

REPORT

Water Supply Investigation

Proposed Residential Development, Fergus Golf Club, 8243 and 8282 Wellington Road 19, Fergus, Ontario

Submitted to:

883890 Ontario Limited c/o Fergus Development Inc.

3190 Steeles Avenue East, Suite 300 Markham, Ontario L3R 1G9 Attention: Ms. Farrah Ward

Submitted by:

Golder Associates Ltd.

210 Sheldon Drive, Cambridge, Ontario, N1T 1A8, Canada +1 519 620 1222

21456909 (2300)

January 2022

Distribution List

E-copy - 883890 Ontario Limited c/o Fergus Development Inc.

E-copy - Golder Associates Ltd.

Table of Contents

1.0	INTR	ODUCTION	1
	1.1	Scope of Work	1
	1.2	Water Supply Feasibility Assessment Approach	2
	1.3	Existing Land Use	2
	1.4	Proposed Development	3
	1.5	Site Selection	3
2.0	FIELD) PROGRAM OVERVIEW	3
	2.1	Test Well Drilling and Monitoring Well Construction	3
	2.2	Aquifer Testing	4
	2.3	Water Quality Testing	5
3.0	SITE	SETTING	5
	3.1	Topography	5
	3.2	Drainage	5
	3.3	Physiography	5
	3.4	Geology	6
	3.4.1	Overburden Geology	6
	3.4.2	Bedrock Geology	6
	3.5	Hydrostratigraphy	6
	3.6	Local Water Users	7
	3.7	Permitted Water Users	7
4.0	WATE	ER SUPPLY POTENTIAL	8
	4.1	Stepped Rate Pumping Test	8
	4.2	Constant Rate Pumping Test	8
	4.2.1	Estimate of Aquifer Parameters	.10
	4.3	Water Quality	.11
	4.3.1	General Chemistry Trends During Pumping Test	.11

	4.3.2	Ontario Drinking Water Quality Standards	11
	4.3.3	Micro Particulate Analysis	11
5.0	WATE	ER SUPPLY POTENTIAL	.11
	5.1	Aquifer Presence	11
	5.2	Water Quantity	12
	5.3	Water Quality	12
	5.4	GUDI Assessment	12
	5.5	Source Water Protection	13
6.0	CONC	CLUSIONS AND RECOMMENDATIONS	14
7.0	REPC	ORT LIMITATIONS	15
	7.1	General Limitations	15
8.0	CLOS	SURE	15
9.0	REFERENCES10		

TABLES

Table 1: Permits To Take Water	8
Table 2: Stepped Rate Pumping Test Summary	8
Table 3: Drawdown Observed at the End of the Pumping Test	9
Table 4: GUDI Assessment Based on MOE 2001 Terms of Reference	12

FIGURES

Figure 1 – Site Location Plan		
Figure 2 – Monitoring Locations		
Figure 3 – Physiography and Drainage		
Figure 4 – Quaternary Geology		
Figure 5 – Ministry Recorded Wells		
Figure 6 – Area Section A-A'		

- Figure 7 Area Section B-B'
- Figure 8 Area Section C-C'
- Figure 9 Wellhead Protection Areas

APPENDICES

APPENDIX A As-Built Drawings

APPENDIX B Water Well Records

APPENDIX C Stepped Rate Pumping Test Graphs

APPENDIX D Constant Rate Pumping Test Graphs

APPENDIX E Water Quality Summary

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by 883890 Ontario Limited c/o Fergus Development Inc. to carry out a water supply exploration investigation for a proposed residential development at 8243 and 8282 Wellington Road 19, the Township of Centre Wellington, Ontario (Figure 1). The purpose of this investigation is to assess the feasibility of a water supply for the proposed subdivision.

1.1 Scope of Work

The objective of the work was to evaluate a potential source of potable water supply for the proposed residential land development in Centre Wellington. This assessment includes a desktop study and field investigation. The scope of work included:

- Desktop background study;
- Identify locations for drilling;
- Conduct preliminary potential contaminant source identification;
- Conduct service locates;
- Drill and install monitoring wells (MW101, MW102 and MW103);
- Install mini-piezometers (MP-1, MP-2) and staff gauges (SG-1, SG-2);
- Construct a municipal grade test well (PW21-1);
- Conduct a variable rate step test and 72-hour constant rate pumping test;
- Conduct a water quality assessment at the test well;
- Prepare a hydrogeological assessment and feasibility assessment of the groundwater resource; and
- Delineate the zone of influence.

Key reports and data included in the study are listed as follows:

- Quaternary geology, bedrock geology, topography and physiography mapping;
- Ministry of the Environment, Conservation and Parks (MECP) Water Well Records;
- MECP Permits to Take Water (PTTW);
- Aerial photography;
- Source Water Protection Assessment Report;
- Source Protection Plan;
- Centre Wellington Tier 3 Water Budget Study and Risk Assessment;
- Fairview Golf Club Hydrogeological Investigation (Franklin Geotechnical Limited, 1990);

- Fairview Golf and Country Club Well Testing Program (Morrison Environmental Limited, 1999); and
- Fergus Golf Club Hydrogeological Report in Support of Permit to Take Water Application (R.J. Burnside & Associates Limited, 2011).

1.2 Water Supply Feasibility Assessment Approach

The feasibility of water servicing using a groundwater supply considers the following factors:

- Aquifer Presence: The likelihood of aquifer(s) being present across the entire proposed development area must be evaluated on the basis of on- and off-Site data. Provided that aquifer(s) are likely to be present, then the following must also be evaluated.
- Water Quantity: The probability of obtaining adequate quantities of potable water for a water supply must be evaluated based on existing water supplies in the area and field testing. In addition, consideration must be given to whether such a taking would cause adverse interference at other nearby wells or environmental features.
- Water Quality: As the water will be intended for human consumption it should not contain any diseasecausing organisms or unacceptable concentrations of certain chemical parameters. Aesthetic considerations also provide a basis for drinking water objectives since the water should be pleasant to drink. Specifically, the water supply aquifer's ability to meet Ontario Drinking Water Quality Standards, Objectives and Guidelines (ODWQS) (either via raw water or through acceptable treatment technologies) must be considered. In addition, the water supply must be evaluated to determine if it is groundwater under the direct influence of surface water (GUDI), an assessment of whether pumping of the aquifer will induce the flow of water from a surface water body into the aquifer.
- Source Water Protection: Determine if the proposed water taking is located within existing wellhead protection areas (WHPA) delineated for municipal water supplies (i.e., Township of Centre Wellington) Under the Clean Water Act (2006) and whether or not this water supply would be identified as a threat.

1.3 Existing Land Use

The existing golf course (the "Site") consists of two parcels; the northwest parcel (the "NW Site") is situated on the northwest side of Wellington Road 19, and the southeast parcel (the "SE Site") is situated on the southeast side of Wellington Road 19, referred to as the Lake Belwood Golf Club (NW Site) and the Fairview Golf Club (SE Site), as shown on Figure 1. The NW Site is located on Part of Lots 10 and 11, Concession 3, Township of Centre Wellington (former Township of Garafraxa) and the SE Site is located on Part of Lots 9 and 10, Concession 3, Township of Centre Wellington (former Township of Garafraxa). The SE Site is being proposed for residential redevelopment while the NW Site will remain as a golf course and will incorporate the communal servicing infrastructure required to service both the golf course and proposed development.

The Site is located approximately 2 km northeast of the Town of Fergus and adjacent to Lake Belwood, a reservoir on the Grand River. The NW Site area totals approximately 42.35 ha and the SE Site area totals approximately 39.85 ha. Both sites are active golf courses (18 holes at NW Site and 9 holes at SE Site) with fairways, greens, wooded areas, wetlands and ponds, and the club house located on the NW Site. The surrounding land is mainly agricultural and rural residential. An existing residential development and seasonal cottages are present between the east side of the SE Site and Lake Belwood.

1.4 Proposed Development

Fergus Development Inc. has provided a proposed residential redevelopment layout consisting of 118 freehold lots (0.5+ acres) proposed for the SE Site. The redevelopment of the SE Site will also include open space, stormwater management pond, and natural features. Private communal water and wastewater will occur on the NW Site.

The Municipal Infrastructure Group Ltd. (TMIG) has estimated the required average day water taking to be approximately 128 m³/d (1.48 L/s) and the maximum day water taking to be 435 m³/d (5.03 L/s) for the proposed redevelopment (TMIG, 2022). A test well referred to as PW21-1 has been constructed on the NW Site that has the potential to provide the required water supply (as described in this report). Testing of the well is required to assess the water quantity, water quality and potential impacts to surrounding features (e.g., natural environment and private wells).

1.5 Site Selection

A summary of the findings from the background review is presented in Section 3.0. Based on that review it was determined that a well in the bedrock aquifer was the most feasible source for a water supply. The location selected for testing was chosen to maximize distance from private wells, maximize distance from Lake Belwood, be outside of existing WHPAs and be away from potential contaminant sources. To achieve these objectives, a site in the northwest corner of the NW Site was selected for drilling a test well (referred to as PW21-1). Details on the drilling and testing are included in the sections below.

2.0 FIELD PROGRAM OVERVIEW

2.1 Test Well Drilling and Monitoring Well Construction

The new supply test well (PW21-1) was constructed on the NW Site (Figure 2) in May 2021. The as-built log for PW21-1 is included in Appendix A. The well is completed to a depth of approximately 91.4 m within the bedrock aquifer. The bedrock is overlain by approximately 29.9 m of sandy to gravelly silt till. The well is completed with a 168 mm outside diameter (OD) steel casing set through the overburden to a depth of 32.9 m below ground surface (bgs) and an open 152 mm diameter hole through the bedrock. The bottom of the hole was sealed with bentonite and capped with cement to a depth of 84.1 m bgs to reduce the potential for poor water quality from the deeper bedrock, which was noted in some surrounding wells.

Three bedrock monitoring wells were also constructed on the NW Site to characterize the geology and allow for groundwater level monitoring. The monitoring well (MW101 through MW103) locations are shown on Figure 2 and as completed logs included in Appendix A. The monitoring wells were constructed with a nominal 152 mm diameter casing through the overburden (silt till) and a nominal 152 mm diameter open hole through the bedrock to a depth of 61.0 m.

All of the well drilling was completed by Well Initiatives using conventional rotary drilling equipment. The wells are constructed to Ontario Regulation 903 standards.

In addition, a number of shallow overburden monitoring wells have also been constructed on the NW Site as part of other investigations.

In August 2021, a mini-piezometer and staff gauge were installed in the pond east of PW21-1 (MP-1, SG-1) and the pond north of the North Irrigation Well (MP-2, SG-2), as shown on Figure 2.

2.2 Aquifer Testing

The aquifer testing at PW21-1 was conducted by Well Initiatives. Testing at PW21-1 consisted of a variable stepped rate pumping test completed on August 30, 2021 using three pumping steps of one hour each at 3.2 L/s, 6.3 L/s and 9.5 L/s. Following the step pumping test, a constant rate pumping test of 72 hours duration was completed from August 31, 2021 to September 3, 2021 at a rate of 8.8 L/s. The pumping rate was monitored by a flow meter on the discharge line. The pumping test was conducted at a higher rate than the required 5.03 L/s as an earlier development proposal contemplated more lots.

The pumping test was registered under the Environmental Activity and Sector Registry under Registration Number R-011-4136628634.

A notification letter was delivered to the private well owners within approximately 500 m to 1000 m of PW21-1 one week prior to the pumping test.

Pumped groundwater from PW21-1 was discharged to the on-Site pond beside the North Irrigation Well approximately 300 m southeast of PW21-1. The water was discharged using appropriate flow dissipation measures to prevent erosion or scouring. The water pumped into the pond was similar to the groundwater currently pumped into the pond from the North Irrigation Well.

Continuous groundwater level monitoring (i.e., monitoring by dataloggers, supplemented by manual water level readings) was carried out in a network of monitoring wells (as shown on Figure 2) prior to, during and following the test. Recovery was measured until one week post-test. The monitoring network included:

Bedrock Wells

- PW21-1 (pumping well);
- MW101, MW102 and MW103 (dedicated monitoring wells); and
- Clubhouse Well, South Irrigation Well and Old Clubhouse Well.

Overburden Wells

BH21-10, BH21-13 and BH21-14.

Surface Water

- On-Site pond near PW21-1 (MP-1, SG-1); and
- On-Site pond near North Irrigation Well (MP-2, SG-2).

The North Irrigation Well was not accessible for monitoring and a pressure transducer datalogger could not be installed in the Clubhouse Well.

Additional monitoring included:

- Continuous monitoring of discharge quantity;
- Daily visual monitoring of the discharge for suspended sediment in the groundwater; and
- Daily visual monitoring of the discharge point to the on-Site pond for erosion.

The following mitigation measures were also in place during the testing, however they were not required.

- In the unlikely event that the aquifer test negatively impacts any nearby private wells, the pumping rate would be reduced or a temporary water supply would be provided to the impacted parties for the duration of the test; and
- In the event that erosion or scouring was observed at the discharge point, the flow dissipation system would be modified and the affected area rehabilitated.

2.3 Water Quality Testing

Water quality samples were obtained from PW21-1 periodically during the 72-hour test (at hours 1, 24 and 72) and analyzed for general chemistry parameters and bacteria. A sample was also collected at the end of the test to undergo a comprehensive analytical suite designed to assess the ODWQS parameters. The water samples were collected in laboratory prepared bottles and submitted to Bureau Veritas Laboratories.

Water quality samples were also collected for microscopic particulate analysis (MPA) from PW21-1 at the end of the constant rate test and submitted for analysis at Hyperion Research Limited to aid in the GUDI assessment.

3.0 SITE SETTING

3.1 Topography

The ground surface at the Site is gently undulating, with elevations ranging from approximately 424 metres above sea level (masl) to 437 masl (Figure 3) (Grand River Conservation Authority, 2021a). The ground surface at the NW Site generally slopes to the north from a high elevation of 433 masl near the southwestern part of the NW Site to a low elevation of 424 masl along a tributary to Irvine Creek at the north side of the NW Site. There is a high ground elevation of 437 masl in the southern part of the SE Site. The SE Site is like a trough with ground elevations around 430 masl on the east and west side of the SE Site and a low along the middle of the SE Site at 426 masl.

3.2 Drainage

The Site is located within the Grand River Watershed. The Grand River flows in a southwest direction in the area flowing through the Lake Belwood reservoir located approximately 1.2 km southeast of PW21-1.

Locally the NW Site and the majority of the SE Site is within the Irvine Creek Subwatershed. Irvine Creek and its tributaries generally flow in a southwest direction and discharge into the Grand River in Elora. At its closest point, Irvine Creek is located approximately 250 m from PW21-1 (Figure 3). The NW Site is drained by a tributary of Irvine Creek and the SE Site is drained by Black Drain. The Black Drain flows in a southwest direction through the low portion of the SE Site (Figure 3) and discharges into Irvine Creek approximately 2.5 km west of the SE Site.

3.3 Physiography

The Site is situated within the physiographic region described as the Guelph Drumlin Field (Chapman and Putnam, 1984). Chapman and Putnam (1984) describe the general landform pattern consisting of drumlins, or groups of drumlins, fringed by gravel terraces and separated by swampy valleys in which flow tributaries of the Grand River. Locally Irvine Creek and Black Drain are situated within spillways separated by a drumlinized till plain (Figure 3).

3.4 Geology

3.4.1 Overburden Geology

The surficial soils mapped in the area by the Ontario Geological Survey (OGS-GSC, 2020) are shown on Figure 4. The surficial soils in the area of PW21-1 consist of ablation till with surrounding surficial soils including fine-grained till, outwash sand and gravel and glaciofluvial outwash sand. The ablation till is a sandy silt till referred to as the Port Stanley Till and the fine-grained till is a silt till to clayey silt till referred to as the Tavistock Till, which likely form an aquitard in the area.

Three hydrostratigraphic cross-sections are provided on Figures 6, 7 and 8, with the alignments of the sections shown on Figure 5. The overburden is approximately 23 m to 33 m thick at the Site and surrounding area and is predominately characterized by a mix of fine-grained till with occasional discontinuous layers of sand (usually found directly above bedrock surface). Based on the MECP water well records, a bedrock valley is interpreted to exist across the SE Site. The valley is estimated to trend in a northeast-southwest direction. Based on water well record 6706408 the valley is at least 79 m deep and appears to be filled with till.

3.4.2 Bedrock Geology

The bedrock surface elevation is generally around 400 masl and consists of limestone, dolostone and shale. The bedrock that subcrops beneath the overburden does not outcrop at the Site. The bedrock formations underlying the Site comprise one of the most extensive bedrock aquifers in Ontario and are the main source of drinking water supplies for a number of nearby municipalities. The Ontario Geological Survey (OGS) has mapped the Silurian carbonate strata along the Niagara Escarpment region and has revised the framework for stratigraphy of this area. Based on the revised stratigraphic framework described by the OGS (Brunton, 2008, 2009), a brief description of the bedrock formations estimated to be present is provided below (from oldest to youngest).

- Gasport Formation: The Gasport Formation is a cross-bedded crinoidal grainstone-packstone with sequences of reef mound and coquina (shell bed) lithofacies (Brunton, 2008, 2009). This unit has commonly been referred to as the Amabel Formation in previous studies in the area;
- Goat Island Formation: The Goat Island Formation consists of two members; the lower Niagara Falls Member and the upper Ancaster Member. The Niagara Falls Member is a finely crystalline and cross laminated crinoidal grainstone with small reef mounds while the Ancaster Member is a chert rich, finely crystalline dolostone that is medium to ash grey in colour;
- Eramosa Formation: The Eramosa Formation consists of three members including, from oldest to youngest, the Vinemount Member, the Reformatory Quarry Member and the Stone Road Member. It is unknown whether all of the members of the Eramosa Formation are present at the Site; and
- Guelph Formation: The Guelph Formation consists of medium to thickly bedded crinoidal grainstones and wackestones and reefal complexes (Brunton, 2008, 2009). The Guelph Formation is cream coloured and is the uppermost bedrock unit.

3.5 Hydrostratigraphy

The conceptual model for the Site includes an approximately 30 m thick overburden (till) aquitard overlying a bedrock aquifer. Within the upper overburden aquitard there are confined and laterally discontinuous layers of sand or water bearing horizons that exist locally. Overlying the till are unconfined and laterally discontinuous outwash deposits north of the NW Site and within the SE Site. There are also some more permeable layers near

the bedrock contact throughout the area. These shallow and deep overburden units are sometimes used for individual private water supplies.

The bedrock is considered an aquifer (formerly referred to as the Guelph-Amabel Aquifer) with zones of varying permeability depending on the rock properties and rock features. Bedrock aquifers typically yield water from water producing features such as fractures and fissures within the bedrock. The production of water depends on the number of fractures, size of the fractures and interconnectivity of the fractures.

Groundwater flow in the bedrock aquifer is interpreted to be in a southerly to southwesterly direction toward the Grand River.

There is an existing pumping well on the NW Site that is used for golf course irrigation purposes (Figure 1). Testing of the well by others in 1999 indicated a bedrock transmissivity of 38 m²/d and a storage coefficient ranging from 0.00015 to 0.00004 (Morrison, 1999).

3.6 Local Water Users

A review of the MECP Water Well Records database indicates that there are 30 well records nominally within 1 km of PW21-1 (as shown on Figure 5). A table summarizing the water well records is included in Appendix B. Of the 30 well records, 29 have water supply (e.g., domestic or stock watering) as their designated use. The remaining well has an unknown use listed. Of the 29 water supply wells, 28 (97%) are completed in the bedrock and 1 (3%) is completed in the deep overburden.

Analysis of the well records indicates that bedrock well use dominates around the Site with most well completions occurring between elevations 375 masl and 400 masl as shown on Figures 6, 7 and 8.

Based on the recorded information, private water wells generally utilize three zones around the Site as follows:

- shallow overburden water wells (dug wells not included in MECP Well Record database) shallow overburden wells are inferred to utilize various shallow, thin coarse-textured units or the glacial till unit for water supply. The coarse-textured units are inferred to be laterally discontinuous;
- ii) upper bedrock aquifer most of the private water supply wells are completed in the upper bedrock with well completions occurring between elevations 375 masl and 400 masl as shown on Figures 6, 7 and 8; and
- iii) lower bedrock aquifer some private wells are completed in the bedrock below elevation 375 masl. Most of the wells completed in this aquifer are open across both the upper and lower aquifers.

The presence of fresh water was reported on the well records.

There are four existing bedrock wells on the NW Site and SE Site that are used by Fergus Golf Club as shown on Figure 1. The North Irrigation Well (MOE#6712549) and Clubhouse Well (MOE#6714026) are located on the NW Site and completed in the bedrock to depths of 86.0 m and 74.7 m, respectively. The South Irrigation Well (MOE#6713016) and Old Clubhouse Well (possibly MOE#6706408) are located on the SE Site and completed in the bedrock to depths of 94.5 m and 108.5 m, respectively

3.7 Permitted Water Users

A PTTW is required for water takings greater than 50,000 L/d. A review of the MECP PTTW database identified the following PTTWs within 3 km of the Site (including two permits issued to Fergus Golf Club). A summary of the permits is included in Table 1, below. PTTW 4856-9KBH5A was issued to the Township of Centre Wellington for

municipal water supply in Elora and Fergus. The permit allows for a groundwater taking from nine wells. The closest municipal wells to the Site are F4 and F6 which are located approximately 2.8 km southwest of the Site. A PTTW was also issued to Highland Pines Campground to allow for a groundwater taking from six wells. The Highland Pines Campground is located approximately 2 km northeast of the Site.

Table	1:	Permits	То	Take	Water
Iable		I CIIIII	10	Iane	vvalei

Permit Number	Permit Owner	Source	Use
5817-8JQN3B	Fergus Golf Club	Groundwater (1 well) and Surface Water (1 pond)	Golf Course Irrigation
2633-9XARF2	Fergus Golf Club	Groundwater (1 well) and Surface Water (1 pond)	Golf course Irrigation
4856-9KBH5A	The Corporation of the Township of Centre Wellington	Groundwater (9 wells)	Municipal (closest wells are F4 and F6)
3657-BSEJSA	Highland Pines Campground Limited	Groundwater (6 wells)	Campground

4.0 WATER SUPPLY POTENTIAL

The water supply potential has been assessed with test well construction, monitoring well construction and aquifer testing at the Site. The drilling at PW21-1 identified fractured dolostone capable of producing high well yields. Preliminary estimates of flow during drilling indicated the well could pump at a rate of approximately 7.5 L/s or more.

4.1 Stepped Rate Pumping Test

The results of the stepped rate pumping test are shown in Table 2 and presented graphically in Appendix C. Prior to the testing the static water level in the well was measured at 9.5 m bgs. The specific capacity ranged from 0.8 L/s/m to 1.3 L/s/m and declined as the pumping rate increased due to well losses.

Pumping Rate (L/s)	Drawdown at PW21-1 (m)	Specific Capacity (L/s/m)
3.2	2.40	1.3
6.3	5.65	1.1
9.5	11.57	0.8

Table 2: Stepped Rate Pumping Test Summary

4.2 Constant Rate Pumping Test

The pumping test was carried out to pump the well at a rate with the pumping water level remaining above the overburden/bedrock contact at 29.9 m bgs. Based on the results of the step pumping test, a pumping rate greater than 9.5 L/s was possible, however, it was found that the well was pumping some sand at 9.5 L/s. This could potentially be from within fractures connected to the overburden. The test at PW21-1 was therefore conducted at a rate of 8.8 L/s for 72 hours to avoid pumping sand, to estimate the long-term potential production rate from the

well and to investigate potential environmental impacts. This testing rate is higher than the estimated rate of 5.03 L/s required for the proposed redevelopment.

Hydrographs for the monitoring wells screened in the bedrock, the overburden and surface water are shown on Figures D1, D2 and D3 in Appendix D, respectively and a table of observed drawdown is included in Table 3. The hydrographs show the water level measured in the well along with the pumping rate at PW21-1 and daily precipitation. Figure D4 presents the drawdown versus elapsed time for these same key bedrock wells and a graph of observed drawdown versus distance from the pumping well is included on Figure D5.

Monitoring Location	Distance from PW21-1 (m)	Open Interval (m below ground surface)	Drawdown (m)
PW21-1	0	32.9 – 84.1	12.8
MW101	640	33.8 – 61.0	1.9
MW102	562	30.6 - 61.0	2.5
MW103	413	30.8 -61.0	2.8
Clubhouse Well	487	32.9 – 74.7	1.3
South Irrigation Well	821	28.0 - 94.5	0.4
Old Clubhouse Well	1,095	79.2 – 108.5	0.3
BH21-10	497	3.0 – 6.1	less than 0.1
BH21-13	261	5.8 – 7.3	0.2 (may be natural fluctuation)
BH21-14	257	1.5 – 3.0	less than 0.1
MP-1	144	0.1 – 0.8	less than 0.1
SG-1	143	N/A	less than 0.1
MP-2	319	0.6 – 1.2	less than 0.1
SG-2	321	N/A	less than 0.1

The following summarizes the observed water level responses from the 72-hour pumping test:

PW21-1 Response

- Drawdown occurred rapidly at the start of the test;
- The total drawdown at the end of the test was 12.8 m; and
- At the end of the test, the water level was declining approximately 2.2 m per log cycle.

