino 2"	.089 0	.035 C.m/Sec
	40	G Combine "		
		o Comprise		
		2 Node #		
		Utt-Site"		<i>,</i>
		Maximum flow	0.122	c.m/sec"
		Hydrograph volume	285.245	c.m"
"		0.078 0.089	0.089	0.122"
"	40	HYDROGRAPH Confluence	1"	
"		7 Confluence "		
"		1 Node #"		
"		Infiltrated on-site"		
"		Maximum flow	0.001	c.m/sec"
"		Hydrograph volume	38.752	c.m"
"		0.078 0.001	0.089	0.000"
"	40	HYDROGRAPH Copy to Outflow		
"		8 Copy to Outflow"		
"		0.078 0.001	0.001	0.000"
"	40	HYDROGRAPH Combine 3"		
"		6 Combine "		
"		3 Node #"		
"		TOTAL"		
"		Maximum flow	0.001	c.m/sec"
"		Hydrograph volume	38.752	c.m"
"		0.078 0.001	0.001	0.001"
"	40	HYDROGRAPH Confluence	2"	
"		7 Confluence "		
"		2 Node #"		
		Off-Site"		
"		Maximum flow	0.122	c.m/sec"
"		Hvdrograph volume	285.245	C.m"
"		0.078 0.122	0.001	0.000"
	40	HYDROGRAPH Conv to Outflow	"	
		8 Copy to Outflow"		
		0.078 0.122	0.122	0.000"
	40	HYDROGRAPH Combine 3"	01111	01000
		6 Combine "		
		3 Node #"		
		Maximum flow	0 123	c m/sec"
		Hydrograph volume	323 997	c m"
			0 122	0 123"
	10	HVDROGRAPH Confluence	2°• 122	0.223
	-+0	7 Confluence "	ر.	
		2 Nodo #"		
			0 100	c m/coo"
		mdX1mum TLOW	0.123	c.m/sec
		nyurograph volume	323.99/	C.III 0.000"
	20	0.0/8 0.123	0.122	0.000
	38	START/RE-START TOTALS 3"		

	3 Runoff Totals on EXIT"		
"	Total Catchment area	0.420	hectare"
"	Total Impervious area	0.280	hectare"
н	Total % impervious	66.738"	
" 19	EXIT"		

ovince:	Ontario	Pr	oject Name:	465 Garafraxa	
ty:	Fergus	Pr	oject Number:	60503	
earest Rainfall Station:	WATERLOO WELLINGTON AF	De	signer Name:	Patrick Grier	
limate Station Id:	6149387	De	signer Company:	GM BluePlan Engir	neering Limited
ears of Rainfall Data:	34	De	signer Email:	patrick.grier@gmb	lueplan.ca
		De	signer Phone:	519-748-1440	
ite Name:	465 Garafraxa	EC	PR Name:		
 Prainage Area (ha):	0.19	EC	R Company:		
// Imperviousness:	95.00	EC	R Email:		
Bunoff Co	efficient 'c': 0.87	EC	R Phone:		
Required Water Quality Rund	off Volume Capture (%):	90.00		Sizing S	ummary
Required Water Quality Rund	off Volume Capture (%):	90.00 6.26		Stormceptor	TSS Removal
. ,				Model	Provided (%)
		Yes		EFO4	93
Ipstream Flow Control?		No		EFO6	98
Peak Conveyance (maximum)	Flow Rate (L/s):			EFO8	99
Site Sediment Transport Rate	(kg/ha/vr):			EFO10	100
	(EFO12	100
		R	ecommended S	tormceptor FFO	Model: FF
	Fstimated	l Net Ann	ual Sediment (T	SS) Load Reduct	ion (%):
		VV AI	ег фианцу кил	JII Võlume Cabi	ure (%): >

Forterra

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dercent	
Size (µm)	Than	Fraction (µm)	Percent	
1000	100	500-1000	5	
500	95	250-500	5	
250	90	150-250	15	
150	75	100-150	15	
100	60	75-100	10	
75	50	50-75	5	
50	45	20-50	10	
20	35	8-20	15	
8	20	5-8	10	
5	10	2-5	5	
2	5	<2	5	