Bedrock Aquifer Response

- A definitive response to pumping was observed in the monitoring wells within 700 m of PW21-1;
- Drawdown in the bedrock monitoring wells ranged from 0.3 m (Old Clubhouse Well) to 2.8 m (MW103); and

The drawdown cone in the bedrock is estimated to extend approximately 1 km from PW21-1 with approximately 0.4 m of drawdown estimated at that distance (Figure D5 and Figure 9).

Overburden Response

- A clear response to pumping was not observed in the overburden monitoring wells; and
- The water level in BH21-13 declined approximately 0.2 m during the test but did not recover at the end of the test. The changes in water level may be due to natural fluctuation within the till.

Surface Water Response

- Water levels at MP-1 and SG-1 remained constant during the test and were not influenced by pumping at PW21-1;
- Water levels at MP-2 and SG-2 increased during the test due to the discharge into the pond from PW21-1; and
- The vertical gradients at both locations did not change during the test.

4.2.1 Estimate of Aquifer Parameters

As shown on Figure D6 in Appendix D, the hydrographs of most monitoring wells and the pumping well located within the bedrock aguifer plot along a similar slope on the semi-log plot. Based on the slope of this line (approximately of 2.22 m per log cycle t/r^2), the bulk transmissivity of the bedrock aquifer can be estimated using the Cooper-Jacob (1946) approximation as follows:

$$\mathsf{T} = \left(\frac{2.303}{4\pi}\right) \times \left(\frac{\mathsf{Q}}{\Delta\mathsf{S}}\right)$$

Where: Q = pumping rate (m^3/day)

 ΔS = slope of the observed drawdown hydrograph per log cycle

Using an average pumping rate of 763 m³/day (8.8 L/s) based on a fit to the drawdown data while PW21-1 was pumping at this rate, the average bulk transmissivity of the bedrock aguifer is interpreted to be approximately 63 m²/day.

Based on the slope of the hydrographs in the composite plot, the storativity (S) of the bedrock aguifer can be estimated as follows:

$$S = 2.2459T \left(\frac{t}{r^2}\right)$$

Where T = transmissivity

 t/r^2 = time/radius² value when observed drawdown = 0 m

Based on this calculation, the storativity of the bedrock aquifer is estimated to be approximately 9 x 10⁻³.

4.3 Water Quality

4.3.1 General Chemistry Trends During Pumping Test

During the pumping test, water samples were collected for general chemistry analysis after 1 hour, 24 hours and 72 hours of pumping to analyze for water quality trends with extended pumping. A summary of the water quality results is included in Table E1 of Appendix E. Laboratory certificates of analysis are included in Appendix E. For the parameters tested, aluminum, iron and manganese exceeded the ODWQS in the sample collected after 1 hour of pumping and the total dissolved solids (TDS) exceeded the ODWQS in the samples collected after 24 and 72 hours of pumping. Hardness exceeded the ODWQS in all three samples.

Chloride and nitrate concentrations were either low or not detected. These parameters are indicators of potential surface contamination (road salt or agricultural operations). The low concentrations indicate a low potential for surface contamination entering the bedrock aquifer. There were also no detections of total coliforms or Escherichia coli, which are also indicators of potential surface contamination.

Conductivity, TDS and some inorganics (sulphate, chloride) concentrations increased with pumping duration while some metals (aluminum, copper, iron, lead, manganese, nickel, silicon, sodium, titanium, vanadium, zinc) concentrations decreased with pumping duration.

4.3.2 Ontario Drinking Water Quality Standards

A sample collected at the end of the test underwent a comprehensive analytical suite designed to assess the ODWQS parameters. A summary of the water quality results for the ODWQS is included in Table E2 of Appendix E. Laboratory certificates of analysis are included in Appendix E. With the exception of TDS and hardness, all of the concentrations of the parameters were below the ODWQS limits. TDS was measured at 550 mg/L (aesthetic objective is 500 mg/L) and hardness was measured at 380 mg/L (operational guideline is 80-100 mg/L). The Technical Support Document (MOE, 2006) indicates that total dissolved solids refers to the inorganic substances dissolved in water (principal constituents include chloride, sulphates, calcium, magnesium and bicarbonates). Elevated TDS can create highly mineralized water with excessive hardness, taste and mineral deposition. Water supplies with a hardness greater than 200 mg/L are considered poor but tolerable and hardness in excess of 500 mg/L is unacceptable for most domestic purposes.

4.3.3 Micro Particulate Analysis

The results of the microscopic particulate analysis (MPA) from PW21-1 at the end of the test are included in Appendix E. There were no detections of diatoms, algae, insect/larvae, rotifers, plant debris, nematodes, pollen, crustacea, spores, giardia or cryptosporidium in the groundwater sampled from PW21-1. For comparison, analysis of a sample from the nearby pond indicates the detection of spores (2,700 CFU/100 mL), rotifers, diatoms, blue green algae and other photosynthetic pigment bearing organisms. Based on this sample, the risk of surface water contamination is low.

5.0 WATER SUPPLY POTENTIAL

5.1 Aquifer Presence

The overburden is mainly glacial till, which is not suitable for a municipal water supply. Any coarse-grained layers within the overburden may be suitable for individual water supplies but do not appear to be laterally continuous and are not suitable for a municipal water supply. The buried bedrock valley at the Site appears to be infilled with glacial till and as such is not considered to be a viable water supply target.

The majority of private wells in the area are completed in the bedrock. It is inferred that the bedrock underlying the Site is part of a regional bedrock aquifer that should be considered the target aquifer for a large capacity water supply well. The drilling and testing at the Site has confirmed that the bedrock aquifer is suitable for a water supply well.

5.2 Water Quantity

Water quantity from a well in a bedrock aquifer is often dependent on the number and size of fractures intercepted by the well. PW21-1 has demonstrated the ability to yield 8.8 L/s for a period of 72 hours while recording drawdown within the well of 12.8 m. The available drawdown (to the top of the bedrock) is approximately 20.4 m.

At the proposed rate of 5.03 L/s, it is estimated that the drawdown in PW21-1 would decrease to approximately 7.3 m or 36% of the available drawdown after 72 hours of pumping. Extrapolation of the drawdown versus time for PW21-1 indicates that there is a suitable water supply at this location considering the proposed rate will be 5.03 L/s.

At the anticipated 5.03 L/s, the drawdown at the private wells would be minor (<1 m).

There are no anticipated impacts to surface water features from the use of PW21-1 due to the thick lowpermeability overburden (glacial till).

5.3 Water Quality

Water quality testing indicates that with the exception of TDS and hardness, all of the parameters meet the ODWQS. If required, water treatment will be designed by another consultant.

5.4 GUDI Assessment

The following provide an assessment to determine the GUDI status of the well.

Under the MOE 2001 Terms of Reference, communal wells are "flagged" as potentially GUDI if a number of conditions are met. The following table summarizes the status of PW21-1 in relation to these conditions.

Condition	Summary of Condition	PW21-1 Status
i	Regularly contain Total Coliforms and/or periodically contain E. coli; or	Four samples were collected during a 72-hour pumping test at PW21-1; neither total coliforms nor E. coli were detected during sampling.
ii	are located within approximately 50 days horizontal saturated travel time from surface water or are within 100 m (overburden wells) or 500 m (bedrock wells) of surface water (whichever is greater) and meet one or more of the following criteria:	On-Site ponds and Irvine Creek are located within 500 m of PW21-1 (Figure 1).

Table 4: GUDI Assessment Based on MOE 2001	Terms of Reference
--	--------------------

Condition	Summary of Condition	PW21-1 Status
ii a)	Wells may be drawing water from an unconfined aquifer;	The regional hydrogeologic system consists of a bedrock aquifer overlain by a silt till aquitard. PW21-1 draws water from the bedrock aquifer. In the vicinity of the PW21-1, the bedrock aquifer is encountered at a depth of approximately 30 m. PW21-1 does not draw water from an unconfined aquifer.
ii b)	Wells may be drawing water from formations within approximately 15 m of surface;	The well casing of PW21-1 extends to a depth of 32.9 m below ground surface. Water from this well is therefore drawn from formations deeper than 15 m of surface.
ii c)	Wells are part of an enhanced recharge/infiltration project;	No recharge/infiltration project exists at the site.
ii d)	When the well is pumped, water levels in surface water rapidly change or hydraulic gradients beside the surface water significantly increase in a downward direction;	Gradients beside surface water did not change during the pumping test at PW21-1.
ii e)	Chemical water quality parameters (such as temperature, conductivity, turbidity, total dissolved solids, pH, colour, oxygen) are more consistent with nearby surface water than local groundwater and/or if they fluctuate significantly and rapidly in response to climatological or surface water conditions.	The samples analyzed for water quality during the 72-hour pumping test at PW21-1 are consistent with groundwater from a bedrock aquifer.

In summary, based on the above conditions, PW21-1 should not be "flagged" as potentially GUDI under the MOE 2001 Terms of Reference.

Under the Draft Terms of Reference for Determination of Minimum Treatment for Municipal Residential Drinking Water Systems Using Subsurface Raw Water Supplies (MOE, 2019) the need for disinfection of protozoan pathogens is based on the presence of Giardia, Cryptosporidium and fecal contamination. There were no detections of Giardia, Cryptosporidium, E. coli or total coliforms in samples collected during the pumping test.

5.5 Source Water Protection

Under the Clean Water Act (2006) WHPAs were developed and included in the Assessment Reports to identify the time-of-travel capture zones for municipal water supplies. These WHPAs form part of the Source Protection Plans that are used to protect sources of municipal drinking water. The Site is within the Grand River Source Protection Area within the Lake Erie Source Protection Region (LESPR). To support the development of these plans, the horizontal movement of groundwater to the municipal wells is categorized into groundwater time-of-travel zones delineated around each well or group of wells including WHPA-A (100 m radius), WHPA-B (2 year time-of-travel), WHPA-C (5 year time-of-travel) and WHPA-D (25 year time-of-travel).

The WHPA for the Fergus municipal wells (Lake Erie Region Source Protection Committee, 2021a) extends through the Site as shown on Figure 9. PW21-1 lies within WHPA-D (25-year time-of-travel) of the capture zone.

In addition to the delineation of the WHPAs, the vulnerability of municipal wells and intakes to contamination from surrounding land-use activities is also assessed. This is assessed using the intrinsic vulnerability, which is based on an evaluation of the geologic and hydrogeological characteristics of the sediments overlying the aquifer of interest. The intrinsic vulnerability is ranked as high, medium or low, with low providing the most protection to an aquifer. PW21-1 lies within a low vulnerability zone (see Figure 9). There is some medium vulnerability by Lake Belwood, which is due to the higher permeable sediments at surface and thinning of the overburden toward Lake Belwood.

The WHPAs are combined with the intrinsic vulnerability to determine a WHPA vulnerability, which is the basis for the threat analysis. WHPA vulnerability ranges from 2 to 10 with 10 being the most vulnerable. Where the WHPAs are present at the Site, the WHPA vulnerability is 2 with the exception of the small portion by Lake Belwood where the WHPA vulnerability is 4 (i.e., the area where the intrinsic vulnerability is shown as medium on Figure 9). Significant groundwater recharge areas (SGRA) are also evaluated and, in the area of the Site, the vulnerability is 2 (for the SE Site and part of the NW Site). Based on the Source Protection Plan (Lake Erie Region Source Protection Committee, 2021b) there are no significant threats identified at the Site.

The Site does not fall within an Issue Contributing Area and therefore there are no threats related to specific issues.

To protect sources of municipal drinking water with respect to water quantity, draft Wellhead Protection Area Quantity zones (WHPA-Q) were delineated by Matrix Solutions for the Lake Erie Source Protection Region (Grand River Conservation Authority, 2021b) for Elora and Fergus. The WHPA-Q zone is included on the GRCA Grand River Information Network (GRIN) mapping but is considered draft. The WHPA-Q in the area of the Site is shown on Figure 9 and extends through a small portion of the western edge of the NW Site and the SE Site. PW21-1 is located outside of the WHPA-Q zone.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The hydrogeological assessment provided herein concludes that a water supply is considered to be feasible at the Site. The following conclusions are provided:

- The bedrock aquifer is the primary target for water supply development;
- PW21-1 was constructed in the bedrock aquifer for testing as potential water supply;
- PW21-1 had a tested yield of 8.8 L/s and can meet the maximum day demand of 5.03 L/s;
- Groundwater quality at PW21-1 met the ODWQS with the exceptions of hardness and TDS; and
- PW21-1 is not considered a GUDI well.

The following recommendation is provided.

A second well should be constructed to provide a back-up water supply. The back-up water supply should be situated at least 100 m away from agricultural land and dispersal beds, and approximately 200 m away from private water supplies. One such location is shown on Figure 9 northeast of PW21-1.

7.0 REPORT LIMITATIONS

7.1 General Limitations

This hydrogeological assessment was prepared for 883890 Ontario Limited c/o Fergus Development Inc., and their agents to confirm a water supply feasibility for the proposed redevelopment at the existing Fergus Golf Club. The factual information, descriptions, interpretations, comments, recommendations and electronic files contained herein are specific to the project described in this report and do not apply to any other project or site. This report is based on borehole drilling, pumping tests and water quality analyses collected during this investigation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the sole responsibilities of such third parties. Under no circumstances may this information be used for any other purposes than those specified in the scope of work unless explicitly stipulated in the text of this report or formally authorized by Golder. This report must be read in its entirety as some sections could be falsely interpreted when taken individually or out-of-context. As well, the final version of this report and its content supersedes any other text, opinion or preliminary version produced by Golder.

Golder shall not be held responsible for damages resulting from unpredictable or unknown underground conditions, from erroneous information provided by and/or obtained from other sources than Golder, and from ulterior changes in the Site conditions unless Golder has been notified by the client of any occurrence, activity, information or discovery, past or future, susceptible of modifying the underground conditions described herein, and have had the opportunity of revising its interpretations, comments and recommendations. Furthermore, Golder shall not be held responsible for damages resulting from any future modification to the applicable regulations, standards and criteria, for any use of this report and its content by a third party, and/or for its use for other purposes than those intended. Golder shall not be held responsible for any decrease, real or perceived, of a property's value or any failure to complete a transaction, as a consequence of this report.

8.0 CLOSURE

We trust this report meets your current requirements. Should you have any questions please do not hesitate to contact the undersigned.

9.0 **REFERENCES**

- Brunton, F.R., 2009. Update of Revisions to the Early Silurian Stratigraphy of the Niagara Escarpment: Integration of Sequence Stratigraphy, Sedimentology and Hydrogeology to Delineate Hydrogeologic Units. In Summary of Field Work and Other Activities 2009, Ontario Geological Survey, Open File Report 6240, p.25-1 to 25-20.
- Brunton, F.R., 2008. Preliminary Revisions to the Early Silurian Stratigraphy of Niagara Escarpment: Integration of Sequence Stratigraphy, Sedimentology and Hydrogeology to Delineate Hydrogeologic Units. In Summary of Field Work and Other Activities 2008, Ontario Geological Survey, Open File Report 6226, p. 31-1 to 31-18.
- Chapman, L.J. and Putnam, D.F., 1984. The Physiography of Southern Ontario; Ontario Geological Survey, Special Volume 2, 270 p. Accompanied by Map P.2715 (coloured), scale 1:600,000.
- Franklin Geotechnical Ltd., 1990. Hydrogeological Investigation Report on Fairview Golf Club. Prepared for R.J. Burnside and Associated Limited.
- Grand River Conservation Authority, 2021a. Terrain Contours obtained from Grand River Information Network.
- Grand River Conservation Authority, 2021b. Wellhead Water Quantity Zone obtained from Grand River Information Network.
- Lake Erie Region Source Protection Committee, 2021a. Grand River Source Protection Area Approved Assessment Report. Updated February 2, 2021.
- Lake Erie Region Source Protection Committee, 2021b. Grand River Source Protection Area Approved Source Protection Plan. Updated February 2, 2021.
- Ministry of the Environment, 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines.
- Ministry of the Environment, 2019. Draft Terms of Reference for Determination of Minimum Treatment for Municipal Residential Drinking Water Systems Using Subsurface Raw Water Supplies.
- Ministry of the Environment, 2001. Terms of Reference Hydrogeological Study to Examine Groundwater Sources Potentially Under Direct Influence of Surface Water.
- Morrison Environmental Limited, 1999. Well Testing Program at the Proposed 18 Hole Golf Course Expansion. Prepared for Fairview Golf and Country Club.
- R.J. Burnside & Associates Limited, 2022. Functional Servicing Report Fergus Golf Course.
- R.J. Burnside & Associates Limited, 2011. Hydrogeological Report in Support of Permit to Take Water Application. Prepared for Fergus Golf Club.
- R.J. Burnside & Associates Limited, 2000. Long Term Test of PW1 Fairview Golf Course Expansion. Submitted to Township of Centre Wellington.

The Municipal Infrastructure Group Ltd., 2022. Fergus Golf Club Redevelopment – Water Servicing Study.

Signature Page

Yours truly,

Golder Associates Ltd.

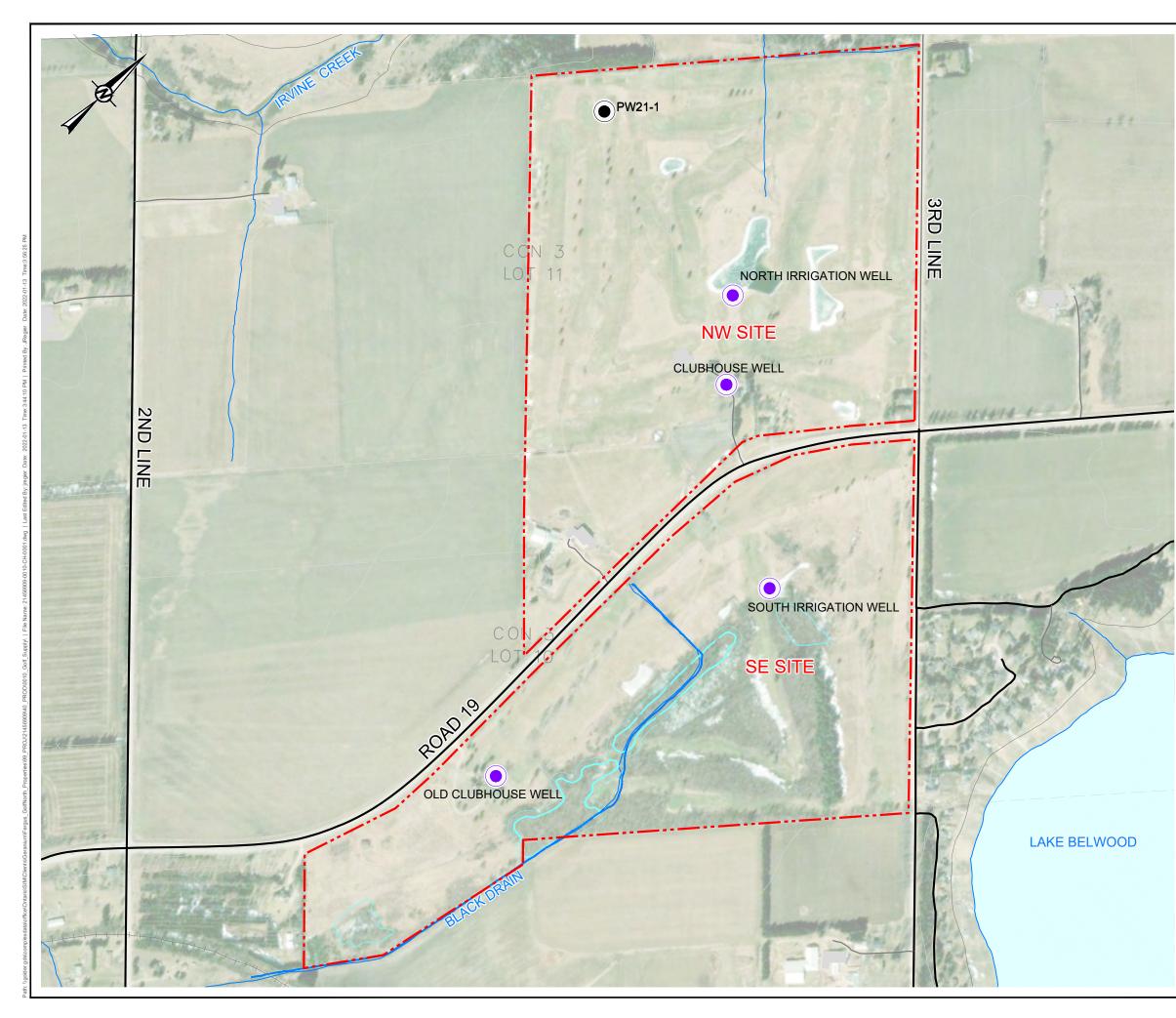
John har

Greg Padusenko, M.Sc., P.Eng., P.Geo. *Sr. Hydrogeologist*

John Piersol, M.Sc., P.Geo. *Associate, Sr. Hydrogeologist*

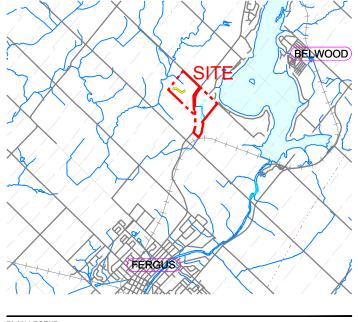
GRP/JAP/sv/ll

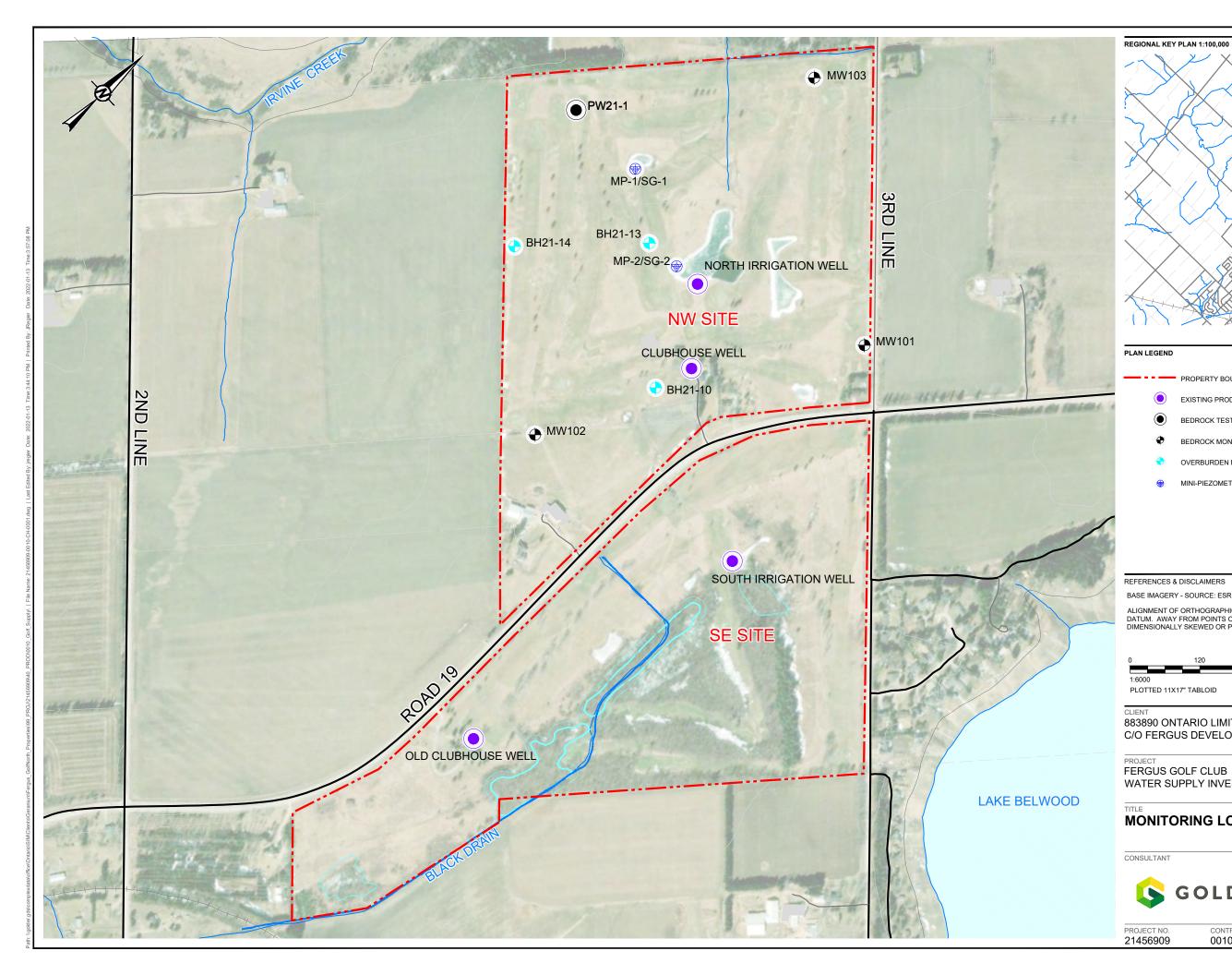
Golder and the G logo are trademarks of Golder Associates Corporation


https://golderassociates.sharepoint.com/sites/142682/project files/6 deliverables/water supply/03 water supply investigation/final/superseded/21456909 (2300) rep 2021'12'16 water supply investigation - fergus golf club (rev0).docx

FIGURES

Figure 1 – Site Location Plan Figure 2 – Monitoring Locations Figure 3 – Physiography and Drainage Figure 4 – Quaternary Geology Figure 5 – Ministry Recorded Wells Figure 6 – Area Section A-A' Figure 7 – Area Section B-B' Figure 8 – Area Section C-C' Figure 9 – Wellhead Protection Areas


	- SOURCE: ESRI, N	IAXAR, GEOEYE; GIS USEF		
DATUM. AWAY	FROM POINTS OF A	MAGERY IS APPROXIMATE ALIGNMENT THE ORTHOGF NECTED OFF THE MAP DA	RAPHIC IMAGE MAY	
0	120	240	360 m	
1:6000 PLOTTED 11X1	7" TABLOID	PROJECTION IS UTM	NAD 83 ZONE 17	
83890 ON C/O FERGU				
ROJECT ERGUS GUNATER SU	IS DEVELOPI	MENT INC.		
183890 ON C/O FERGL ROJECT ERGUS GO VATER SU	DEVELOP	MENT INC.		
83890 ON C/O FERGL ERGUS GU VATER SU	S DEVELOPI	MENT INC.	2022-01-1	3
83890 ON C/O FERGL ERGUS GU VATER SU	S DEVELOPI	MENT INC. FIGATION	2022-01-1	3
83890 ON C/O FERGL ROJECT ERGUS GO VATER SU TILE BITE LO	DLF CLUB PPLY INVEST	MENT INC. FIGATION PLAN	2022-01-1	3
83890 ON C/O FERGL ERGUS GU VATER SU ITLE BITE LO	S DEVELOPI	MENT INC. FIGATION PLAN		3
183890 ON C/O FERGL ERGUS GU VATER SU ITLE SITE LO	DLF CLUB PPLY INVEST	TIGATION TIGATION TIGATION TIGATION TIGATION TIGATION TIGATION	JPR	3


PLAN LEGEND

- PROPERTY BOUNDARY
 - EXISTING PRODUCTION WELL

BEDROCK TEST WELL

REGIONAL KEY PLAN 1:100,000

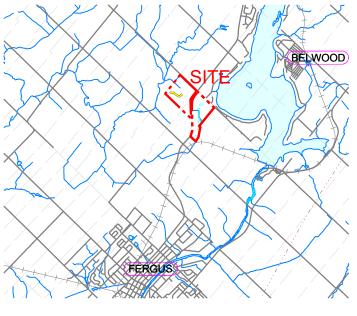
1:6000 PLOTTED 11X	(17" TABLOID	PROJECTION IS UTM	NAD 83 ZONE 17	
	ITARIO LIMITE US DEVELOPI	-		
	GOLF CLUB JPPLY INVEST	IGATION		
TITLE MONITO		CATIONS		
CONSULTANT		YYYY-MM-DD	2022-01-13	
CONSULTANT		YYYY-MM-DD 	2022-01-13	
		DESIGNED	2022-01-13 JPR	
CONSULTANT	GOLD	DESIGNED		
CONSULTANT	GOLD	ER PREPARED	JPR	

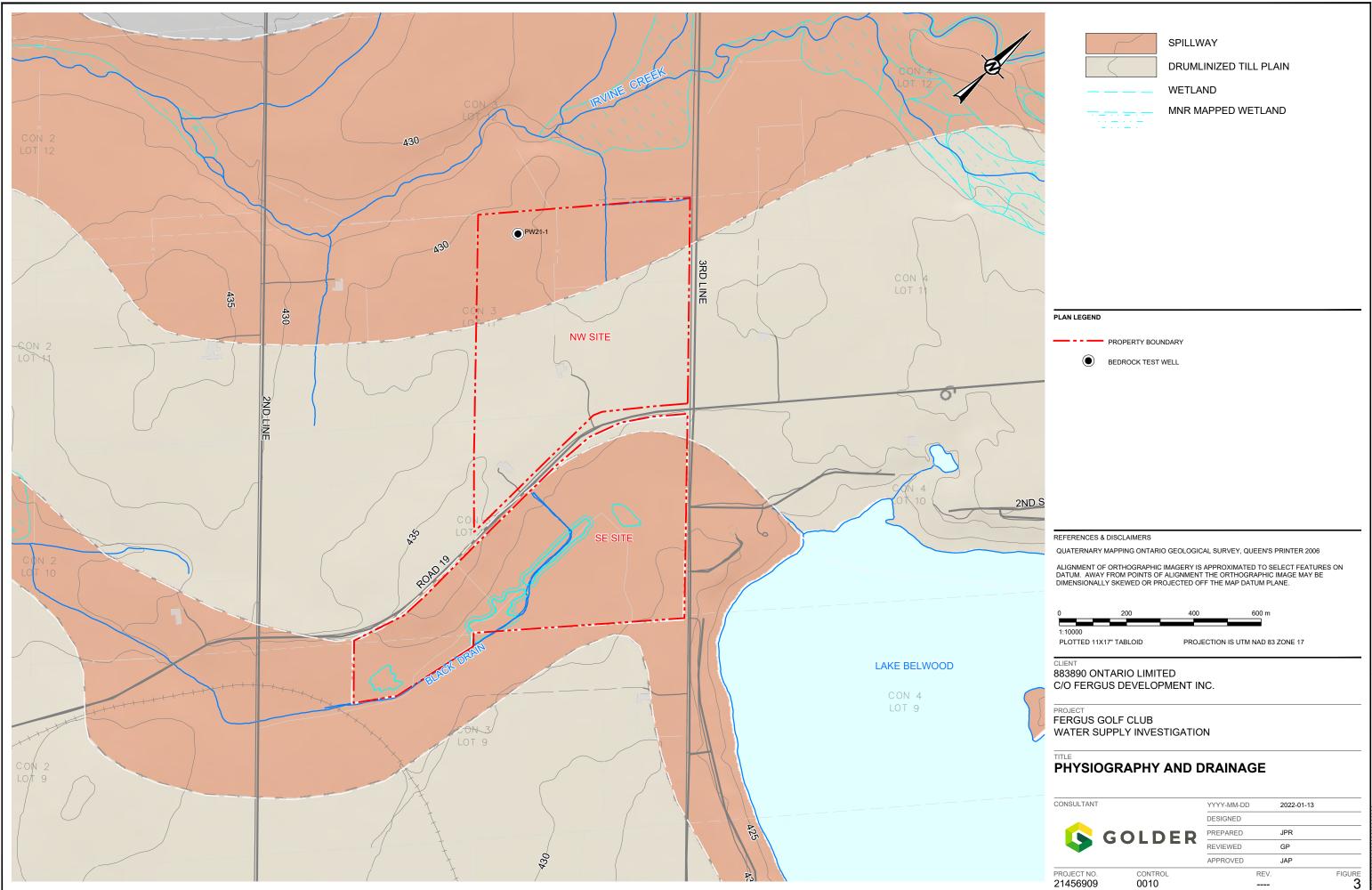
ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

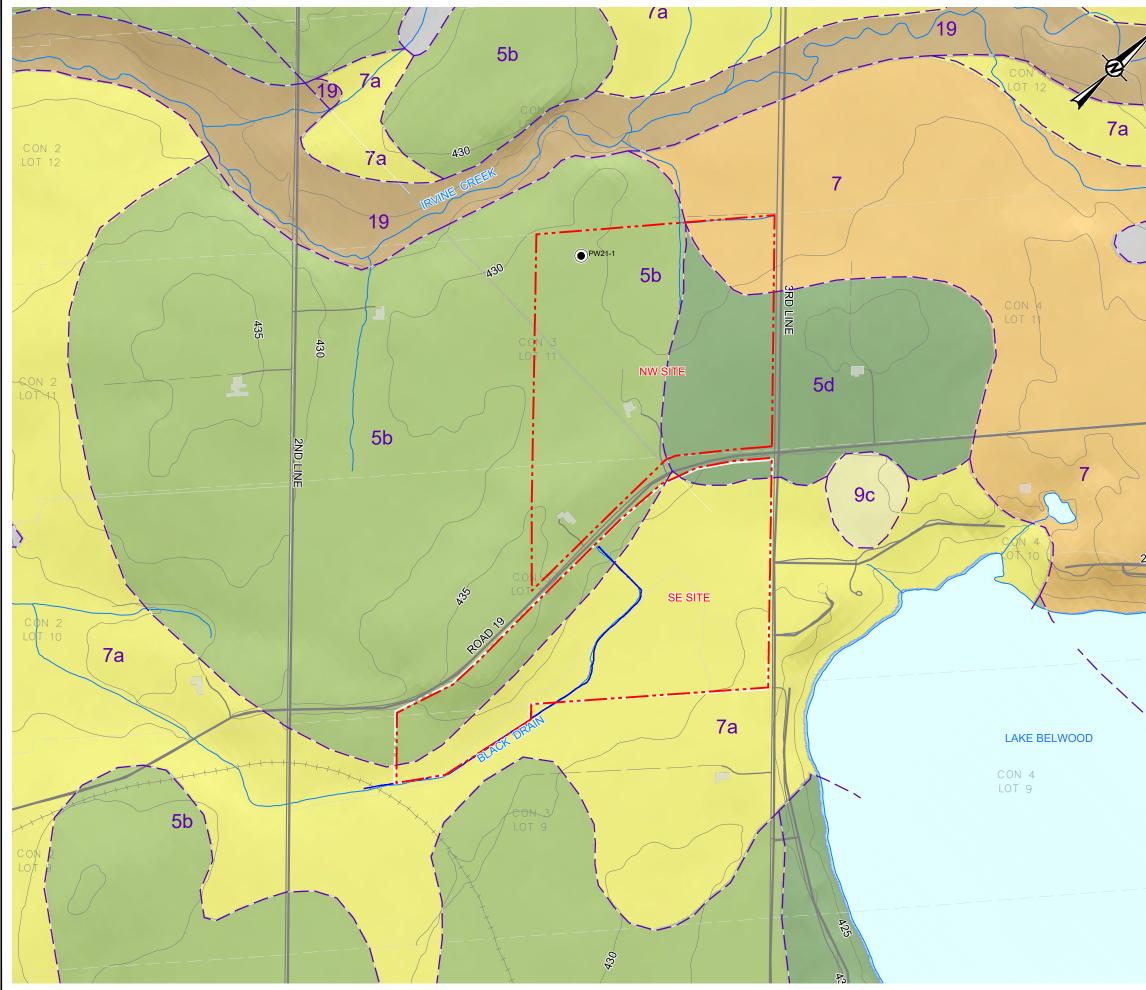
BASE IMAGERY - SOURCE: ESRI, MAXAR, GEOEYE; GIS USER COMMUNITY.

REFERENCES & DISCLAIMERS

EXISTING PRODUCTION WELL


BEDROCK MONITORING WELL OVERBURDEN MONITORING WELL MINI-PIEZOMETER / STAFF GAUGE


BEDROCK TEST WELL


PROPERTY BOUNDARY

۲

Ð

	20	ORGANIC DEPOSITS
0	19	FLUVIAL SILT, SAND, GRAVEL
0	9c	GLACIOLACUSTRINE SILT & SAND DEPOSITS
0	7	GLACIOFLUVIAL OUTWASH SAND & GRAVEL
0	7a	DISTAL SAND & GRAVEL
0	5d	FINE GRAINED TILL
0	5b	ABLATION TILL

PLAN LEGEND

PROPERTY BOUNDARY

BEDROCK TEST WELL

2ND S

REFERENCES & DISCLAIMERS

QUATERNARY MAPPING ONTARIO GEOLOGICAL SURVEY, QUEEN'S PRINTER 2016

ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

0	200	400	600 m
1:10000			

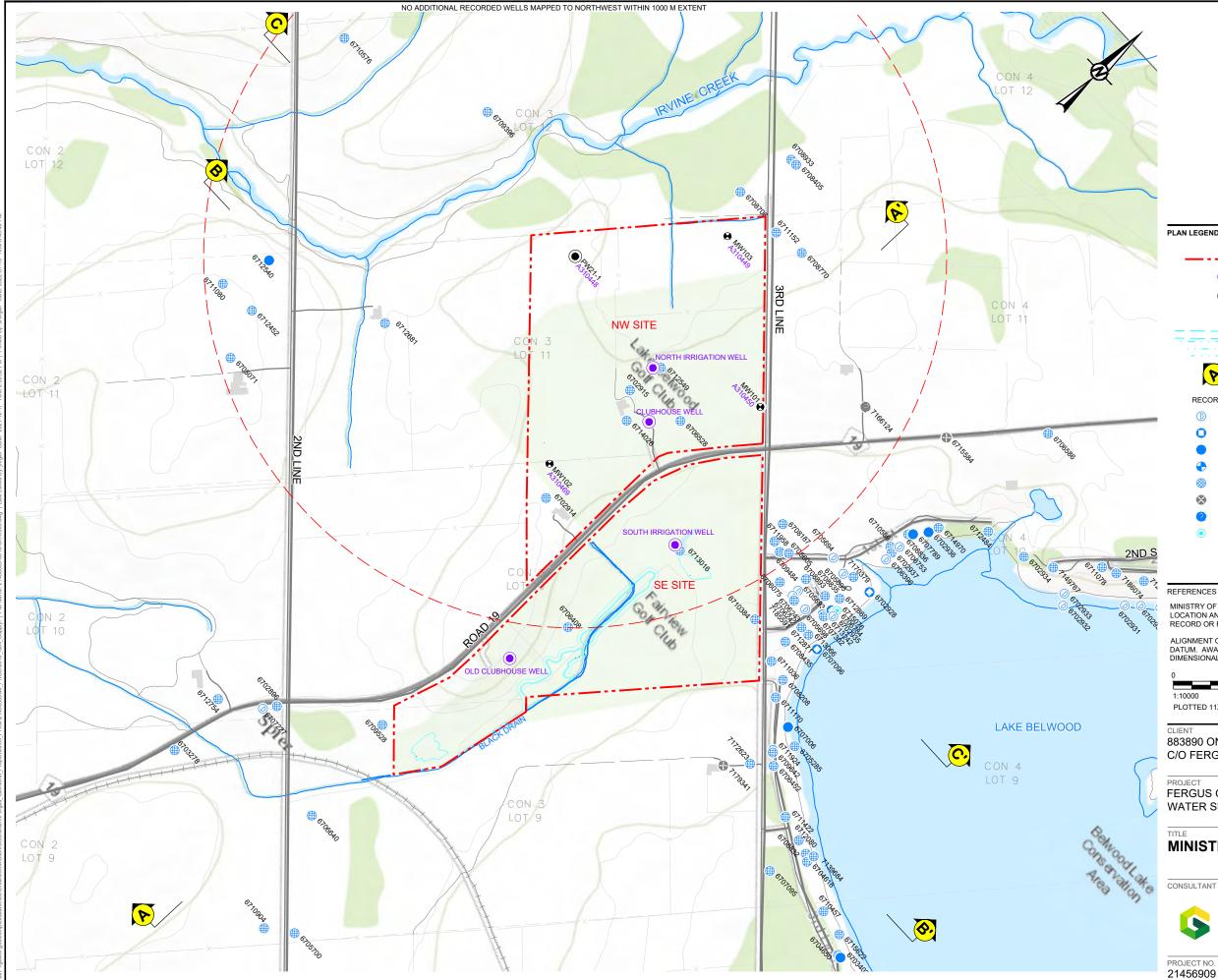
PLOTTED 11X17" TABLOID

CONSULTANT

PROJECT NO. 21456909

PROJECTION IS UTM NAD 83 ZONE 17

CLIENT 883890 ONTARIO LIMITED


C/O FERGUS DEVELOPMENT INC.

PROJECT FERGUS GOLF CLUB WATER SUPPLY INVESTIGATION

TITLE QUATERNARY GEOLOGY MAP

> YYYY-MM-DD 2022-01-13 DESIGNED GOLDER PREPARED JPR REVIEWED GP APPROVED JAP CONTROL FIGURE REV. 0010 ----

4

PLAN	LEGEND

	PROPERTY BOUNDARY
\bigcirc	EXISTING PRODUCTION WELL
۲	BEDROCK TEST WELL WITH 1000 M OFFSET
Θ	BEDROCK MONITORING WELL
	WETLAND
	MNR MAPPED WETLAND

RECORDED MINISTRY WATER WELL WITH RECORD ID / TAG NUMBER

- SHALLOW DUG OR BORED <10 M
- 0 DEEP BORED WELL >10 M

LINE OF SECTION

- DRILLED OVERBURDEN WELL
- TEST OR OBSERVATION WELL
- DRILLED BEDROCK WELL
- RECORD OF ABANDONMENT (\otimes)
- INFORMATION UNRECORDED
- TEMPORARY DEWATERING WELL

REFERENCES & DISCLAIMERS

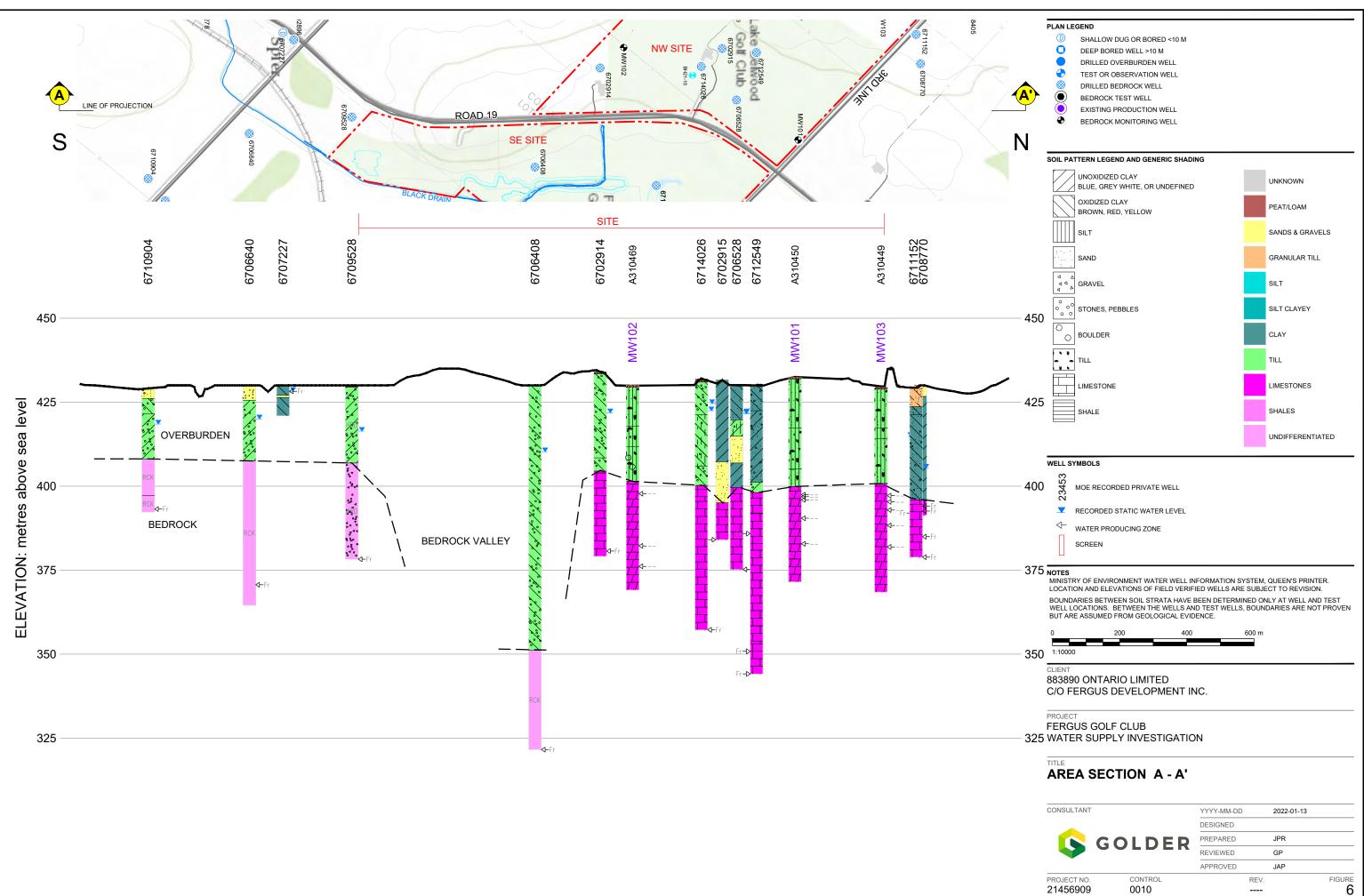
MINISTRY OF ENVIRONMENT WATER WELL INFORMATION SYSTEM, QUEEN'S PRINTER. LOCATION AND ELEVATIONS OF MAPPED WELLS ARE SUBJECT TO REVISION BASED ON DRILL RECORD OR FIELD VERIFICATION.

ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

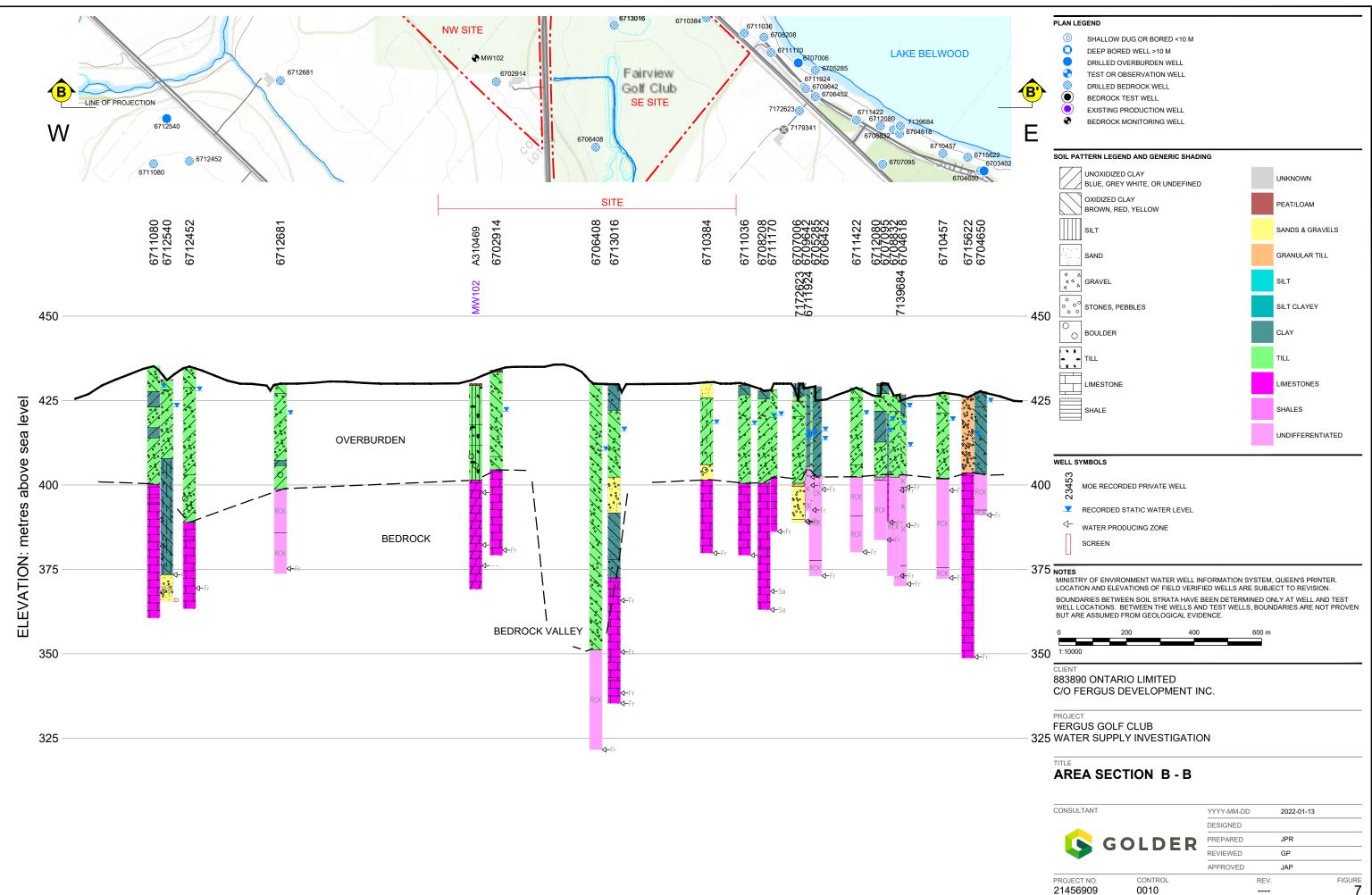
0	200	400	600 m
1:10000			
PLOTTED 1	1X17" TABLOID	PROJECTION	IS UTM NAD 83 ZONE 17

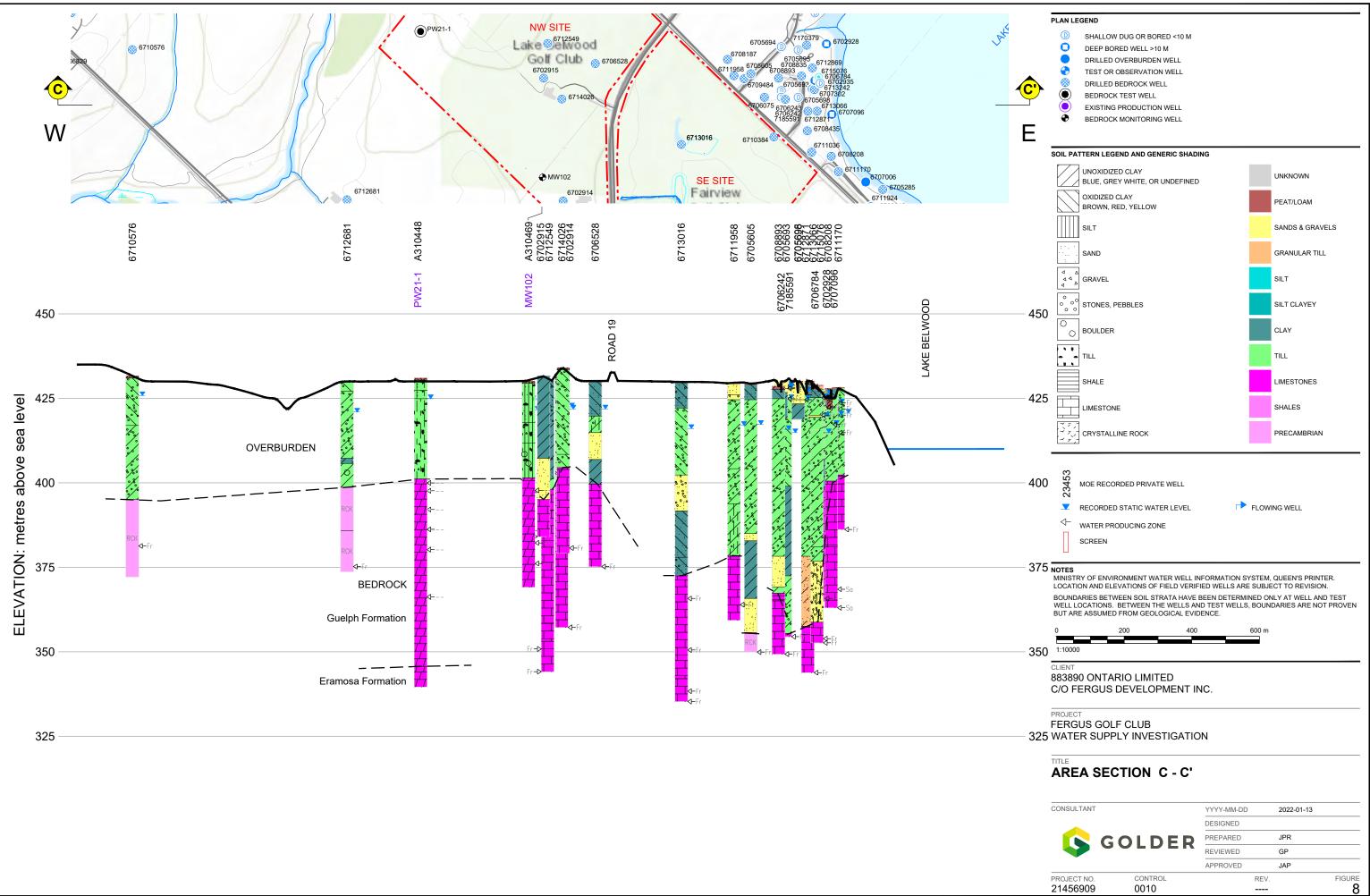
CLIENT 883890 ONTARIO LIMITED C/O FERGUS DEVELOPMENT INC.