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Percent Cumulative Rainfall Rainfall Volume Jume (%) (%)		Flow Rate (L/s) Flow Rate (L/min) Surface Loading Ra (L/min/m		Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.5	8.5 8.5		0.23	14.0	14.0 11.0		8.5	8.5
1	18.3	26.8	0.46	28.0	23.0	100	18.3	26.8
2	14.4	41.3	0.92	55.0	46.0	100	14.4	41.3
3	10.2	51.5	1.38	83.0	69.0	100	10.2	51.5
4	8.0	59.5	1.84	110.0	92.0	97	7.8	59.2
5	6.9	66.4	2.30	138.0	115.0	95	6.6	65.8
6	5.9	72.3	2.76	165.0	138.0	92	5.4	71.2
7	3.8	76.1	3.22	193.0	161.0	88	3.3	74.6
8	2.6	78.7	3.68	221.0	184.0	86	2.2	76.8
9	2.5	81.1	4.14	248.0	207.0	83	2.1	78.8
10	2.2	83.3	4.60	276.0	230.0	82	1.8	80.6
11	11 2.5 85.8		5.05	303.0	253.0	81	2.0	82.6
12	2.0	87.8	5.51	331.0	276.0	80	1.6	84.2
13	1.6	89.4	5.97	358.0	299.0	79	1.3	85.5
14	0.9	90.4	6.43	386.0	322.0	78	0.7	86.2
15	1.6	91.9	6.89	414.0	345.0	77	1.2	87.4
16	1.1	93.0	7.35	441.0	368.0	76	0.8	88.2
17	1.0	94.0	7.81	469.0	391.0	74	0.8	89.0
18	0.5	94.6	8.27	496.0	414.0	73	0.4	89.4
19	0.2	94.8	8.73	524.0	437.0	72	0.2	89.6
20	0.6	95.4	9.19	551.0	460.0	71	0.4	90.0
21	0.6	96.1	9.65	579.0	483.0	70	0.5	90.5
22	0.3	96.4	10.11	607.0	505.0	69	0.2	90.7
23	0.8	97.2	10.57	634.0	528.0	68	0.6	91.2
24	0.4	97.6	11.03	662.0	551.0	67	0.3	91.5
25	0.2	97.8	11.49	689.0	574.0	66	0.1	91.6
30	0.9	98.7	13.79	827.0	689.0	64	0.6	92.2
35	0.8	99.5	16.08	965.0	804.0	63	0.5	92.7
40	0.2	99.7	18.38	1103.0	919.0	62	0.1	92.9
45 0.3 100.0		20.68	1241.0	1034.0	61	0.2	93.0	
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	93 %

Climate Station ID: 6149387 Years of Rainfall Data: 34

FORTERRA

Maximum Pipe Diameter / Peak Conveyance										
Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Ma Outlet Pipes		et Pipe Max Ou leter Dian		let Pipe eter	Peak Conveyance Flow Rate		
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)	
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15	
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35	
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60	
EF10 / EFO10	F10 / EFO10 3.0 10		90	1828	72	1828	72	2830	100	
EF12 / EF012 3.6 12		90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

45*-90* 0*-45* 0*-45* 45*-90*

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

	Pollutant Capacity											
Stormceptor Moo EF / EFO Diamo		del eter	Depth Pipe In Sump	th (Outlet Invert to Oil Volume mp Floor)		Recommended Sediment Maintenance Depth *		Maximum Sediment Volume *		Maximum Sediment Mass **		
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:
6 ft (1829 mm) Diameter OGS Units:
8 ft (2438 mm) Diameter OGS Units:
10 ft (3048 mm) Diameter OGS Units:
12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

STANDARD DETAIL NOT FOR CONSTRUCTION

OUTLET

		The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Inhibitum Statemer Mathianen	and contractor of minimum operating function pre- Neither this drawing, more any part thereof, may be used, reproduced or modified in any manner, without	the prior witten consent of Imbrum. Failure to comply is done at the user's own risk and Imbrum expressio	diactaims any liability or responsibility for such use. If discretancies between the supplied information upon	which the drawing is based and actual field conditions are encombared as site work progresses, these discretions are the recorded to their in immediately.	the eventuation of the design. Imbrum accepts no for ne-evenuation of the design. Imbrum accepts no ltability for designs based on missing, incomplete or	inaccurate information supplied by others.
			####	####	####	JSK	JSK	₽
PLAN VIEW (STANDARD)	. () 		*****	*****	*****	UPDATES	INITIAL RELEASE	REVISION DESCRIPTION
			####	####	####	6/8/18	5/26/17	DATE
		H	####	####	####	-	0	MARK
PLAN VIEW (INLET TOP) SE CONTACT YOUR LOCAL STORMCEPTOR REPRESEN ED ON THE BEST AVAILABLE INFORMATION AT THE TIME SCATION OR CONNECTION PIPING MAY BE NECESSARY IGURATION REVISIONS. ELEVATIONS SHOULD BE MAIN STRUCTURE (IF REQUIRED)	TATIVE. SOME BASED					18		SCALE = NTS
SITE SPECIFIC DATA REQUIREM	ENTS	1		e (2	1 L1N 3A9 +1-416-8604	THE FOLLOWING PATT	o - 2,007 W (Charles International Charles I
STURMCEPTOR MODEL EFO4	*	V.	•			IBY, OF	NUMBER OF	
	*					100-090	DURONE (
	*				0	W DRN A 4164	8 MOTECH 4 - 707,18 -	
PEAK FLOW RATE (L/s)	*	1			E	AIRVIE	CHENNING IN No. 662,5	
RETURN PERIOD OF PEAK FLOW (yrs)	*					407 I	THE STORAGEN Australia Pais	
	*	DATE:	:					2
	I % HGI	10/1 DESIG	3/2 GNEC	2017 D:	, C	RAW	N:	
NLET #1 * * * * *	*	JSK	(JSK		
NLET #2 * * * *	*	BSF	KED	:	4	PPRC SP	VED:	
OUTLET * * * *	*		ЕСТ	No.:	S	EQUE	NCE	No.:
PER ENGINEER OF RECORD		SHEE	איע T:			05		
		L		1	l i	OF	1	