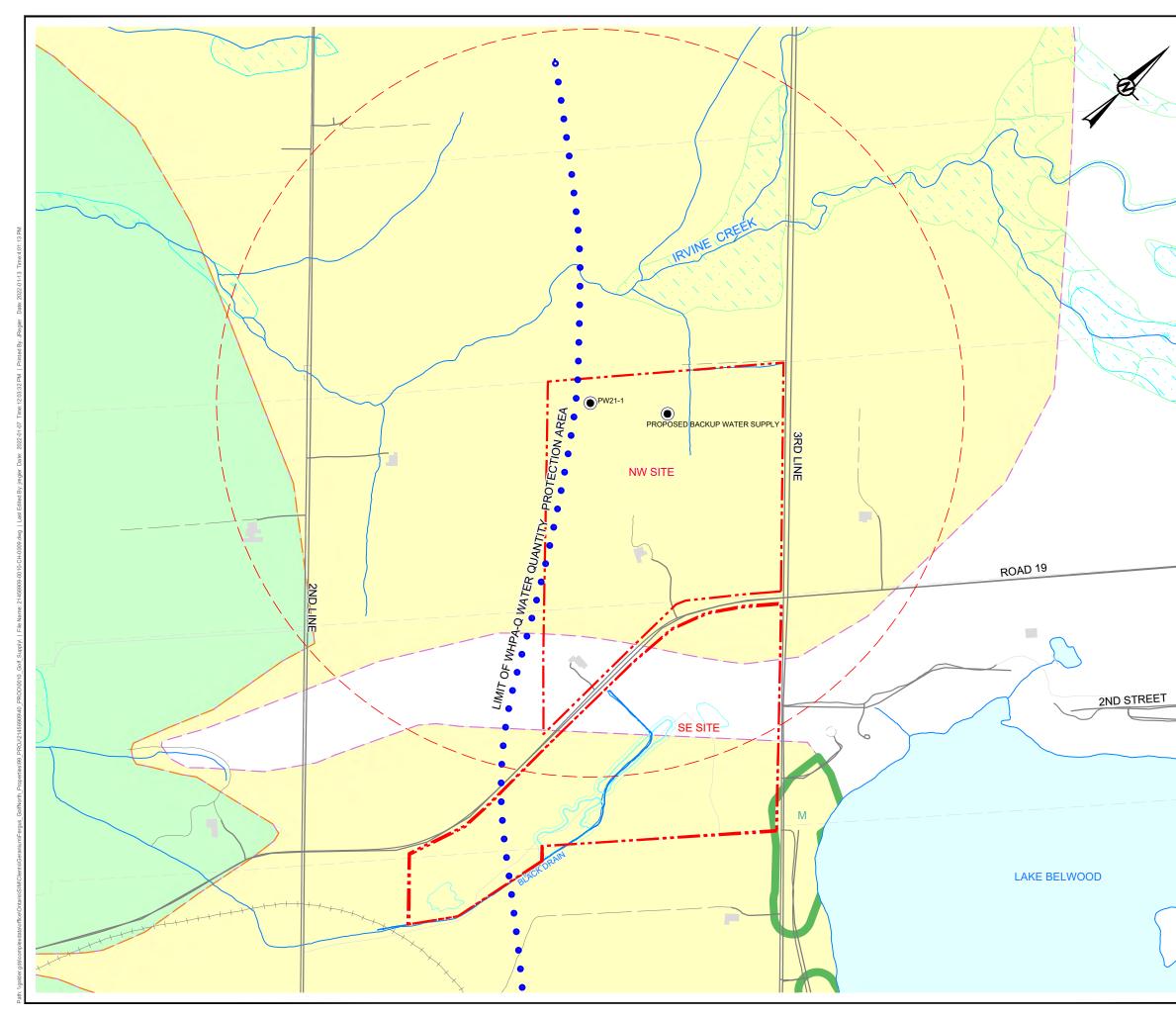
PROJECT FERGUS GOLF CLUB WATER SUPPLY INVESTIGATION

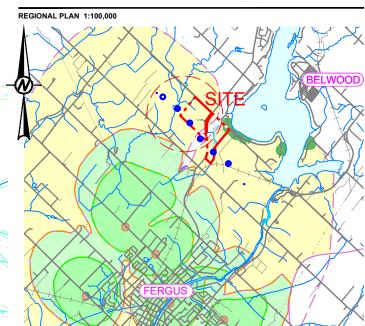

TITLE MINISTRY RECORDED WELLS

0010


CONSULTANT		YYYY-MM-DD	2022-01-13
\$	GOLDER	DESIGNED	
		PREPARED	JPR
		REVIEWED	GP
		APPROVED	JAP
PROJECT NO.	CONTROL	RE	V.


FIGURE




25 mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIE

25 mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOW

PLAN LEGEND

		PROPERTY BOUNDARY WITH 500 m OFFSET
	— —	APPROXIMATE ZONE OF INFLUENCE (PUMPING AT 8.8 l/s)
	•	WELLHEAD PROTECTION AREA A / MUNICIPAL WELL SITE
		WELLHEAD PROTECTION AREA B
		WELLHEAD PROTECTION AREA C
		WELLHEAD PROTECTION AREA D
•		WATER QUANTITY PROECTION LIMIT
		AREA OF MEDIUM AQUIFER INTRINSIC VULNERABILITY (GRCA)

REFERENCES & DISCLAIMERS

WELLHEAD PROTECTION AREAS, GRAND VALLEY CONSERVATION AUTHORITY (GRCA); 2009 ADDREER INTRINSIC SUSCEPTIBILITY, GRCA, AREAS OUTSIDE MAPPED MEDIUM

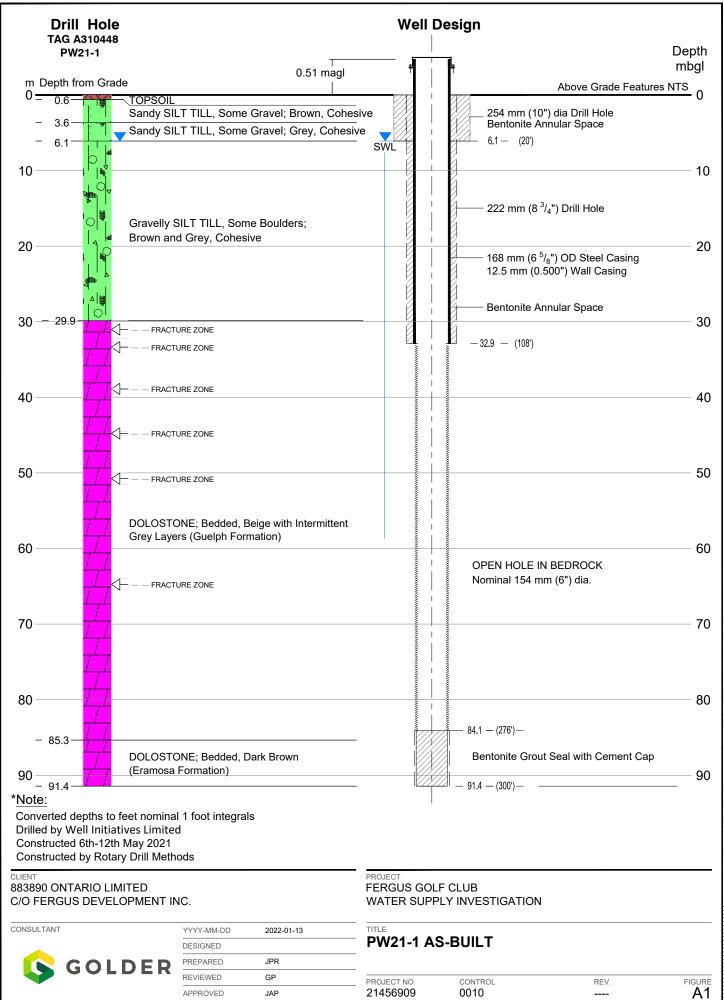
AQUIFER INTRINSIC SUSCEPTIBILITY, GRCA. AREAS OUTSIDE MAPPED MEDIUM VULNERABILITY LOCAL TO THE SITE PLAN AREA EXTENT ARE MAPPED LOW ISI OTHERWISE.

MAPPED FEATURES ARE APPROXIMATE AND NOT TO SCALE.

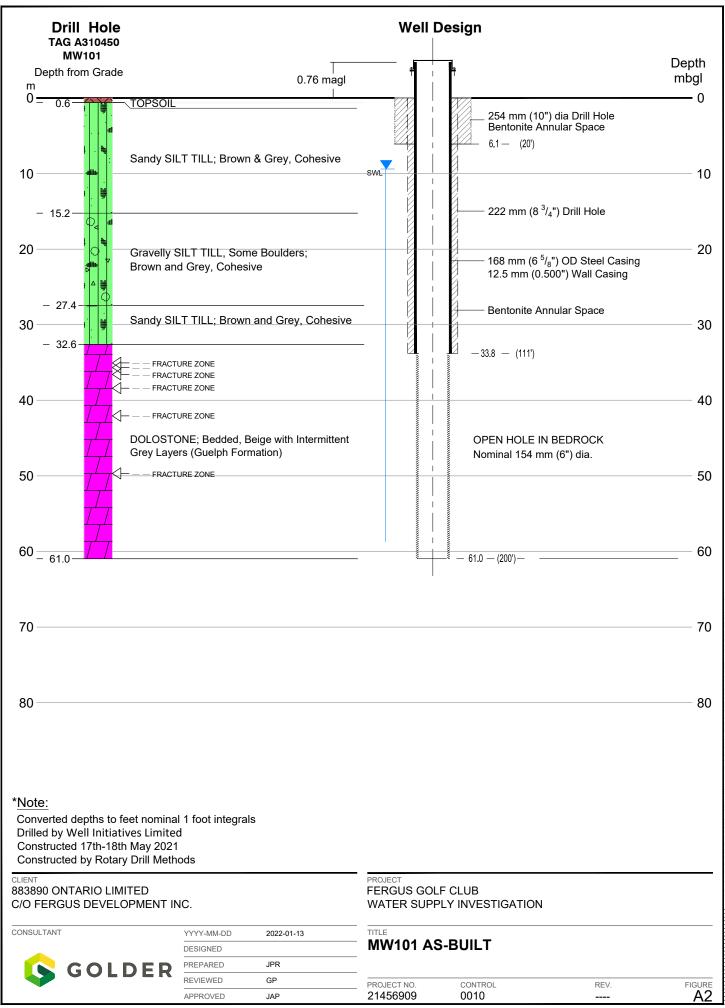
	0	200	400	600 m	
_	1:10000				
	PLOTTED 11X17	" TABLOID	PROJECTION	IS UTM NAD 83 ZONE	17

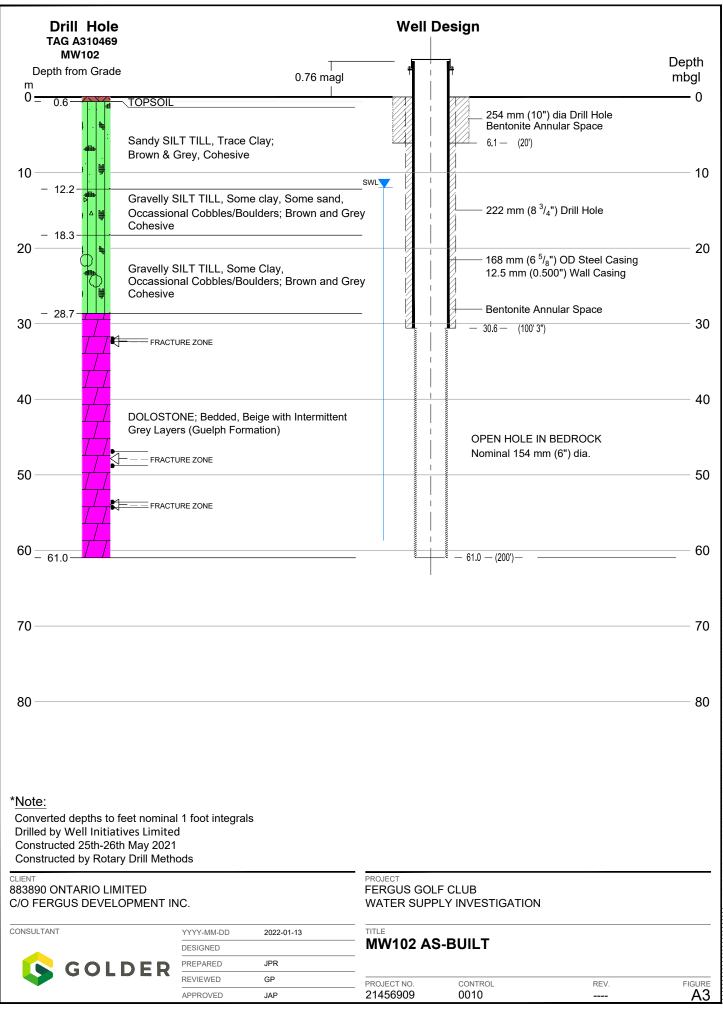
CLIENT 883890 ONTARIO LIMITED C/O FERGUS DEVELOPMENT INC.

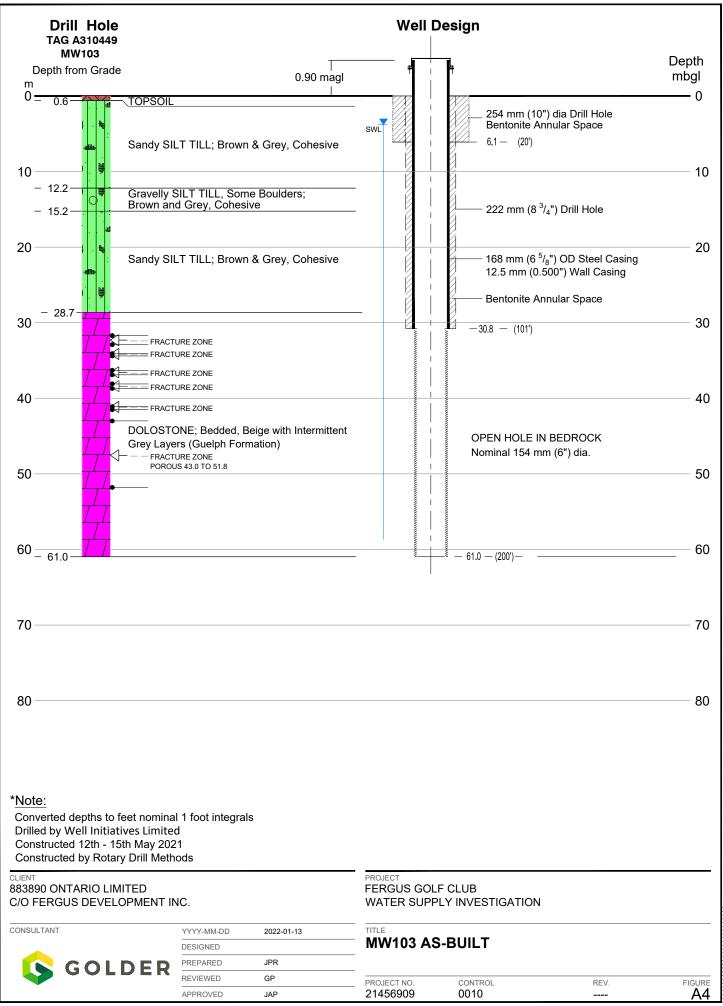
PROJECT FERGUS GOLF CLUB WATER SUPPLY INVESTIGATION


WELLHEAD PROTECTION AREAS

CONSULTANT YYYY-MM-DD 2022-01-13 DESIGNED PREPARED JPR GOLDER C REVIEWED GP APPROVED JAP PROJECT NO. 21456909 FIGURE CONTROL REV. 0010 ----


APPENDIX A


As-Built Drawings



Last Edited By; jregter Date: 2021-12-17 Time.2:50:52 PM | Printed By. JRegter Date: 2022-01-13 Time.4:04:33 PM Patr: Vjodker.gdsicompexdariaoffree/Ontanio/Entral/Serantum/Fergus_GalfNorth_Properties/99_PROJ12145690940_PROD1010_Gaf_Supply | File Name: 21456909-0010-C

Last cated by: jngater Later. 24/2-1/2-1/7 inner:25/35/22/PM | Primed by. Jnegater Later. 2022-10-1/3 inner:05/17 PM Path: Vgodergdstcomptexdata/offce/OntarioSIMClients/Geranium/Fergus_GdMonth_Properties/99_PROU/21456909/40_PROD/0010_Goff_Supply| | File Name: 21456909-0010-C

Last Edited By: jregter Date: 2021-12-17 Time2.50:52 PM | Printed By: Regeter Date: 2022-01-13 Time3-05:35 FM Path: Ngoder gdscomptexdatioffice/Ontario/SIMClients/Geranum/Fergus_Ga/North_Properties/09_PR0/2145690940_PR0/2016_Gaff_Supply | File Name: 21456909-0010-CF

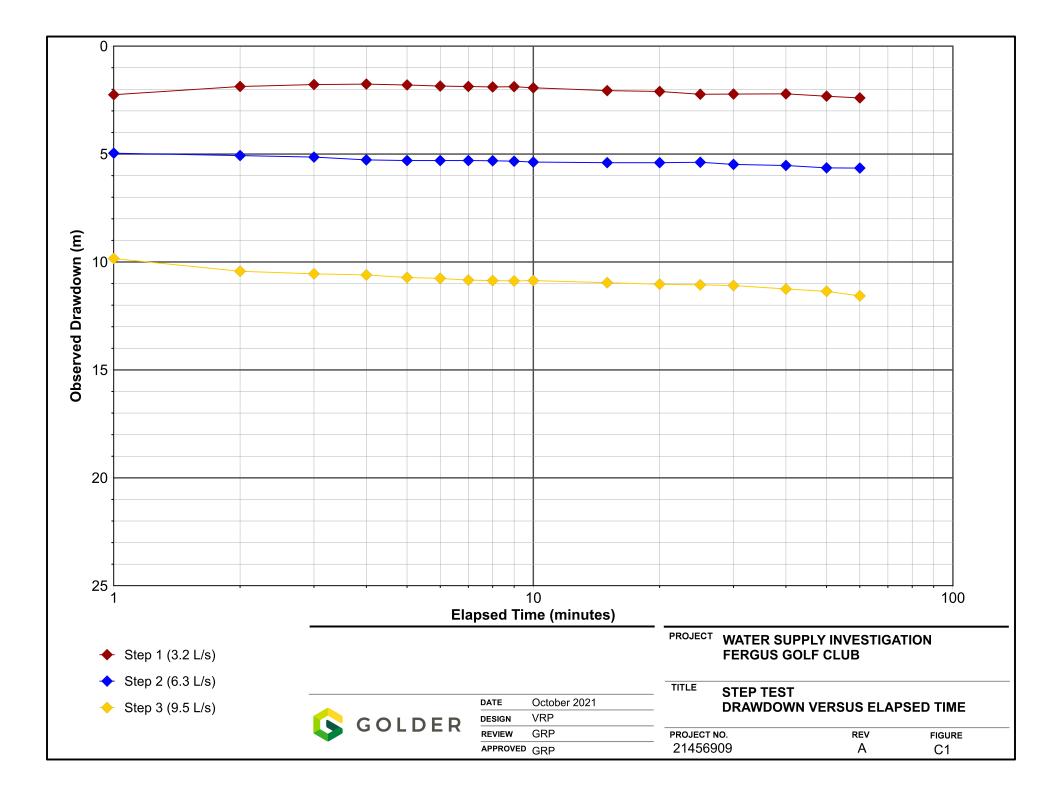
APPENDIX B

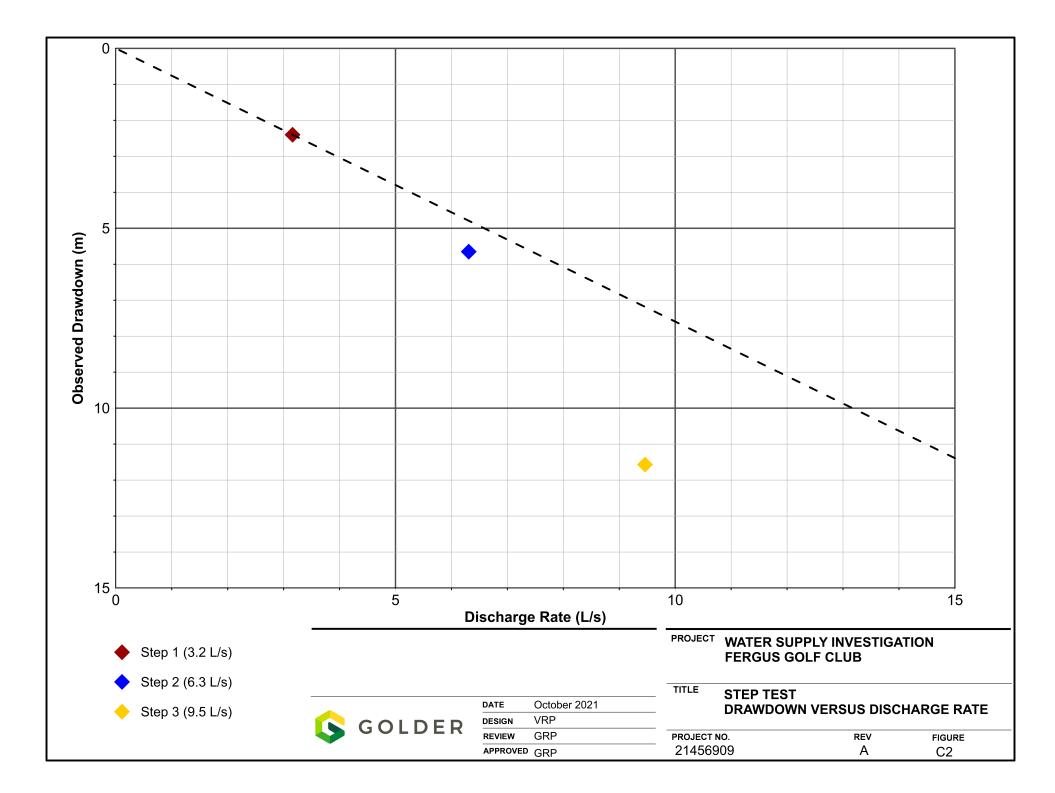
Water Well Records

LABEL		DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min		DRILLER METHOD		WELL NAME DESCRIPTION OF MATERIALS
6702914	3 10	Dec-67	551217 4844015	433.7	53.3 Fr		12.2	45	90	18.3	2406 CT	WS ST	MOE# 6702914 0.0 TPSL 0.6 BRWN CLAY STNS 25.6 BRWN CLAY GRVL 29.6 BRWN LMSN 54.9
6702915	3 11	Dec-51	551159 4844378	429.8	47.5 Fr		7.0	45	30	9.1	2521 CT	WS ST	MOE# 6702915 0.0 CLAY 24.4 MSND 36.6 LMSN 47.5
6702916	3 13	Apr-64	549770 4844615	431.6	53.0 Fr		11.6	36	240	18.3	1659 CT	WS DO	MOE# 6702916 0.0 CLAY MSND 6.1 CLAY STNS 39.6 GREY LMSN 53.3
6705071	2 11	Oct-74	550362 4843651	434.3	65.5 Fr		9.1	91	60	18.3	2336 RC	WS DO	MOE# 6705071 0.0 TPSL 0.3 BRWN CLAY STNS 3.0 GREY CLAY STNS 36.3 GREY ROCK 45.1 BRWN ROCK 65.5
6705605	4 10	Jul-75	551772 4844391	428.2	79.2 Fr		11.9	45	60	19.8	2336 RC	WS DO	MOE# 6705605 0.0 TPSL 0.3 BRWN CLAY SAND 4.6 GREY CLAY STNS 44.2 GREY SAND 46.3 GREY CLAY 63.4 BRWN SAND 73.5 BRWN ROCK 79.2
6706075	4 10	Jun-76	551812 4844321	428.2	57.9 Fr		10.7	45	60	22.9	2336 RC	WS DO	MOE# 6706075 0.0 BRWN SAND 3.7 GREY CLAY GRVL 29.6 GREY ROCK 38.7 BRWN ROCK 61.3
6706408	3 10	May-77	551512 4843821	429.8	108.5 Fr		19.8	68	300	25.9	1906 RC	WS DO	MOE# 6706408 0.0 BRWN CLAY STNS 78.9 GREY STNS 108.5
6706427	3 13	May-77	549762 4844571	432.5	40.2 Fr		7.0	36	60	21.3	5469 RC	WS DO	MOE# 6706427 0.0 BRWN CLAY 5.5 GREY CLAY 37.5 GREY LMSN 40.2
6706528	3 11	Jan-77	551312 4844421	429.8	54.9 Fr		8.2	41	60	22.9	3740 RA	WS DO	MOE# 6706528 0.0 BRWN CLAY SAND 10.4 GREY HPAN STNS 15.2 BRWN SAND 23.2 GREY CLAY 30.5 GREY LMSN 54.9
6708187	4 10	Jun-84	551703 4844433	426.1	38.1 Fr		7.0	36	120	19.8	5317 RC	WS DO	MOE# 6708187 0.0 CLAY STNS 28.7 LMSN 42.7
6708208	4 9	Aug-85	552010 4844147	427.0	64.9 Sa 59.4 Sa		7.9	41	90	25.9	3740 RC	WS DO	MOE# 6708208 0.0 BLCK TPSL 0.3 BRWN CLAY 2.4 GREY CLAY STNS 27.4 GREY LMSN 46.3 BRWN LMSN 64.9
6708405	4 12	Mar-86	551020 4845119	427.9	50.3 Fr 47.9 Fr		12.8	45	60	17.7	3740 RC	WS DO	MOE# 6708405 0.0 BLCK TPSL 0.3 BRWN CLAY SAND 3.7 GREY CLAY STNS 29.0 GREY LMSN SHLE 51.5
6708706	3 12	May-86	550971 4844959	427.0	50.3 Fr 45.7 Fr		2.1	91		6.1	2564 CT	WS DO	MOE# 6708706 0.0 GRVL 3.0 CLAY 30.5 SAND 33.5 LMSN 50.3
6708770	4 11	May-87	551204 4844968	428.9	38.1 Fr		15.2	23	60	30.5	4643 RC	WS DO	MOE# 6708770 0.0 BLCK TPSL 0.3 BRWN SAND 3.4 BLUE CLAY 34.4 GREY LMSN 38.7
6708893	4 10	Jun-87	551854 4844378	428.9	79.2 Fr		12.8	41	60	20.7	3740 RC	WS DO	MOE# 6708893 0.0 BRWN FILL 0.9 BRWN CLAY 3.7 GREY CLAY STNS 50.3 GREY SAND 59.4 GREY CLAY STNS 61.3 BRWN SNDS SHLE 63.1 BRWN LMSN 79.2
6708933	4 12	Jan-87	551001 4845118	427.0	41.1 Fr		4.6	91	60	24.4	2336 RC	WS DO	MOE# 6708933 0.0 BRWN CLAY GRVL STNS 5.5 GREY CLAY 36.9 GREY ROCK 41.1
6709396	3 12	Jul-88	550350 4844608	431.9	56.1 Fr		5.2	45	180	29.0	1906 RC	WS DO	MOE# 6709396 0.0 BRWN CLAY STNS 36.0 BLUE ROCK 37.5 GREY ROCK 42.7 LMSN 56.4
6709484	4 10	Sep-88	551752 4844376	427.9	39.3 Fr		15.8	32	60	21.3	3740 RC	WS DO	MOE# 6709484 0.0 BLCK TPSL 0.3 BRWN SAND CLAY 3.7 BRWN CLAY STNS 10.4 GREY CLAY STNS 30.5 GREY LMSN 39.3

LABEL		DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	CR TOP LEN mbgl m		RATE L/min	TIME min				WELL NAME DESCRIPTION OF MATERIALS
6710384	3 10	Jun-90	551840 4844204	431.0	50.6 Fr		12.2	68	60		2663 RA	WS DO	MOE# 6710384 0.0 TPSL 0.3 SAND 4.6 CLAY HPAN 24.4 BLDR GRVL 29.0 GREY LMSN 39.6 BRWN LMSN 50.6
6710576	3 12	Aug-90	549942 4844462	431.6	50.3 Fr		5.8	45	90	16.8	2332 RC	WS DO	MOE# 6710576 0.0 BLCK TPSL 0.6 BRWN CLAY STNS 14.6 GREY CLAY STNS 36.6 BRWN ROCK 59.4
6711080	2 11	Jun-92	550202 4843772	435.3	67.1 Fr 53.3 Fr		6.4	45	90	22.9	3317 RC	WS DO	MOE# 6711080 0.0 BRWN CLAY STNS 7.6 GREY CLAY STKY 12.2 GREY CLAY STNS 18.3 GREY CLAY STKY 21.3 GREY CLAY STNS 35.1 GREY LMSN 38.1 BRWN LMSN 39.0 GREY LMSN 40.5 BRWN LMSN 74.7
6711152	4 11	Dec-93	551117 4844955	428.9	50.3 Fr 44.2 Fr 36.6 Fr 36.6 Fr		23.8	41	60	27.4	2663 RA	WS DO	MOE# 6711152 0.0 TPSL 0.3 BRWN SAND CLAY 5.5 BRWN CLAY SAND HPAN 7.9 BRWN CLAY SAND GRVL 33.2 GREY LMSN 50.3
6711958	4 10	Sep-96	551722 4844385	427.9	65.5 Fr		12.5	91	60	15.2	6865 RC	WS DO	MOE# 6711958 0.0 TPSL 0.3 BRWN SAND 3.4 BRWN GRVL SAND 4.9 GREY CLAY STNS 25.3 GREY CLAY GRVL 35.7 GREY CLAY SILT STNS 51.2 GREY LMSN 70.1
6712452	2 12	Aug-97	550308 4843780	434.9	65.5 Fr		7.0	91	90	22.9	3317 RC	WS DO	MOE# 6712452 0.0 BRWN CLAY STNS 6.1 GREY CLAY STNS 32.0 GREY CLAY STNS BLDR 46.0 GREY LMSN 50.3 GREY LMSN 71.6
6712540	2 13	Jun-98	550241 4843906	431.3	57.9 Fr	64.9 -0.9	8.2	91	90		2576 RA	WS DO	MOE# 6712540 0.0 TPSL 0.3 BRWN CLAY GRVL 3.0 GREY CLAY GRVL 23.5 BRWN CLAY SLTY GRVL 57.9 GREY SAND GRVL WBRG 65.8
6712549	3 11	Jun-98	551171 4844480	430.1	86.0 Fr 79.2 Fr 44.2 Fr 44.2 Fr 44.2 Fr 44.2 Fr 44.2 Fr		8.5	136	60	26.8	2663 RA	WS DO	MOE# 6712549 0.0 BRWN CLAY SAND GRVL 7.6 GREY CLAY SAND GRVL 29.0 GREY CLAY GRVL LMSN 32.0 BRWN LMSN LTCL 38.1 BRWN LMSN 47.2 BRWN LMSN LTCL 71.6 GREY LMSN LTCL 76.2 GREY LMSN 79.2 GREY LMSN LTCL 86.0
6712681	3 11	Sep-98	550577 4844018	430.1	54.9 Fr		9.1	136	60	16.8	2336 RA	WS DO	MOE# 6712681 0.0 BRWN CLAY STNS 3.0 GREY CLAY STNS 22.9 GREY CLAY SAND GRVL 24.4 GREY CLAY BLDR 31.4 GREY ROCK 44.2 BRWN ROCK 56.4
6713016	3 11	Jun-99	551566 4844182	430.1	94.5 Fr 91.4 Fr 79.2 Fr 79.2 Fr 79.2 Fr 79.2 Fr 79.2 Fr		13.7	136	60	33.5	2663 RA	WS DO	MOE# 6713016 0.0 TPSL 0.3 BRWN CLAY SAND STNS 7.6 BRWN CLAY GRVL 27.4 GREY SAND GRVL 38.1 BRWN CLAY SAND 51.8 BRWN CLAY SAND GRVL 57.3 BRWN LMSN FCRD 58.5 BRWN LMSN 80.8 GREY LMSN 86.9 GREY LMSN 94.5
6714026	3 11	Mar-02	551213 4844316	430.1	74.7 Fr		9.4	68	60	36.3	2663 RA	WS DO	MOE# 6714026 0.0 BLCK TPSL 0.9 BRWN CLAY STNS 10.7 BRWN CLAY HPAN 25.9 BRWN CLAY GRVL 31.7 GREY LMSN FCRD 32.9 GREY LMSN 35.1 BLUE LMSN 74.7
7166124	4 11	NR	551624 4844811	432.5			NR				6475 -	-	MOE# 7166124 TAG#A103263 0.0
7185591	4 9	Jul-12		430.1	75.6 Fr		15.2	55	720	15.8	7154 RC	WS DO	MOE# 7185591 TAG#A125533 0.0 BRWN SAND 4.9 BRWN CLAY STNS 31.1 GREY CLAY 57.6 GREY CLAY STNS 74.7 GREY LMSN 75.6

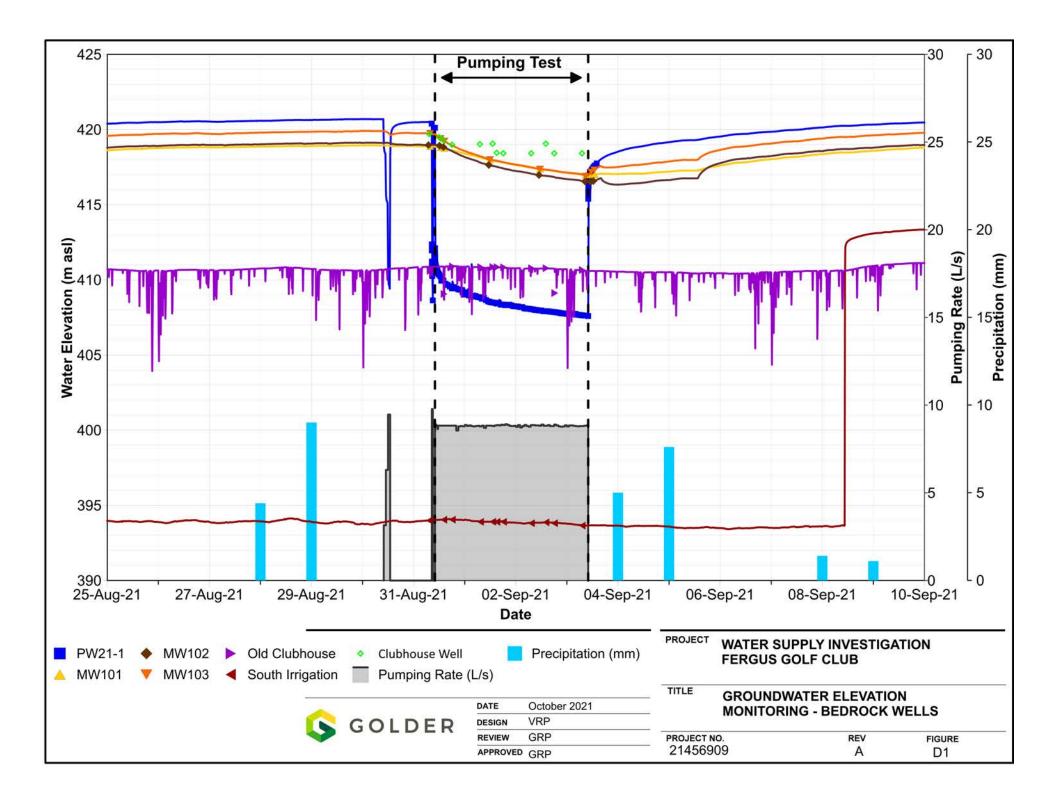
LABEL CON	DATE	EASTING	ELEV	WTR FND	CR TOP LEN	SWL	RATE	TIME	PL DRILLER	TYPE	WELL NAME
LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl METHOD	STAT	DESCRIPTION OF MATERIALS


(QUALITY:		TYPE:		USE	:		N	IETHOD :
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	СТ	Cable Tool
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air
	Unrecorded	TH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring

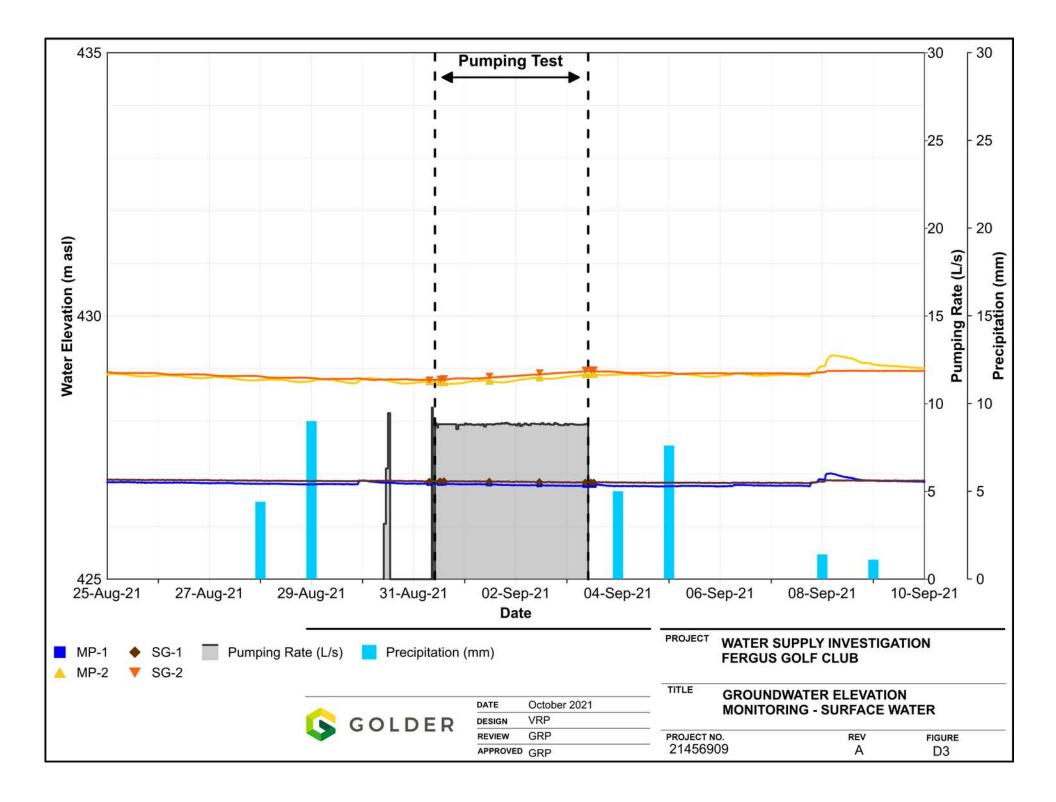

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy. Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

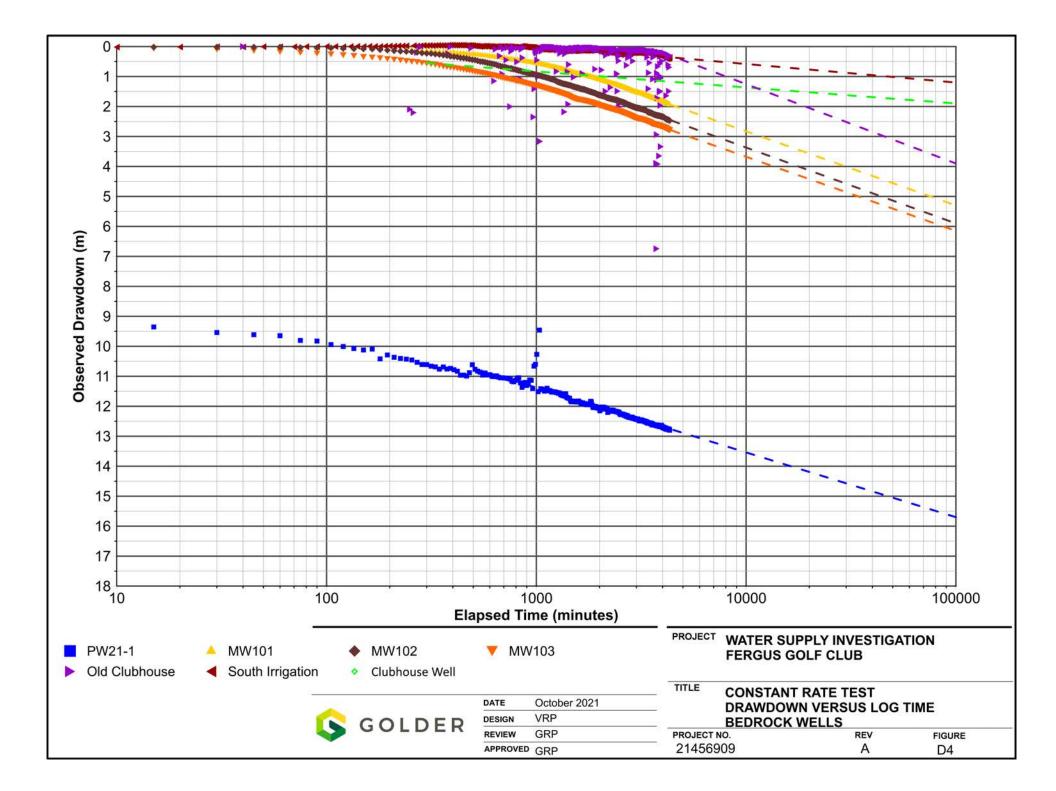
APPENDIX C

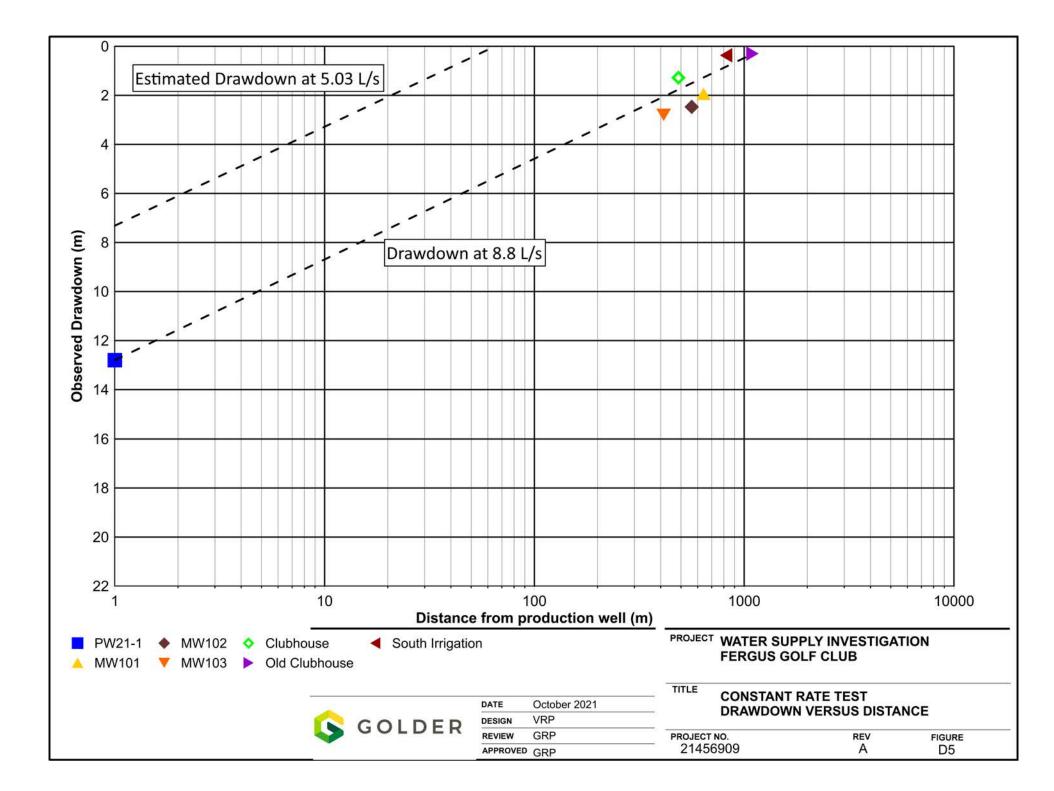
Stepped Rate Pumping Test Graphs

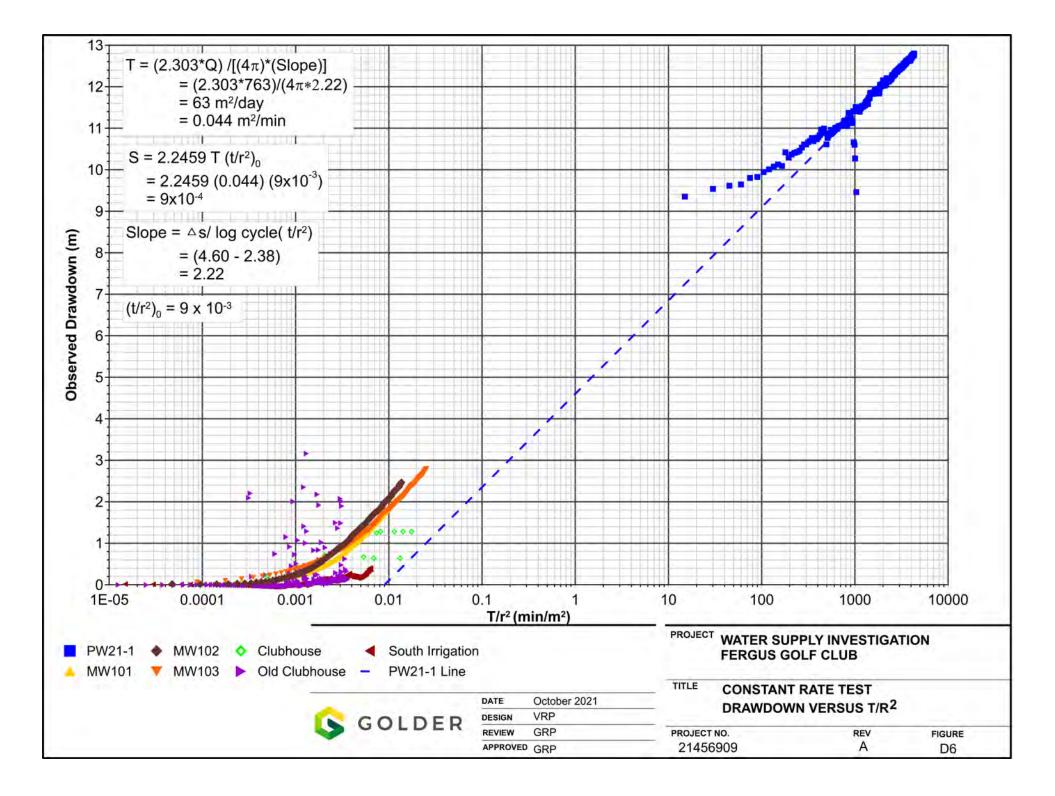





APPENDIX D


Constant Rate Pumping Test Graphs





APPENDIX E

Table E1 Water Quality Results

Water Quality Results								
		Ontario Drinking Water Standards,	PW21-1 at 1 hour pumping	PW21-1 at 24 hours pumping	PW21-1 at 72 hours pumping			
		Objectives and Guidelines	2021-08-31 11:00	2021-09-01 10:00	2021-09-03 10:15			
Inorganics								
Total Ammonia-N	mg/L		0.18	0.19	0.21			
Conductivity	umho/cm		720	770	790			
Dissolved Organic Carbon	mg/L	5 (AO)	0.49	<0.40	0.49			
Orthophosphate (P)	mg/L		<0.010	<0.010	<0.010			
рН	pH units	6.5-8.5 (OG)	8.00	7.93	8.12			
Dissolved Sulphate (SO ₄)	mg/L	500 (AO)	190	220	250			
Alkalinity (Total as CaCO ₃)	mg/L	30-500 (OG)	180	180	180			
Dissolved Chloride (Cl)	mg/L	250 (AO)	8.5	9.1	10			
Nitrite (N)	mg/L	1 (STD)	<0.010	<0.010	<0.010			
Nitrate (N)	mg/L	10 (STD)	<0.10	<0.10	<0.10			
Metals								
Aluminum (Al)	ug/L	100 (OG)	350	77	<4.9			
Antimony (Sb)	ug/L	6 (STD)	<0.50	<0.50	<0.50			
Arsenic (As)	ug/L	10 (STD)	1.8	1.4	1.5			
Barium (Ba)	ug/L	1000 (STD)	24	21	21			
Beryllium (Be)	ug/L		<0.40	<0.40	<0.40			
Boron (B)	ug/L	5000 (STD)	70	71	70			
Cadmium (Cd)	ug/L	5 (STD)	<0.090	<0.090	<0.090			
Calcium (Ca)	ug/L		89000	86000	96000			
Chromium (Cr)	ug/L	50 (STD)	<5.0	<5.0	<5.0			
Cobalt (Co)	ug/L		<0.50	<0.50	<0.50			
Copper (Cu)	ug/L	1000 (AO)	6.0	0.92	<0.90			
Iron (Fe)	ug/L	300 (AO)	610	240	120			
Lead (Pb)	ug/L	10 (STD)	2.7	0.67	<0.50			
Lithium (Li)	ug/L		5.8	5.8	5.6			
Magnesium (Mg)	ug/L		33000	34000	34000			
Manganese (Mn)	ug/L	50 (AO)	58	25	19			
Molybdenum (Mo)	ug/L		2.7	3.1	3.2			
Nickel (Ni)	ug/L		1.1	<1.0	<1.0			
Phosphorus (P)	ug/L		<100	<100	<100			
Potassium (K)	ug/L		1200	1100	1100			
Selenium (Se)	ug/L	50 (STD)	<2.0	<2.0	<2.0			
Silicon (Si)	ug/L		6400	5900	5800			
Silver (Ag)	ug/L		<0.090	<0.090	<0.090			
Sodium (Na)	ug/L	200000 (AO)	29000	28000	27000			
Strontium (Sr)	ug/L		3500	3600	3800			
Thallium (TI)	ug/L	1	<0.050	<0.050	<0.050			
Titanium (Ti)	ug/L	1	9.6	<5.0	<5.0			
Uranium (U)	ug/L	20 (STD)	0.21	0.17	0.21			
Vanadium (V)	ug/L		0.79	<0.50	<0.50			
Zinc (Zn)	ug/L	5000 (AO)	8.0	<5.0	<5.0			