APPENDIX C: Sanitary Sewer Design

Sanitary Sewer Drainage Area Plan Sanitary Sewer Design Sheet

$ \begin{array}{l} q = average \ daily \ per \ capita \ flow \\ l = unit \ of \ peak \ extraneous \ flow (t) \\ A = Tributary \ area \ in \ gross \ hectar \\ M = Peaking \ factor \\ Q(p) = peak \ population \ flow \ (L/s) \\ Q(d) = peak \ design \ flow \\ \end{array} $	(450 L/cap.d) 0.15 L/ha/s) res			SANITARY SEWER DESIGN $M = 1 + \frac{14}{4 + (P)^{1/2}}$ Where P is population in 1000'sTOWNSHIP OF CENTRE WELLINGTON $Q(p) = \frac{PQM}{64}$ $U(s)$ Sheet 1 of 1 $Q(d) = Q(p) + Q(i)$ $U(s)$													
Lo						Τ	Peak	Deels Deeier	Proposed Sewer								
Street	From	То	Individual Population	Cumulative Population	Individual Area (ha)	Cumulative Area	Peaking Factor (M)	Pop. Flow Q(p) (L/s)	Extraneous Flow Q(i) (L/s)	Flow Q(d) (m3/s)	Length (m)	Pipe Size (mm)	Type of Pipe	Grade %	Capacity (m ³ /s)	Full Flow Velocity (m/s)	Actual velocity at Q(d)
	MH C	MH B	80	80	0.42	0.42	4.269	1.78	0.063	0.0018	61.8	200	0.013	0.60	0.0254	0.809	0.460
						Date Revi	sed:	January 2	3, 2023			Project:		465 Gara	afraxa Str	eet West	
						Designed	By:	PFG				G&M File	e:	422144			
						Checked I	By:										

APPENDIX D: Storm Sewer Design

Storm Sewer Drainage Area Plan Storm Sewer Design Sheet

Fergus Shand IDF Curves

A = 1459.072

B = 13.69

C = 0.85

Intensity = $A / (t + B) ^ C$

STORM SEWER DESIGN

5 Year Design

Township of Centre Wellington

Sheet 1 of 1

Location											Proposed Sewer											
Reach No.	Catchment	From	То	Area (ha)	Area (ha)	Area (ha)	Area (ha)	Area (ha)	Area (ha)	Runoff Coefficient	A x C	Cumulative A x C	TC (min.)	Intensity (mm/hr)	Flow (cms)	Length (m)	Pipe Size (mm)	Type of Pipe	Grade %	Capacity (m ³ /s)	Full Flow Velocity (m/s)	Time of Flow (min.)
	500	DCB.6	MH.5	0.04	0.90	0.04	0.04	10.00	99.01	0.010	21.0	250	0.013	0.50	0.04	0.86	0.41					
		MH.5	CBMH.4	0.00	0.00	0.00	0.04	10.41	97.59	0.010	13.7	250	0.013	0.50	0.04	0.86	0.27					
	400	CBMH.4	MH.8	0.07	0.90	0.06	0.10	10.68	96.68	0.027	19.8	525	0.013	0.50	0.30	1.40	0.23					
	100	CB.7	MH.8	0.04	0.30	0.01	0.01	10.00	99.01	0.003	18.6	250	0.013	0.50	0.04	0.86	0.36					
		MH.8	CBMH.3	0.00	0.00	0.00	0.11	10.36	97.75	0.030	13.0	525	0.013	0.50	0.30	1.40	0.15					
	300	CBMH.3	CBMH.6	0.06	0.90	0.05	0.17	10.52	97.22	0.045	20.1	525	0.013	0.50	0.30	1.40	0.24					
	200	CBMH.6	STC	0.02	0.90	0.02	0.18	10.75	96.41	0.049	4.1	300	0.013	0.50	0.07	0.97	0.07					
		STC	MH.2	0.00	0.00	0.00	0.18	10.83	96.17	0.049	12.3	300	0.013	0.50	0.07	0.97	0.21					
					Date: 01/23/23 Revised:							Project: 465 Garafraxa Road West										
				Designed I	By:	PFG		Revised B	By:		422144											
					Checked E	By:			Checked I	By:												