Table E1 Water Quality Results

		Water Quality			
		Ontario Drinking	PW21-1 at	PW21-1 at	PW21-1 at
		Water Standards,	1 hour pumping	24 hours pumping	72 hours pumping
		Objectives and Guidelines	2021-08-31 11:00	2021-09-01 10:00	2021-09-03 10:15
Calculated Parameters	Units				
Anion Sum	me/L		7.86	8.58	9.13
Bicarb. Alkalinity (calc. as CaCO ₃)	mg/L		180	180	180
Calculated TDS	mg/L	500 (AO)	480	510	540
Carb. Alkalinity (calc. as CaCO ₃)	mg/L		1.7	1.4	2.2
Cation Sum	me/L		8.57	8.39	8.82
Hardness (CaCO ₃)	mg/L	80-100 (OG)	360	360	380
Ion Balance (% Difference)	%		4.29	1.10	1.75
Langelier Index (@ 20C)	-		0.758	0.654	0.883
Langelier Index (@ 4C)	-		0.510	0.406	0.635
Saturation pH (@ 20C)	pH units		7.25	7.27	7.23
Saturation pH (@ 4C)	pH units		7.50	7.52	7.48
Microbiological				•	
Background	CFU/100 mL		0	0	0
Total Coliforms	CFU/100 mL	0 (STD)	0	0	0
Escherichia Coli	CFU/100 mL	0 (STD)	0	0	0

Notes

10103	
-	No units
ug/L	micrograms per litre
mg/L	milligrams per litre
me/L	milliequilvants per litre
umho/cm	micro mho per litre
NTU	Nephelometric turbidity units
STD	Chemical Standards
OG	Operational Guidelines
AO	Aesthetic Objectives
red highlight	Ontario Drinking Water Standard, Objective or Guideline Exceedance

		Ontario	Aesthetic	
		Drinking Water	Objective or Operational	PW21-1
	UNITS	Standard	Guideline	2021-09-03 10:00
Calculated Parameters				
Calculated TDS	mg/L	-	500	550
Hardness (CaCO3)	mg/L	-	80:100	380
Total Organic Nitrogen	mg/L	-	0.15	<0.10
Inorganics				
Total Ammonia-N	mg/L	-	-	0.21
Colour	TCU	-	5	<2
Fluoride (F-)	mg/L	1.5	-	0.62
Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.23
Microcystin	ug/L	-	-	<0.10
Dissolved Organic Carbon	mg/L	-	5	0.48
рН	рН	-	6.5:8.5	8.02
Dissolved Sulphate (SO4)	mg/L	-	500	270
Sulphide	mg/L	-	0.05	<0.020
Turbidity	NTU	-	5	0.7
WAD Cyanide (Free)	mg/L	0.2	-	<0.0010
Alkalinity (Total as CaCO3)	mg/L	-	30:500	180
Dissolved Chloride (Cl-)	mg/L	-	250	9.6
Nitrite (N)	mg/L	1	-	<0.010
Nitrate (N)	mg/L	10	-	<0.10
Nitrate + Nitrite (N)	mg/L	10	-	<0.10
Metals				
Mercury (Hg)	mg/L	0.001	-	<0.00010
Aluminum (Al)	ug/L	-	100	<4.9
Antimony (Sb)	ug/L	6	-	<0.50
Arsenic (As)	ug/L	10	-	1.5
Barium (Ba)	ug/L	1000	-	21
Boron (B)	ug/L	5000	-	74
Cadmium (Cd)	ug/L	5	-	<0.090
Calcium (Ca)	ug/L	-	-	93000
Chromium (Cr)	ug/L	50	-	<5.0
Copper (Cu)	ug/L	-	1000	<0.90
Iron (Fe)	ug/L	-	300	130
Lead (Pb)	ug/L	10	-	<0.50
Magnesium (Mg)	ug/L	-	-	36000
Manganese (Mn)	ug/L	-	50	20
Potassium (K)	ug/L	-	-	1100
Selenium (Se)	ug/L	50	-	<2.0
Sodium (Na)	ug/L	-	200000	28000
Uranium (U)	ug/L	20	-	0.16
Zinc (Zn)	ug/L	-	5000	<5.0

		Ontario Drinking	Aesthetic Objective or	PW21-1
		Water	Operational	F VV21-1
	UNITS	Standard	Guideline	2021-09-03 10:00
Fixed Gases				
Methane	L/m3		3	0.019
Miscellaneous Parameters				
NTA	mg/L	0.4	-	<0.050
Bromate	mg/L	0.01	-	<0.005
Semivolatile Organics				
2,3,4,6-Tetrachlorophenol	ug/L	100	1	<0.50
2,4,5-T	ug/L	280	-	<1.0
2,4,6-Trichlorophenol	ug/L	5	2	<0.50
2,4-D	ug/L	100	-	<1.0
2,4-Dichlorophenol	ug/L	900	0.3	<0.25
Alachlor	ug/L	5	-	<0.50
Aldicarb	ug/L	-	-	<5.0
Atrazine	ug/L	-	-	<0.50
Des-ethyl atrazine	ug/L	-	-	<0.50
Atrazine + Desethyl-atrazine	ug/L	5	-	<1.0
Bendiocarb	ug/L	-	-	<2.0
Bromoxynil	ug/L	5	-	<0.50
Carbaryl	ug/L	90	-	<5.0
Carbofuran	ug/L	90	-	<5.0
Chlorpyrifos (Dursban)	ug/L	90	-	<1.0
Cyanazine (Bladex)	ug/L	-	-	<1.0
Diazinon	ug/L	20	-	<1.0
Dicamba	ug/L	120	-	<1.0
Diclofop-methyl	ug/L	9	-	<0.90
Dimethoate	ug/L	20	-	<2.5
Dinoseb	ug/L	10	-	<1.0
Malathion	ug/L	190	-	<5.0
Metolachlor	ug/L	50	-	<0.50
Metribuzin (Sencor)	ug/L	80	-	<5.0
Ethyl Parathion	ug/L	50	-	<1.0
Pentachlorophenol	ug/L	60	30	<0.50
Phorate	ug/L	2	-	<0.50
Picloram	ug/L	190	-	<5.0
Prometryne	ug/L	1	-	<0.25
Simazine	ug/L	10	-	<1.0
Terbufos	ug/L	1	-	<0.50
Triallate	ug/L	230	-	<1.0
Trifluralin	ug/L	45	-	<1.0
Benzo(a)pyrene	ug/L	0.01	-	<0.0050
Methyl parathion	ug/L	-	-	<1.0
N-Nitrosodimethylamine	ug/L	0.009	-	<0.0009

 Table E2

 Ontario Drinking Water Quality Standards Water Quality Results

		Ontario	Aesthetic	
		Drinking	Objective or	PW21-1
		Water	Operational	
	UNITS	Standard	Guideline	2021-09-03 10:00
Volatile Organics				
1,1-Dichloroethylene	ug/L	14	-	<0.10
1,2-Dichlorobenzene	ug/L	200	3	<0.20
1,2-Dichloroethane	ug/L	5	-	<0.20
1,4-Dichlorobenzene	ug/L	5	1	<0.20
Benzene	ug/L	1	-	<0.10
Bromodichloromethane	ug/L	-	-	<0.10
Bromoform	ug/L	-	-	<0.20
Carbon Tetrachloride	ug/L	2	-	<0.10
Chlorobenzene	ug/L	80	30	<0.10
Chloroform	ug/L	-	-	<0.10
Dibromochloromethane	ug/L	-	-	<0.20
Methylene Chloride(Dichloromethane)	ug/L	50	-	<0.50
Ethylbenzene	ug/L	140	1.6	<0.10
Tetrachloroethylene	ug/L	10	-	<0.10
Toluene	ug/L	60	24	<0.20
Trichloroethylene	ug/L	5	-	<0.10
Vinyl Chloride	ug/L	1	-	<0.20
o-Xylene	ug/L	-	-	<0.10
p+m-Xylene	ug/L	-	-	<0.10
Total Xylenes	ug/L	90	20	<0.10
Total Trihalomethanes	ug/L	-	-	<0.20
Pesticides & Herbicides				
Glyphosate	ug/L	280	-	<10
Diquat	ug/L	70	-	<7.0
Diuron	ug/L	150	-	<10
Guthion (Azinphos-methyl)	ug/L	20	-	<2.0
Paraquat	ug/L	10	-	<1.0
Temephos	ug/L	-	-	<10
Lindane	ug/L	4	-	<0.0060
Heptachlor	ug/L	-	-	<0.0060
Aldrin	ug/L	-	-	<0.0060
Heptachlor epoxide	ug/L	-	-	<0.0060
Oxychlordane	ug/L	-	-	<0.0060
g-Chlordane	ug/L	-	-	<0.0060
a-Chlordane	ug/L	-	-	<0.0060
Dieldrin	ug/L	-	-	<0.0060
o,p-DDE	ug/L	-	-	<0.0060
p,p-DDE	ug/L	-	-	<0.0060
o,p-DDD	ug/L	-	-	<0.0060
p,p-DDD	ug/L	-	-	<0.0060
o,p-DDT	ug/L	-	-	<0.0060

		Ontario	Aesthetic	
		Drinking	Objective or	PW21-1
		Water	Operational	
	UNITS	Standard	Guideline	2021-09-03 10:00
p,p-DDT	ug/L	-	-	<0.0060
Methoxychlor	ug/L	900	-	<0.024
Aroclor 1016	ug/L	-	-	<0.050
Aroclor 1221	ug/L	-	-	<0.050
Aroclor 1232	ug/L	-	-	<0.050
Aroclor 1242	ug/L	-	-	<0.050
Aroclor 1248	ug/L	-	-	<0.050
Aroclor 1254	ug/L	-	-	<0.050
Aroclor 1260	ug/L	-	-	<0.050
Pesticide Calculated Parameters				
Aldrin + Dieldrin	ug/L	0.7	-	<0.006
Chlordane (Total)	ug/L	7	-	<0.006
DDT+ Metabolites	ug/L	30	-	<0.006
Heptachlor + Heptachlor epoxide	ug/L	3	-	<0.006
Total PCB	ug/L	3	-	<0.05
Dioxin and Furan				
2,3,7,8-Tetra CDD *	pg/L	15		<0.973
1,2,3,7,8-Penta CDD *	pg/L	15		<0.830
1,2,3,4,7,8-Hexa CDD *	pg/L	15		<0.875
1,2,3,6,7,8-Hexa CDD *	pg/L	15		<0.778
1,2,3,7,8,9-Hexa CDD *	pg/L	15		<0.798
1,2,3,4,6,7,8-Hepta CDD *	pg/L	15		<0.760
Octa CDD *	pg/L	15		<0.666
Total Tetra CDD *	pg/L	15		<0.973
Total Penta CDD *	pg/L	15		<0.830
Total Hexa CDD *	pg/L	15		<0.814
Total Hepta CDD *	pg/L	15		<0.760
2,3,7,8-Tetra CDF **	pg/L	15		<0.671
1,2,3,7,8-Penta CDF **	pg/L	15		<0.843
2,3,4,7,8-Penta CDF **	pg/L	15		<0.715
1,2,3,4,7,8-Hexa CDF **	pg/L	15		<0.384
1,2,3,6,7,8-Hexa CDF **	pg/L	15		<0.332
2,3,4,6,7,8-Hexa CDF **	pg/L	15		<0.349
1,2,3,7,8,9-Hexa CDF **	pg/L	15		<0.371
1,2,3,4,6,7,8-Hepta CDF **	pg/L	15		<0.313
1,2,3,4,7,8,9-Hepta CDF **	pg/L	15		<0.349
Octa CDF **	pg/L	15		<0.982
Total Tetra CDF **	pg/L	15		<0.671
Total Penta CDF **	pg/L	15		<0.775
Total Hexa CDF **	pg/L	15		<0.358
Total Hepta CDF **	pg/L	15		<0.330

		Ontario Drinking Water	Aesthetic Objective or Operational	PW21-1
	UNITS	Standard	Guideline	2021-09-03 10:00
Microbiological				
Heterotrophic plate count	CFU/mL	-	-	0
Background	CFU/100mL	-	-	0
Total Coliforms	CFU/100mL	0	-	0
Escherichia coli	CFU/100mL	0	-	0

Notes

-	No units
pg/L	picograms per litre
ug/L	micrograms per litre
mg/L	milligrams per litre
me/L	milliequilvants per litre
umho/cm	micro mho per litre
NTU	Nephelometric turbidity units
red highlight	Ontario Drinking Water Standard, Objective or Guideline Exceedance

Hyperion Research Ltd.

008 Allowance Ave. SE, Medicine Hat, AB T1A 3G8 Telephone (888) 529-0847 Fax (403) 5290852 hyperion@telusplanet.net

To:	Paul Menkveld	Sample Date: 02-Se	p-21	Project #:	CX21479897
	Golder Associates	Sample Type:	Raw	Upload to DB?:	
	210 Sheldon Drive	LIMS:		Field pH:	7.58
	Cambridge ON	Volume Filtered (L):	389	Field Temp °C:	9.7
	N1T 1A8	Rec'd within 96h?:	yes	Field Turb (NTU)
	519 620-8182	Temp on arrival <20 °C?:	yes	Location: PW21	-1
Pau	ıl_Menkveld@golder.com	Conductivity (uS/cm):	779		

The methodology used to produce this report conforms to USEPA Method 1623 and/or the USEPA Consensus Method for the Microscopic Particulate Analysis. Based on the validation data, the method is fit for its intended use Hyperion Research Ltd. is accredited for this analysis by CALA under the ISO/IEC 17025 standard.

	Raw I	Data	
Primary Particulates	Total Count	#/380L (100 US gal)	Relative Risk Factor
Diatoms	0	0.0	0
Other Algae	0	0.0	0
Insect/larvae	0	0.0	0
Rotifers	0	0.0	0
Plant Debris	0	0.0	0
Giardia/Crypto	0	0.0	0

Sum of Relative Risk Factors =

Risk of Surface W			
0 to 9 10 to 19 20+	Low H Mode High I	rate Risk	
Secondary Particulates	Total Count	#/380L (100 US g	al)
Nematodes	0	0.0	These particulates are
Pollen	0	0.0	sometimes found in
Crustacea	0	0.0	groundwater and are not considered to add
Unknown	0	0.0	risk

Minerals Observed: silica, clay, iron, other carbonate minerals

Giardia cysts/100L 0 Cryptosporidium oocysts/100L 0

Spore Count Surface Water CFU/L:

Spore Count Well Water CFU/L:

Surface water contained a variety of diatoms, blue green algae and other photosynthetic pigment bearing organisms. Rotifers also

Analyst:

Peter M. Wallis, Ph.D.

Conclusion: Based on this sample, the risk of surface water contamination is judged to be: Low

Processing Data Date/Time Rec'd: 03-Sep-21 12:22:00 PM Sample Temp: 14 Lab ID: 61550 Filter Type Filta-Max Date/Time Conc: 03-Sep-21 1:30:00 PM Eluted By CW IMS System Dynabeads IMS Lot No: 01039465 Pellet Vol (mL): 0.2 Resusp Vol (uL): 100.0 MAb Conjugate: EasyStainCY3 MAb Lot No: C104G203 Control G: 4 Control C: 4 Date/Time Stained: 07-Sep-21 11:30:00 AM Stained By: CW

Read By: PW Vol Used (uL): 100.0 Sample Equivalent Vol (L) 389

Recovery efficiencies for particles are known to be low by the Consensus method. Minimum recovery was measured to be 6.5 + / -1.2% for Giardia cysts, 0.5 + / -0.2% for Cryptosporidium oocysts and 4.2+/2.3% for Euglena (algae). The average recovery using the MPA-1623 Method is 69.0+/-6.9 for Giardia, 62.7+/-2.9 for Cryptosporidium and 23.1+/-6.5% for Diatoms.

Comments:

2700

0

0

observed.

Your Project #: 21456909 Your C.O.C. #: 842982-01-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/09/07 Report #: R6799650 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C109389 Received: 2021/08/31, 15:39

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2021/09/02	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2021/09/03	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	1	N/A	2021/09/01	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2021/09/02	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/09/02	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2021/09/03	CAM SOP 00102/00408/00447	SM 2340 B
Metals Analysis by ICPMS (as received) (2)	1	N/A	2021/09/02	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2021/09/03		
Anion and Cation Sum	1	N/A	2021/09/03		
Total Coliforms/ E. coli, CFU/100mL	1	N/A	2021/08/31	CAM SOP-00551	MOE E3407
Total Ammonia-N	1	N/A	2021/09/03	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (3)	1	N/A	2021/09/04	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2021/09/01	2021/09/02	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2021/09/01	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2021/09/03		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2021/09/03		Auto Calc
Sulphate by Automated Colourimetry	1	N/A	2021/09/01	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	1	N/A	2021/09/03		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21456909 Your C.O.C. #: 842982-01-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/09/07 Report #: R6799650 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C109389

Received: 2021/08/31, 15:39

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Metals analysis was performed on the sample 'as received'.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: emese.gitej@bureauveritas.com Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BV Labs ID		QNK225		
Sampling Date		2021/08/31 11:00		
COC Number		842982-01-01		
	UNITS	PW21-1-1H	RDL	QC Batch
Calculated Parameters				
Anion Sum	me/L	7.86	N/A	7551574
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	180	1.0	7551572
Calculated TDS	mg/L	480	1.0	7551581
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.7	1.0	7551572
Cation Sum	me/L	8.57	N/A	7551574
Hardness (CaCO3)	mg/L	360	1.0	7551575
Ion Balance (% Difference)	%	4.29	N/A	7551573
Langelier Index (@ 20C)	N/A	0.758		7551576
Langelier Index (@ 4C)	N/A	0.510		7551577
Saturation pH (@ 20C)	N/A	7.25		7551576
Saturation pH (@ 4C)	N/A	7.50		7551577
Inorganics		I	1	
Total Ammonia-N	mg/L	0.18	0.050	7556775
Conductivity	umho/cm	720	1.0	7554995
Dissolved Organic Carbon	mg/L	0.49	0.40	7554317
Orthophosphate (P)	mg/L	<0.010	0.010	7553950
рН	рН	8.00		7554984
Dissolved Sulphate (SO4)	mg/L	190	1.0	7553936
Alkalinity (Total as CaCO3)	mg/L	180	1.0	7554993
Dissolved Chloride (Cl-)	mg/L	8.5	1.0	7553932
Nitrite (N)	mg/L	<0.010	0.010	7554359
Nitrate (N)	mg/L	<0.10	0.10	7554359
Metals	•			
Aluminum (Al)	ug/L	350	4.9	7554226
Antimony (Sb)	ug/L	<0.50	0.50	7554226
Arsenic (As)	ug/L	1.8	1.0	7554226
Barium (Ba)	ug/L	24	2.0	7554226
Beryllium (Be)	ug/L	<0.40	0.40	7554226
Boron (B)	ug/L	70	10	7554226
Cadmium (Cd)	ug/L	<0.090	0.090	7554226
Calcium (Ca)	ug/L	89000	200	7554226
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable				

RCAP - COMPREHENSIVE (DRINKING WATER)

BV Labs ID		QNK225		
Sampling Date		2021/08/31		
		11:00		
COC Number		842982-01-01		
	UNITS	PW21-1-1H	RDL	QC Batch
Chromium (Cr)	ug/L	<5.0	5.0	7554226
Cobalt (Co)	ug/L	<0.50	0.50	7554226
Copper (Cu)	ug/L	6.0	0.90	7554226
lron (Fe)	ug/L	610	100	7554226
Lead (Pb)	ug/L	2.7	0.50	7554226
Lithium (Li)	ug/L	5.8	5.0	7554226
Magnesium (Mg)	ug/L	33000	50	7554226
Manganese (Mn)	ug/L	58	2.0	7554226
Molybdenum (Mo)	ug/L	2.7	0.50	7554226
Nickel (Ni)	ug/L	1.1	1.0	7554226
Phosphorus (P)	ug/L	<100	100	7554226
Potassium (K)	ug/L	1200	200	7554226
Selenium (Se)	ug/L	<2.0	2.0	7554226
Silicon (Si)	ug/L	6400	50	7554226
Silver (Ag)	ug/L	<0.090	0.090	7554226
Sodium (Na)	ug/L	29000	100	7554226
Strontium (Sr)	ug/L	3500	1.0	7554226
Thallium (Tl)	ug/L	<0.050	0.050	7554226
Titanium (Ti)	ug/L	9.6	5.0	7554226
Uranium (U)	ug/L	0.21	0.10	7554226
Vanadium (V)	ug/L	0.79	0.50	7554226
Zinc (Zn)	ug/L	8.0	5.0	7554226
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

RCAP - COMPREHENSIVE (DRINKING WATER)

Page 4 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

MICROBIOLOGY (WATER)

BV Labs ID		QNK225	
Sampling Date		2021/08/31	
		11:00	
COC Number		842982-01-01	
	UNITS	PW21-1-1H	QC Batch
Microbiological			
Background	CFU/100mL	0	7552730
Total Coliforms	CFU/100mL	0	7552730
Escherichia coli	CFU/100mL	0	7552730

Page 5 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

BV Labs ID:	QNK225
Sample ID:	PW21-1-1H
Matrix:	Water

Collected: Shipped:	2021/08/31
Received:	2021/08/31

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7554993	N/A	2021/09/02	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7551572	N/A	2021/09/03	Automated Statchk
Chloride by Automated Colourimetry	KONE	7553932	N/A	2021/09/01	Alina Dobreanu
Conductivity	AT	7554995	N/A	2021/09/02	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7554317	N/A	2021/09/02	Julianna Castiglione
Hardness (calculated as CaCO3)		7551575	N/A	2021/09/03	Automated Statchk
Metals Analysis by ICPMS (as received)	ICP/MS	7554226	N/A	2021/09/02	Arefa Dabhad
Ion Balance (% Difference)	CALC	7551573	N/A	2021/09/03	Automated Statchk
Anion and Cation Sum	CALC	7551574	N/A	2021/09/03	Automated Statchk
Total Coliforms/ E. coli, CFU/100mL	PL	7552730	N/A	2021/08/31	Soham Patel
Total Ammonia-N	LACH/NH4	7556775	N/A	2021/09/03	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7554359	N/A	2021/09/04	Nimarta Singh
рН	AT	7554984	2021/09/01	2021/09/02	Surinder Rai
Orthophosphate	KONE	7553950	N/A	2021/09/01	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7551576	N/A	2021/09/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7551577	N/A	2021/09/03	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7553936	N/A	2021/09/01	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	7551581	N/A	2021/09/03	Automated Statchk

GENERAL COMMENTS

Each t	Each temperature is the average of up to three cooler temperatures taken at receipt						
	Package 1	8.3°C					
	-	-					
Result	s relate only to the i	tems tested.					

Page 7 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PGM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7553932	Dissolved Chloride (Cl-)	2021/09/01	125 (1)	80 - 120	106	80 - 120	<1.0	mg/L	17	20
7553936	Dissolved Sulphate (SO4)	2021/09/01	103	75 - 125	107	80 - 120	<1.0	mg/L	NC	20
7553950	Orthophosphate (P)	2021/09/01	116	75 - 125	98	80 - 120	<0.010	mg/L	NC	25
7554226	Aluminum (Al)	2021/09/02	99	80 - 120	105	80 - 120	<4.9	ug/L	0.91	20
7554226	Antimony (Sb)	2021/09/02	100	80 - 120	101	80 - 120	<0.50	ug/L	NC	20
7554226	Arsenic (As)	2021/09/02	95	80 - 120	98	80 - 120	<1.0	ug/L	NC	20
7554226	Barium (Ba)	2021/09/02	98	80 - 120	98	80 - 120	<2.0	ug/L	0.63	20
7554226	Beryllium (Be)	2021/09/02	92	80 - 120	98	80 - 120	<0.40	ug/L	NC	20
7554226	Boron (B)	2021/09/02	92	80 - 120	93	80 - 120	<10	ug/L	1.4	20
7554226	Cadmium (Cd)	2021/09/02	100	80 - 120	101	80 - 120	<0.090	ug/L	NC	20
7554226	Calcium (Ca)	2021/09/02	NC	80 - 120	101	80 - 120	<200	ug/L	1.6	20
7554226	Chromium (Cr)	2021/09/02	91	80 - 120	96	80 - 120	<5.0	ug/L	NC	20
7554226	Cobalt (Co)	2021/09/02	96	80 - 120	96	80 - 120	<0.50	ug/L	NC	20
7554226	Copper (Cu)	2021/09/02	95	80 - 120	100	80 - 120	<0.90	ug/L	1.1	20
7554226	Iron (Fe)	2021/09/02	98	80 - 120	100	80 - 120	<100	ug/L	NC	20
7554226	Lead (Pb)	2021/09/02	93	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
7554226	Lithium (Li)	2021/09/02	101	80 - 120	105	80 - 120	<5.0	ug/L	NC	20
7554226	Magnesium (Mg)	2021/09/02	93	80 - 120	101	80 - 120	<50	ug/L	1.3	20
7554226	Manganese (Mn)	2021/09/02	95	80 - 120	98	80 - 120	<2.0	ug/L	NC	20
7554226	Molybdenum (Mo)	2021/09/02	96	80 - 120	96	80 - 120	<0.50	ug/L	4.2	20
7554226	Nickel (Ni)	2021/09/02	91	80 - 120	96	80 - 120	<1.0	ug/L	NC	20
7554226	Phosphorus (P)	2021/09/02	NC	80 - 120	105	80 - 120	<100	ug/L	0.12	20
7554226	Potassium (K)	2021/09/02	98	80 - 120	102	80 - 120	<200	ug/L	0.59	20
7554226	Selenium (Se)	2021/09/02	99	80 - 120	101	80 - 120	<2.0	ug/L	NC	20
7554226	Silicon (Si)	2021/09/02	100	80 - 120	104	80 - 120	<50	ug/L	0.68	20
7554226	Silver (Ag)	2021/09/02	97	80 - 120	97	80 - 120	<0.090	ug/L	NC	20
7554226	Sodium (Na)	2021/09/02	96	80 - 120	104	80 - 120	<100	ug/L	2.5	20
7554226	Strontium (Sr)	2021/09/02	92	80 - 120	98	80 - 120	<1.0	ug/L	0.56	20
7554226	Thallium (TI)	2021/09/02	97	80 - 120	99	80 - 120	<0.050	ug/L	NC	20
7554226	Titanium (Ti)	2021/09/02	96	80 - 120	99	80 - 120	<5.0	ug/L	NC	20
7554226	Uranium (U)	2021/09/02	99	80 - 120	101	80 - 120	<0.10	ug/L	8.9	20

Page 8 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PGM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7554226	Vanadium (V)	2021/09/02	91	80 - 120	93	80 - 120	<0.50	ug/L	NC	20
7554226	Zinc (Zn)	2021/09/02	93	80 - 120	98	80 - 120	<5.0	ug/L	0.33	20
7554317	Dissolved Organic Carbon	2021/09/01	96	80 - 120	97	80 - 120	<0.40	mg/L	3.2	20
7554359	Nitrate (N)	2021/09/04	103	80 - 120	99	80 - 120	<0.10	mg/L	NC	20
7554359	Nitrite (N)	2021/09/04	108	80 - 120	101	80 - 120	<0.010	mg/L	0	20
7554984	рН	2021/09/02			102	98 - 103			0.71	N/A
7554993	Alkalinity (Total as CaCO3)	2021/09/02			95	85 - 115	<1.0	mg/L	2.2	20
7554995	Conductivity	2021/09/02			99	85 - 115	<1.0	umho/cm	0.99	25
7556775	Total Ammonia-N	2021/09/03	98	75 - 125	100	80 - 120	<0.050	mg/L	NC	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Page 9 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Scham N Patel

Soham Patel, Analyst 2

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Page 10 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

INVOICE TO:			REPORT TO:						PROJECT INFORMATION:						Laboratory Use Only:							
ompany Name	#21375 Golder Accounts Payat			Compan	0						Quotation	#.	B8068	13				BV Labs Job #:			1	Bottle Order #
ention: dress:	210 Sheldon Dr			Attention		gory Padusenk	0				P.O. #.		21456	000			_					
101033.	Cambridge ON			Address				-			Project Na		21400	909			-		COC #:	-		842982 roject Manage
6	(519) 620-8182	1 667		Tet:	(519) 620-8182 Ex	: 6509 Fax	(519)	620-987	78	Site #:	ane.	4								+ "	
ait		tsPayableInvoices@g		Email:	Gre	Gregory_Padusenko@golder.com				Sampled By:	PG	PGM					C#842982-01-01			Erna Gitej		
MOE RE	SUBMITTER	NG WATER OR WATE	R INTENDED F	OR HUMAN C	ONSUMPTIC	ON MUST BE		-	1	ANA	LYSIS RE	QUESTED	(PLEASE BI	E SPECIFIC)		_	-		nd Time (TAT)		
Paquiat	ion 153 (2011)	and the second se	Other Regulations			al Instructions	circle):	1.5	Ę								Reg	gular (Si	Please provide andard) TAT:	advance notice	tor rush pro	ojects
_	Res/Park Medi		Sanitary Sewer		Speci	< circ		CFU/100ml								(weilt	be applied	t it Rush TAT is not a				
able 2	Ind/Comm Coan	se Reg 558.	Storm Sewer By			Field Fittered (please													= 5-7 Working days			
able 3	Agri/Other For F	Contraction of the second seco	Municipality				Id) p	ensiv	coll								days	s - contact	tandard TAT for cert your Project Manage	un tests such as or for details.	BOD and D	(oxins/Furans a
		PWQ0 Other	Reg 406 Table				Itere als /	preh	ms/ E										Rush TAT (if appli			-
	Include Criter	-	-Lucia Orano				Met	Com	Colifor									a Required	ation Number		Time Require	Hd;
Samp	e Barcode Label	Sample (Location) Id		Date Sampled	Time Sampl	ed Matrix	- Le	RCAp -	otal C				_				(ca)		(call lab for			
					1		-	e l	1		-	-	-				-	1			nments	
		PW21-1-	IN	21/08/31	11:0	OGW		X	X									5	metals	15	Vec	areund "
								-							-		-	-				
					-										_	- 1						
		-			-	-	-	-	-		-		-	-	_	-	_					
L																						
											1		-	-	-							
		-4					0			_						-						
		1.7	1		1						1											
		<u> </u>			-	-													()			
		3	1-Aug-21	15:39														100				
-		Ema G	itej	22.		-	-	-	-		-				-	-	-	-	RE	C'D IN	WATE	RLOO
		C1		111						B	AT	CI	0									
			09389		_								ť									
-		Dec	ENT 020		-	_			1.1	· · ·	R grass											
	RELINQUISHED BY: (Signature/Print)	Date: (YY/M	M/DD) T	ime	RECEIVE	BY: (Signatuş	Price	5	Date: (YY/N			me	# jars us	t bracho			Laboret	ory Use Only			
1 1	what / Paul	1 AA CAKUCH		and the second second		28DI set	Caul	S	1=		200/21		\$ 9.	not sub		Time Sensit	line 1			Custody S	Seal	Yes
	- up / res	///////////////////////////////////////			Vo		eer 14	n	w/2	onla	Tah	17:			-			2 8	(e (°C) on Recei	Presen	nt	
ESS OTHER	WISE AGREED TO IN W	RITING, WORK SUBMITTED	D ON THIS CHAIN O	F CUSTODY IS SU	BJECT TO BY	ABS' STANDARD T	ERMS AND CON	DITIONS. S	IGNING OF	THIS CHAIN	OF CUST	DOY DOCUM	MENT IS				11	410			: BV Labs	Yello

Your Project #: 21456909 Your C.O.C. #: 842982-02-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/09/08 Report #: R6801679 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P0721 Received: 2021/09/01, 12:47

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2021/09/02	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2021/09/03	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	1	N/A	2021/09/03	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2021/09/02	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/09/04	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2021/09/08	CAM SOP	SM 2340 B
				00102/00408/00447	
Metals Analysis by ICPMS (as received) (2)	1	N/A	2021/09/07	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2021/09/08		
Anion and Cation Sum	1	N/A	2021/09/08		
Total Coliforms/ E. coli, CFU/100mL	1	N/A	2021/09/01	CAM SOP-00551	MOE E3407
Total Ammonia-N	1	N/A	2021/09/07	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (3)	1	N/A	2021/09/07	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2021/09/02	2021/09/02	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2021/09/07	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2021/09/08		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2021/09/08		Auto Calc
Sulphate by Automated Colourimetry	1	N/A	2021/09/03	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	1	N/A	2021/09/08		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21456909 Your C.O.C. #: 842982-02-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/09/08 Report #: R6801679 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P0721

Received: 2021/09/01, 12:47

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Metals analysis was performed on the sample 'as received'.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: emese.gitej@bureauveritas.com Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BV Labs ID		QNR201		
Sampling Data		2021/09/01		
Sampling Date		10:00		
COC Number		842982-02-01		
	UNITS	PW21-1-24H	RDL	QC Batch
Calculated Parameters				
Anion Sum	me/L	8.58	N/A	7554531
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	180	1.0	7554527
Calculated TDS	mg/L	510	1.0	7554151
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.4	1.0	7554527
Cation Sum	me/L	8.39	N/A	7554531
Hardness (CaCO3)	mg/L	360	1.0	7553628
Ion Balance (% Difference)	%	1.10	N/A	7554530
Langelier Index (@ 20C)	N/A	0.654		7554532
Langelier Index (@ 4C)	N/A	0.406		7554533
Saturation pH (@ 20C)	N/A	7.27		7554532
Saturation pH (@ 4C)	N/A	7.52		7554533
Inorganics	•	•		
Total Ammonia-N	mg/L	0.19	0.050	7559941
Conductivity	umho/cm	770	1.0	7556506
Dissolved Organic Carbon	mg/L	<0.40	0.40	7557669
Orthophosphate (P)	mg/L	<0.010	0.010	7557512
рН	рН	7.93		7556498
Dissolved Sulphate (SO4)	mg/L	220	1.0	7557509
Alkalinity (Total as CaCO3)	mg/L	180	1.0	7556503
Dissolved Chloride (Cl-)	mg/L	9.1	1.0	7557483
Nitrite (N)	mg/L	<0.010	0.010	7556524
Nitrate (N)	mg/L	<0.10	0.10	7556524
Metals		•		
Aluminum (Al)	ug/L	77	4.9	7556622
Antimony (Sb)	ug/L	<0.50	0.50	7556622
Arsenic (As)	ug/L	1.4	1.0	7556622
Barium (Ba)	ug/L	21	2.0	7556622
Beryllium (Be)	ug/L	<0.40	0.40	7556622
Boron (B)	ug/L	71	10	7556622
Cadmium (Cd)	ug/L	<0.090	0.090	7556622
Calcium (Ca)	ug/L	86000	200	7556622
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
N/A = Not Applicable				

RCAP - COMPREHENSIVE (DRINKING WATER)

BV Labs ID		QNR201		
Sampling Date		2021/09/01 10:00		
COC Number		842982-02-01		
	UNITS	PW21-1-24H	RDL	QC Batch
Chromium (Cr)	ug/L	<5.0	5.0	7556622
Cobalt (Co)	ug/L	<0.50	0.50	7556622
Copper (Cu)	ug/L	0.92	0.90	7556622
Iron (Fe)	ug/L	240	100	7556622
Lead (Pb)	ug/L	0.67	0.50	7556622
Lithium (Li)	ug/L	5.8	5.0	7556622
Magnesium (Mg)	ug/L	34000	50	7556622
Manganese (Mn)	ug/L	25	2.0	7556622
Molybdenum (Mo)	ug/L	3.1	0.50	7556622
Nickel (Ni)	ug/L	<1.0	1.0	7556622
Phosphorus (P)	ug/L	<100	100	7556622
Potassium (K)	ug/L	1100	200	7556622
Selenium (Se)	ug/L	<2.0	2.0	7556622
Silicon (Si)	ug/L	5900	50	7556622
Silver (Ag)	ug/L	<0.090	0.090	7556622
Sodium (Na)	ug/L	28000	100	7556622
Strontium (Sr)	ug/L	3600	1.0	7556622
Thallium (Tl)	ug/L	<0.050	0.050	7556622
Titanium (Ti)	ug/L	<5.0	5.0	7556622
Uranium (U)	ug/L	0.17	0.10	7556622
Vanadium (V)	ug/L	<0.50	0.50	7556622
Zinc (Zn)	ug/L	<5.0	5.0	7556622
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

RCAP - COMPREHENSIVE (DRINKING WATER)

Page 4 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

MICROBIOLOGY (WATER)

BV Labs ID		QNR201	
Sampling Date		2021/09/01	
		10:00	
COC Number		842982-02-01	
	UNITS	PW21-1-24H	QC Batch
Microbiological			
Background	CFU/100mL	0	7555081
Total Coliforms	CFU/100mL	0	7555081
Total Coliforms Escherichia coli	CFU/100mL CFU/100mL	0	7555081 7555081

Page 5 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

BV Labs ID:	QNR201
Sample ID:	PW21-1-24H
Matrix:	Water

Collected:	2021/09/01
Shipped: Received:	2021/09/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7556503	N/A	2021/09/02	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7554527	N/A	2021/09/03	Automated Statchk
Chloride by Automated Colourimetry	KONE	7557483	N/A	2021/09/03	Alina Dobreanu
Conductivity	AT	7556506	N/A	2021/09/02	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7557669	N/A	2021/09/04	Nimarta Singh
Hardness (calculated as CaCO3)		7553628	N/A	2021/09/08	Automated Statchk
Metals Analysis by ICPMS (as received)	ICP/MS	7556622	N/A	2021/09/07	Nan Raykha
Ion Balance (% Difference)	CALC	7554530	N/A	2021/09/08	Automated Statchk
Anion and Cation Sum	CALC	7554531	N/A	2021/09/08	Automated Statchk
Total Coliforms/ E. coli, CFU/100mL	PL	7555081	N/A	2021/09/01	Soham Patel
Total Ammonia-N	LACH/NH4	7559941	N/A	2021/09/07	Viorica Rotaru
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7556524	N/A	2021/09/07	Chandra Nandlal
рН	AT	7556498	2021/09/02	2021/09/02	Surinder Rai
Orthophosphate	KONE	7557512	N/A	2021/09/07	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7554532	N/A	2021/09/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7554533	N/A	2021/09/08	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7557509	N/A	2021/09/03	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	7554151	N/A	2021/09/08	Automated Statchk

GENERAL COMMENTS

Each temperature is the	average of up to t	hree cooler temperatures taken at receipt
Package 1	15.0°C]
-		_
Results relate only to the	e items tested.	

Page 7 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PGM

			Matrix	Matrix Spike SPIKED BLANK		BLANK	Method I	Method Blank		D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7556498	рН	2021/09/02			102	98 - 103			0.16	N/A
7556503	Alkalinity (Total as CaCO3)	2021/09/02			97	85 - 115	<1.0	mg/L	1.3	20
7556506	Conductivity	2021/09/02			99	85 - 115	<1.0	umho/cm	0.27	25
7556524	Nitrate (N)	2021/09/07	97	80 - 120	100	80 - 120	<0.10	mg/L	NC	20
7556524	Nitrite (N)	2021/09/07	102	80 - 120	102	80 - 120	<0.010	mg/L	NC	20
7556622	Aluminum (Al)	2021/09/07	105	80 - 120	104	80 - 120	<4.9	ug/L	1.9	20
7556622	Antimony (Sb)	2021/09/07	103	80 - 120	103	80 - 120	<0.50	ug/L	NC	20
7556622	Arsenic (As)	2021/09/07	100	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
7556622	Barium (Ba)	2021/09/07	102	80 - 120	100	80 - 120	<2.0	ug/L	1.7	20
7556622	Beryllium (Be)	2021/09/07	101	80 - 120	99	80 - 120	<0.40	ug/L	NC	20
7556622	Boron (B)	2021/09/07	NC	80 - 120	99	80 - 120	<10	ug/L	5.5	20
7556622	Cadmium (Cd)	2021/09/07	99	80 - 120	99	80 - 120	<0.090	ug/L	NC	20
7556622	Calcium (Ca)	2021/09/07	100	80 - 120	98	80 - 120	<200	ug/L	0.79	20
7556622	Chromium (Cr)	2021/09/07	99	80 - 120	101	80 - 120	<5.0	ug/L	NC	20
7556622	Cobalt (Co)	2021/09/07	99	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
7556622	Copper (Cu)	2021/09/07	100	80 - 120	100	80 - 120	<0.90	ug/L	1.4	20
7556622	Iron (Fe)	2021/09/07	99	80 - 120	100	80 - 120	<100	ug/L	NC	20
7556622	Lead (Pb)	2021/09/07	99	80 - 120	98	80 - 120	<0.50	ug/L	1.6	20
7556622	Lithium (Li)	2021/09/07	102	80 - 120	102	80 - 120	<5.0	ug/L	1.2	20
7556622	Magnesium (Mg)	2021/09/07	96	80 - 120	102	80 - 120	<50	ug/L	0.17	20
7556622	Manganese (Mn)	2021/09/07	97	80 - 120	98	80 - 120	<2.0	ug/L	NC	20
7556622	Molybdenum (Mo)	2021/09/07	101	80 - 120	102	80 - 120	<0.50	ug/L	5.2	20
7556622	Nickel (Ni)	2021/09/07	97	80 - 120	97	80 - 120	<1.0	ug/L	2.3	20
7556622	Phosphorus (P)	2021/09/07	110	80 - 120	113	80 - 120	<100	ug/L	1.3	20
7556622	Potassium (K)	2021/09/07	100	80 - 120	101	80 - 120	<200	ug/L	0.42	20
7556622	Selenium (Se)	2021/09/07	99	80 - 120	99	80 - 120	<2.0	ug/L	NC	20
7556622	Silicon (Si)	2021/09/07	107	80 - 120	104	80 - 120	<50	ug/L	1.7	20
7556622	Silver (Ag)	2021/09/07	97	80 - 120	98	80 - 120	<0.090	ug/L	NC	20
7556622	Sodium (Na)	2021/09/07	98	80 - 120	100	80 - 120	<100	ug/L	0.71	20
7556622	Strontium (Sr)	2021/09/07	100	80 - 120	99	80 - 120	<1.0	ug/L	0.80	20
7556622	Thallium (TI)	2021/09/07	98	80 - 120	97	80 - 120	<0.050	ug/L	NC	20

Page 8 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PGM

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7556622	Titanium (Ti)	2021/09/07	103	80 - 120	100	80 - 120	<5.0	ug/L	NC	20
7556622	Uranium (U)	2021/09/07	100	80 - 120	100	80 - 120	<0.10	ug/L	5.8	20
7556622	Vanadium (V)	2021/09/07	97	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
7556622	Zinc (Zn)	2021/09/07	98	80 - 120	97	80 - 120	<5.0	ug/L	4.6	20
7557483	Dissolved Chloride (Cl-)	2021/09/03	123 (1)	80 - 120	107	80 - 120	<1.0	mg/L	9.2	20
7557509	Dissolved Sulphate (SO4)	2021/09/03	128 (1)	75 - 125	99	80 - 120	<1.0	mg/L	NC	20
7557512	Orthophosphate (P)	2021/09/07	126 (1)	75 - 125	100	80 - 120	<0.010	mg/L	NC	25
7557669	Dissolved Organic Carbon	2021/09/04	92	80 - 120	96	80 - 120	<0.40	mg/L	0.35	20
7559941	Total Ammonia-N	2021/09/07	99	75 - 125	100	80 - 120	<0.050	mg/L	NC	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Page 9 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Scham N Patel

Soham Patel, Analyst 2

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Page 10 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

1	10100	INVOICE TO:				REPO	RT TO:					PROJE	ECT INFORM	ATION:	1		Laboratory Use (Only:
nec		er Associates Ltd		Company						Que	tation #	B80	683				BV Labs Job #:	Bottle Order #:
lion	Accounts Paya 210 Sheldon D			Attention	Gregor	y Padusenko	_	_		P.0	#					_		
55	Cambridge ON			Address	-					Pro		214	56909			-	COC #:	842982 Project Manager:
	(519) 620-818	2 Fax		Tel		20-8182 Ext:			620-987	8 Site	act Name.	_				LUU		Ema Gitei
5	and the second	ntsPayableInvoice	and the second se	Email,		y_Padusenko	@golder.co	m			pled By:		GM		_		C#842982-02-01	Ema Gitej
NC	E REGULATED DRINK SUBMITTE	ING WATER OR W D ON THE BV LAB				MUST BE				ANALYS	IS REQUES	STED (PLEASE	BE SPECIF	IC)		-	Turnaround Time (TAT) R Please provide advance notice fo	
	equiation 153 (2011)		Other Regulatio			structions	circle)		THE		-		1 1				Standard) TAT:	
ble	1 Res/Park Med		Sanitary Sev	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	opseran	- *	aase cir Cr VI		CFU/100		1						ied if Rush TAT is not specified): AT = 5-7 Working days for most tests.	
ble	2 Ind/Comm Coa 3 Agri/Other For			r Bylaw			Field Filtered (please Metals / Hg / Cr /	ann	oli, CF							Please note	Standard TAT for certain tests such as Bi ct your Project Manager for details	DD and Diaxins/Furans are > 5
ble		RSC MISA	Municipality Reg 406 Ta	able			d Filtered (ple Metals / Hg /	ehens	UE D								fic Rush TAT (if applies to entire subm	ission
		Other					Filte	ampo	forms							Date Require	ed:Tim	e Required:
_	the second s	eria on Certificate o	te la la la la la la la			1	Field	Ap - C	al Cot								1	all fab for #)
-	Sample Barcode Label	-	ion) Identification	Date Sampled	Time Sampled	Matrix	-	RC	fot		-					# of Bottles	Comme	
		PW21-	1-24h	21/09/01	10:00	GW		X	X							5	metals as ne	cieved
1		11.0					-						1				1	
1																		
								REC	DIN	WATERI	00							
															(01-Seb-7		
-				-				-							Ema	Gitej	1111111	
															NULLING	1P072	1	
	Å															ENT	670	
	1. C																84 Ice	packs
7	· RELINQUISHED BY:	(Signature/Print)	Date: (YY			RECEIVED E	Y: (Signature	(Print)	20	ate: (YY/MM/D	-	Time		ised and bmitted			atory Use Only	T F
2	mann / F	rul Mer	Kueld 21/0	9/41 12:	45 70	spreet	fan	130	-	201109	01	2:47	_		Time Sensitive	tempera	ture (°C) on Recei Custody Se Present	al Yes No
5	12	WRITING, WORK SUBMI			An	& DIP	AA S	NGL	9	62169	01 1.	5-58			100	-14	IS 16 Intact	

,

<

Your Project #: 21456909 Your C.O.C. #: 842982-03-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/09/09 Report #: R6803629 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P4142 Received: 2021/09/03, 13:54

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2021/09/07	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2021/09/08	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	1	N/A	2021/09/07	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2021/09/07	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/09/08	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2021/09/08	CAM SOP	SM 2340 B
				00102/00408/00447	
Metals Analysis by ICPMS (as received) (2)	1	N/A	2021/09/08	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2021/09/08		
Anion and Cation Sum	1	N/A	2021/09/08		
Total Coliforms/ E. coli, CFU/100mL	1	N/A	2021/09/03	CAM SOP-00551	MOE E3407
Total Ammonia-N	1	N/A	2021/09/09	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (3)	1	N/A	2021/09/07	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2021/09/04	2021/09/07	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2021/09/07	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2021/09/08		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2021/09/08		Auto Calc
Sulphate by Automated Colourimetry	1	N/A	2021/09/07	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	1	N/A	2021/09/08		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21456909 Your C.O.C. #: 842982-03-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/09/09 Report #: R6803629 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P4142

Received: 2021/09/03, 13:54

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Metals analysis was performed on the sample 'as received'.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: emese.gitej@bureauveritas.com Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BV Labs ID		QOI301		
Sampling Date		2021/09/03		
		10:15		
COC Number		842982-03-01		
	UNITS	PW21-1-72H	RDL	QC Batch
Calculated Parameters				
Anion Sum	me/L	9.13	N/A	7559095
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	180	1.0	7559092
Calculated TDS	mg/L	540	1.0	7559099
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.2	1.0	7559092
Cation Sum	me/L	8.82	N/A	7559095
Hardness (CaCO3)	mg/L	380	1.0	7558603
Ion Balance (% Difference)	%	1.75	N/A	7559094
Langelier Index (@ 20C)	N/A	0.883		7559096
Langelier Index (@ 4C)	N/A	0.635		7559098
Saturation pH (@ 20C)	N/A	7.23		7559096
Saturation pH (@ 4C)	N/A	7.48		7559098
Inorganics				
Total Ammonia-N	mg/L	0.21	0.050	7564734
Conductivity	umho/cm	790	1.0	7560958
Dissolved Organic Carbon	mg/L	0.49	0.40	7562606
Orthophosphate (P)	mg/L	<0.010	0.010	7561002
pН	рН	8.12		7560957
Dissolved Sulphate (SO4)	mg/L	250	1.0	7561000
Alkalinity (Total as CaCO3)	mg/L	180	1.0	7560955
Dissolved Chloride (Cl-)	mg/L	10	1.0	7560992
Nitrite (N)	mg/L	<0.010	0.010	7560968
Nitrate (N)	mg/L	<0.10	0.10	7560968
Metals				
Aluminum (Al)	ug/L	<4.9	4.9	7563979
Antimony (Sb)	ug/L	<0.50	0.50	7563979
Arsenic (As)	ug/L	1.5	1.0	7563979
Barium (Ba)	ug/L	21	2.0	7563979
Beryllium (Be)	ug/L	<0.40	0.40	7563979
Boron (B)	ug/L	70	10	7563979
Cadmium (Cd)	ug/L	<0.090	0.090	7563979
Calcium (Ca)	ug/L	96000	200	7563979
RDL = Reportable Detection Limit			1	
QC Batch = Quality Control Batch				
N/A = Not Applicable				

RCAP - COMPREHENSIVE (DRINKING WATER)

BV Labs ID		Q0I301		
Sampling Date		2021/09/03		
		10:15		
COC Number		842982-03-01		
	UNITS	PW21-1-72H	RDL	QC Batch
Chromium (Cr)	ug/L	<5.0	5.0	7563979
Cobalt (Co)	ug/L	<0.50	0.50	7563979
Copper (Cu)	ug/L	<0.90	0.90	7563979
lron (Fe)	ug/L	120	100	7563979
Lead (Pb)	ug/L	<0.50	0.50	7563979
Lithium (Li)	ug/L	5.6	5.0	7563979
Magnesium (Mg)	ug/L	34000	50	7563979
Manganese (Mn)	ug/L	19	2.0	7563979
Molybdenum (Mo)	ug/L	3.2	0.50	7563979
Nickel (Ni)	ug/L	<1.0	1.0	7563979
Phosphorus (P)	ug/L	<100	100	7563979
Potassium (K)	ug/L	1100	200	7563979
Selenium (Se)	ug/L	<2.0	2.0	7563979
Silicon (Si)	ug/L	5800	50	7563979
Silver (Ag)	ug/L	<0.090	0.090	7563979
Sodium (Na)	ug/L	27000	100	7563979
Strontium (Sr)	ug/L	3800	1.0	7563979
Thallium (Tl)	ug/L	<0.050	0.050	7563979
Titanium (Ti)	ug/L	<5.0	5.0	7563979
Uranium (U)	ug/L	0.21	0.10	7563979
Vanadium (V)	ug/L	<0.50	0.50	7563979
Zinc (Zn)	ug/L	<5.0	5.0	7563979
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

RCAP - COMPREHENSIVE (DRINKING WATER)

Page 4 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

MICROBIOLOGY (WATER)

BV Labs ID		Q0I301								
Sampling Date		2021/09/03								
Samping Pate		10:15								
COC Number		842982-03-01								
	UNITS	PW21-1-72H	QC Batch							
Microbiological										
Background	CFU/100mL	0	7560239							
Total Coliforms	CFU/100mL	0	7560239							
Escherichia coli	CFU/100mL	0	7560239							
QC Batch = Quality Control Batch										

Page 5 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

BV Labs ID:	Q0I301
Sample ID:	PW21-1-72H
Matrix:	Water

Collected:	2021/09/03
Shipped: Received:	2021/09/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7560955	N/A	2021/09/07	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7559092	N/A	2021/09/08	Automated Statchk
Chloride by Automated Colourimetry	KONE	7560992	N/A	2021/09/07	Alina Dobreanu
Conductivity	AT	7560958	N/A	2021/09/07	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7562606	N/A	2021/09/08	Julianna Castiglione
Hardness (calculated as CaCO3)		7558603	N/A	2021/09/08	Automated Statchk
Metals Analysis by ICPMS (as received)	ICP/MS	7563979	N/A	2021/09/08	Arefa Dabhad
Ion Balance (% Difference)	CALC	7559094	N/A	2021/09/08	Automated Statchk
Anion and Cation Sum	CALC	7559095	N/A	2021/09/08	Automated Statchk
Total Coliforms/ E. coli, CFU/100mL	PL	7560239	N/A	2021/09/03	Soham Patel
Total Ammonia-N	LACH/NH4	7564734	N/A	2021/09/09	Viorica Rotaru
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7560968	N/A	2021/09/07	Chandra Nandlal
рН	AT	7560957	2021/09/04	2021/09/07	Yogesh Patel
Orthophosphate	KONE	7561002	N/A	2021/09/07	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7559096	N/A	2021/09/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7559098	N/A	2021/09/08	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7561000	N/A	2021/09/07	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7559099	N/A	2021/09/08	Automated Statchk

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	10.7°C
Package 2	15.0°C

Results relate only to the items tested.

Page 7 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PGM

			Matrix Spike SPIKE			BLANK	Method	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7560955	Alkalinity (Total as CaCO3)	2021/09/07			95	85 - 115	<1.0	mg/L	0.40	20
7560957	рН	2021/09/07			101	98 - 103			2.0	N/A
7560958	Conductivity	2021/09/07			100	85 - 115	<1.0	umho/cm	0.35	25
7560968	Nitrate (N)	2021/09/07	99	80 - 120	101	80 - 120	<0.10	mg/L	NC	20
7560968	Nitrite (N)	2021/09/07	104	80 - 120	103	80 - 120	<0.010	mg/L	NC	20
7560992	Dissolved Chloride (Cl-)	2021/09/07	104	80 - 120	103	80 - 120	<1.0	mg/L	4.7	20
7561000	Dissolved Sulphate (SO4)	2021/09/07	115	75 - 125	100	80 - 120	<1.0	mg/L	0.31	20
7561002	Orthophosphate (P)	2021/09/07	NC	75 - 125	100	80 - 120	<0.010	mg/L	13	25
7562606	Dissolved Organic Carbon	2021/09/08	80	80 - 120	96	80 - 120	<0.40	mg/L	0.84	20
7563979	Aluminum (Al)	2021/09/08	101	80 - 120	102	80 - 120	<4.9	ug/L		
7563979	Antimony (Sb)	2021/09/08	112	80 - 120	104	80 - 120	<0.50	ug/L		
7563979	Arsenic (As)	2021/09/08	98	80 - 120	101	80 - 120	<1.0	ug/L		
7563979	Barium (Ba)	2021/09/08	99	80 - 120	101	80 - 120	<2.0	ug/L		
7563979	Beryllium (Be)	2021/09/08	97	80 - 120	100	80 - 120	<0.40	ug/L		
7563979	Boron (B)	2021/09/08	88	80 - 120	94	80 - 120	<10	ug/L		
7563979	Cadmium (Cd)	2021/09/08	101	80 - 120	100	80 - 120	<0.090	ug/L		
7563979	Calcium (Ca)	2021/09/08	NC	80 - 120	103	80 - 120	<200	ug/L		
7563979	Chromium (Cr)	2021/09/08	93	80 - 120	97	80 - 120	<5.0	ug/L		
7563979	Cobalt (Co)	2021/09/08	96	80 - 120	100	80 - 120	<0.50	ug/L		
7563979	Copper (Cu)	2021/09/08	101	80 - 120	102	80 - 120	<0.90	ug/L		
7563979	Iron (Fe)	2021/09/08	94	80 - 120	99	80 - 120	<100	ug/L		
7563979	Lead (Pb)	2021/09/08	97	80 - 120	99	80 - 120	<0.50	ug/L	0.96	20
7563979	Lithium (Li)	2021/09/08	103	80 - 120	109	80 - 120	<5.0	ug/L		
7563979	Magnesium (Mg)	2021/09/08	92	80 - 120	100	80 - 120	<50	ug/L		
7563979	Manganese (Mn)	2021/09/08	95	80 - 120	100	80 - 120	<2.0	ug/L		
7563979	Molybdenum (Mo)	2021/09/08	101	80 - 120	99	80 - 120	<0.50	ug/L		
7563979	Nickel (Ni)	2021/09/08	94	80 - 120	98	80 - 120	<1.0	ug/L		
7563979	Phosphorus (P)	2021/09/08	99	80 - 120	104	80 - 120	<100	ug/L		
7563979	Potassium (K)	2021/09/08	100	80 - 120	101	80 - 120	<200	ug/L		
7563979	Selenium (Se)	2021/09/08	101	80 - 120	101	80 - 120	<2.0	ug/L		
7563979	Silicon (Si)	2021/09/08	103	80 - 120	104	80 - 120	<50	ug/L		

Page 8 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PGM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	5
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7563979	Silver (Ag)	2021/09/08	98	80 - 120	97	80 - 120	<0.090	ug/L		
7563979	Sodium (Na)	2021/09/08	94	80 - 120	98	80 - 120	<100	ug/L		
7563979	Strontium (Sr)	2021/09/08	94	80 - 120	101	80 - 120	<1.0	ug/L		
7563979	Thallium (Tl)	2021/09/08	100	80 - 120	99	80 - 120	<0.050	ug/L		
7563979	Titanium (Ti)	2021/09/08	98	80 - 120	100	80 - 120	<5.0	ug/L		
7563979	Uranium (U)	2021/09/08	100	80 - 120	96	80 - 120	<0.10	ug/L		
7563979	Vanadium (V)	2021/09/08	93	80 - 120	97	80 - 120	<0.50	ug/L		
7563979	Zinc (Zn)	2021/09/08	95	80 - 120	101	80 - 120	<5.0	ug/L		
7564734	Total Ammonia-N	2021/09/09	101	75 - 125	99	80 - 120	<0.050	mg/L	15	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Scham N Patel

Soham Patel, Analyst 2

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Page 10 of 11 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

		Bureau Veritas Labora 6740 Campobélio Roa	itories d. Mississauga, Ort	itario Canada LSN		2 5700 Toll-free.800	-563-6266 Fax	(905) 817	5777 www	bylabs.com							СНА	IN OF CU	STODY RECORD	Page (of /
		INVOICE TO:				REPO	RT TO:						PROJE	ECT INFOR	MATION:			1	Laboratory Use (Only:
ompany Nam		er Associates Ltd		Compa	ny Name.						Quotation	#	B80	683					BV Labs Job #:	Bottle Order #:
tention:	Accounts Paya	1212		- Attenti	Grego	ry Padusenko					P.O #									
ddress.	210 Sheldon D Cambridge ON	100.0		Addres	s						Project:		2145	56909						842982
əl)	(519) 620-8182		-	Tel	(519) (620-8182 Ext	6509 -	(510)	620.98	78	Project N	ame:	-			_	_	-	COC #:	Project Manager:
Tail	CanadaAccour	ntsPayableInvoices@	golder.com	- Email:	Grego	y_Padusenko	@golder.co	m	020 00		Site # Sampled	Bur	7	GR	1			- 101	C#842982-03-01	Ema Gitej
MOE R	EGULATED DRINK	NG WATER OR WATE	R INTENDED	FOR HUMAN	CONSUMPTION			I				-	PLEASE	BE SPECI	FIC)	-	-	-	C#842982-03-01 Turnaround Time (TAT) Re	equired
	SUBMITTE	D ON THE BV LABS D	RINKING WATE	ER CHAIN OF	CUSTODY		-											ř. –	Please provide advance notice fo	
	ation 153 (2011)	-	Other Regulation		Special In	structions	circle		14000										(Standard) TAT; lied if Rush TAT is not specified)	K
	Res/Park Med		Sanitary Sewer				ase ci Cr VI		CEUVI										AT = 5-7 Working days for most tests	E,
Table 3	Agri/Other For	RSC MISA	Municipality	iyiaw			(ple	avis	iloo									Please not	 Standard TAT for certain tests such as BC act your Project Manager for details. 	OD and Dioxins/Furans are > 5
Table			Reg 406 Table	e			Field Filtered (ple Metals / Hg /	ohen	E E										fic Rush TAT (if applies to entire subm	ission
	_	Other		10			Filte	ompi	form									Date Requi	red: Tim	e Required:
15		ria on Certificate of An				_	Field	0-0	d Col										mation Number:(ce	ull lab for #)
Sam	ple Barcode Label	Sample (Location) Id	dentification	Date Sampled	Time Sampled	Matrix	-	RC/	Tota						_			# of Bottles	Comme	ints
- 1		PW21-1-	726	21/09/03	10:15	GW		X	X									C	-metals as	recipied
				1.4.1.5.	12012	0.00		1	1		-	-					-	0	- disregard lab	alled date
					1															
											-	-				-		-	= ATC	00
-																	ut.	1		RU
											-			•		1940			1417 -	
								-				-	-			_		-	The second statut	ATERIOO
																			REC'D IN W	ATENLES
																-	-	-		-
-							-												03-Sep-21 13	:54
																			Ema Gitej	-
1	1				-						-									I
		~					(\leq)												C1P4142	
										-			-	-			-		YTH ENV-1270	
																			The ENV-1270	e
0 10	RELINQUISHED BY: (S	A. 7 X	Date: (YY/MI		me	RECEIVED B	f: (Signature/P	rint)		Date: (YY/MN	1	Tir			sed and bmitted			Labor	atory Use Only	1
e pr	VAN / FAIL	Markerd	21/09/	03 13:	SS Jas	putt	ave	_)	02100	303	13:5	4	notsu	Dilatted	Time S	ensitive	Tempera	ture (°C) on Recei Custody Sea Present	I Yes No
ESS OTHER	WISE AGREED TO IN W	RITING WORK SURMITTED	ON THIS CHAPLOT	CURTORYICON	the	1 toy M	iscim		12	110011	15	18	05					911	2 15 15 Intact	
	and the House House	RITING, WORK SUBMITTED OF OUR TERMS WHICH AR	E AVAILABLE FUR	VIEWING AT WWW	BVLABS.COM/IER	MS-AND-CONDITI	ONS.						ENTIS						White: BV	/ Labs Yellow: Client
		INQUISHER TO ENSURE TH								ANALYTICAL	TAT DEL	AYS.			SAMPLES	MUST BE	KEPT CO	OL (< 10° C) LIVERY TO B	FROM TIME OF SAMPLING	
APLE CONT	AINER, PRESERVATION	HOLD TIME AND PACKAGE	E INFORMATION C	AN BE VIEWED A	WWW.BVLABS.CO	M/RESOURCES/CI	AIN-OF-CUSTO	DY-FORM	S.											

Your Project #: 21456909 Your C.O.C. #: 842984-01-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/10/06 Report #: R6842011 Version: 4 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P4129

Received: 2021/09/03, 13:54

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2021/09/07	CAM SOP-00448	SM 23 2320 B m
Chloride by Automated Colourimetry	1	N/A	2021/09/07	CAM SOP-00463	SM 23 4500-Cl E m
Colour	1	N/A	2021/09/09	CAM SOP-00412	SM 23 2120C m
Free (WAD) Cyanide	1	N/A	2021/09/10	CAM SOP-00457	OMOE E3015 m
Dioxins/Furans in Water (1613B) (1)	1	2021/10/01	2021/10/04	BRL SOP-00410	EPA 1613B m
Diuron, Guthion, Temephos	1	2021/09/10	2021/09/10	CAM SOP-00306	EPA 532 m
Dissolved Organic Carbon (DOC) (2)	1	N/A	2021/09/08	CAM SOP-00446	SM 23 5310 B m
Diquat / Paraquat	1	2021/09/07	2021/09/09	CAM SOP-00327	EPA 549.2 m
Fluoride	1	2021/09/04	2021/09/07	CAM SOP-00449	SM 23 4500-F C m
Glyphosate	1	2021/09/09	2021/09/09	CAM SOP-00305	HPLC in-house method
Hardness (calculated as CaCO3)	1	N/A	2021/09/08	CAM SOP	SM 2340 B
				00102/00408/00447	
Mercury in Water by CVAA	1		2021/09/07	CAM SOP-00453	EPA 7470A m
Metals Analysis by ICPMS (as received) (3)	1	N/A	2021/09/07	CAM SOP-00447	EPA 6020B m
Total Coliforms/ E. coli, CFU/100mL	1	N/A	2021/09/03	CAM SOP-00551	MOE E3407
Dissolved Methane in Water	1	N/A	2021/09/08	CAM SOP-00219 Modified	
				Combustible Gas Indicator	
			2024/02/02	Method	01400455
Heterotrophic plate count, (CFU/mL)	1	N/A		CAM SOP-00512	SM 9215B
Microcystin	1	N/A		CAM SOP-00476	OMECC-LSB E3469
NDMA in Drinking Water (MSABN-3291Amod)	1			BRL SOP-00012	MOE Method E3388
Total Ammonia-N	1	N/A		CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (4)	1	N/A		CAM SOP-00440	SM 23 4500-NO3I/NO2B
Nitrilotriacetic Acid (NTA) (5)	1			CAM SOP-00411	EPA 430.1 m
OC Pesticides (Selected) & PCB (6)	1			CAM SOP-00307	EPA 8081A/ 8082B m
OC Pesticides Summed Parameters	1	N/A		CAM SOP-00307	EPA 8081A/8082B m
ODWS - Semi-Volatiles	1			CAM SOP-00301	EPA 8270 m
Organic Nitrogen	1	N/A	2021/09/10		
рН	1			CAM SOP-00413	SM 4500H+ B m
Sulphate by Automated Colourimetry	1	N/A		CAM SOP-00464	EPA 375.4 m
Sulphide	1	N/A	2021/09/07	CAM SOP-00455	SM 23 4500-S G m

Page 1 of 25

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21456909 Your C.O.C. #: 842984-01-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/10/06 Report #: R6842011 Version: 4 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P4129 Received: 2021/09/03. 13:54

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Dissolved Solids (TDS calc)	1	N/A	2021/09/08		Auto Calc
Total Kjeldahl Nitrogen in Water	1	2021/09/07	2021/09/09	CAM SOP-00938	OMOE E3516 m
Turbidity	1	N/A	2021/09/07	CAM SOP-00417	SM 23 2130 B m
VOCs (Drinking Water)	1	N/A	2021/09/07	CAM SOP-00226	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

(2) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(3) Metals analysis was performed on the sample 'as received'.

(5) Bureau Veritas Laboratories attempt to commence NTA analysis as soon as possible in accordance with the reference method. However, rapid analysis may not be practically achievable, particularly for samples from remote locations. Extended delay in analysis times may increase the uncertainty of the test results, but does not necessarily imply that the results are compromised.

(6) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Page 2 of 25

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

⁽⁴⁾ Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Your Project #: 21456909 Your C.O.C. #: 842984-01-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/10/06 Report #: R6842011 Version: 4 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P4129 Received: 2021/09/03, 13:54

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: emese.gitej@bureauveritas.com Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		QOI268		Ī				
Sampling Date		2021/09/03 10:00						
COC Number		842984-01-01			TOXIC EQU	JIVALENCY	# of	
	UNITS	PW21-1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Calculated Parameters								
Calculated TDS	mg/L	550	N/A	1.0				7559099
Hardness (CaCO3)	mg/L	380	N/A	1.0				7558603
Total Organic Nitrogen	mg/L	<0.10	N/A	0.10				7560118
Inorganics	•							
Total Ammonia-N	mg/L	0.21	N/A	0.050				7564744
Colour	TCU	<2	N/A	2				7563603
Fluoride (F-)	mg/L	0.62	N/A	0.10				7560960
Total Kjeldahl Nitrogen (TKN)	mg/L	0.23	N/A	0.10				7563005
Microcystin	ug/L	<0.10	N/A	0.10				7564587
Dissolved Organic Carbon	mg/L	0.48	N/A	0.40				7562606
рН	pН	8.02						7560966
Dissolved Sulphate (SO4)	mg/L	270	N/A	1.0				7560983
Sulphide	mg/L	<0.020	N/A	0.020				7562455
Turbidity	NTU	0.7	N/A	0.1				7560716
WAD Cyanide (Free)	mg/L	<0.0010	N/A	0.0010				7567661
Alkalinity (Total as CaCO3)	mg/L	180	N/A	1.0				7560961
Dissolved Chloride (Cl-)	mg/L	9.6	N/A	1.0				7560985
Nitrite (N)	mg/L	<0.010	N/A	0.010				7560968
Nitrate (N)	mg/L	<0.10	N/A	0.10				7560968
Nitrate + Nitrite (N)	mg/L	<0.10	N/A	0.10				7560968
Miscellaneous Parameters		•	•			•	*	
NTA	mg/L	<0.050	N/A	0.050				7561547
Fixed Gases								
Methane	L/m3	0.019	N/A	0.005				7565203
Metals	•			-			•	
Mercury (Hg)	mg/L	<0.00010	N/A	0.00010				7562014
EDL = Estimated Detection Limit								

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		QOI268						
Sampling Date		2021/09/03 10:00						
COC Number		842984-01-01			TOXIC EQU	JIVALENCY	# of	
	UNITS	PW21-1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Aluminum (Al)	ug/L	<4.9	N/A	4.9				7561948
Antimony (Sb)	ug/L	<0.50	N/A	0.50				7561948
Arsenic (As)	ug/L	1.5	N/A	1.0				7561948
Barium (Ba)	ug/L	21	N/A	2.0				7561948
Boron (B)	ug/L	74	N/A	10				7561948
Cadmium (Cd)	ug/L	<0.090	N/A	0.090				7561948
Calcium (Ca)	ug/L	93000	N/A	200				7561948
Chromium (Cr)	ug/L	<5.0	N/A	5.0				7561948
Copper (Cu)	ug/L	<0.90	N/A	0.90				7561948
Iron (Fe)	ug/L	130	N/A	100				7561948
Lead (Pb)	ug/L	<0.50	N/A	0.50				7561948
Magnesium (Mg)	ug/L	36000	N/A	50				7561948
Manganese (Mn)	ug/L	20	N/A	2.0				7561948
Potassium (K)	ug/L	1100	N/A	200				7561948
Selenium (Se)	ug/L	<2.0	N/A	2.0				7561948
Sodium (Na)	ug/L	28000	N/A	100				7561948
Uranium (U)	ug/L	0.16	N/A	0.10				7561948
Zinc (Zn)	ug/L	<5.0	N/A	5.0				7561948
Semivolatile Organics			-					
2,3,4,6-Tetrachlorophenol	ug/L	<0.50	N/A	0.50				7566501
2,4,5-T	ug/L	<1.0	N/A	1.0				7566501
2,4,6-Trichlorophenol	ug/L	<0.50	N/A	0.50				7566501
2,4-D	ug/L	<1.0	N/A	1.0				7566501
2,4-Dichlorophenol	ug/L	<0.25	N/A	0.25				7566501
Alachlor	ug/L	<0.50	N/A	0.50				7566501
Aldicarb	ug/L	<5.0	N/A	5.0				7566501
Atrazine	ug/L	<0.50	N/A	0.50				7566501

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		QOI268						
Sampling Date		2021/09/03 10:00						
COC Number		842984-01-01			TOXIC EQU	JIVALENCY	# of	
	UNITS	PW21-1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Des-ethyl atrazine	ug/L	<0.50	N/A	0.50				7566501
Atrazine + Desethyl-atrazine	ug/L	<1.0	N/A	1.0				7566501
Bendiocarb	ug/L	<2.0	N/A	2.0				7566501
Bromoxynil	ug/L	<0.50	N/A	0.50				7566501
Carbaryl	ug/L	<5.0	N/A	5.0				7566501
Carbofuran	ug/L	<5.0	N/A	5.0				7566501
Chlorpyrifos (Dursban)	ug/L	<1.0	N/A	1.0				7566501
Cyanazine (Bladex)	ug/L	<1.0	N/A	1.0				7566501
Diazinon	ug/L	<1.0	N/A	1.0				7566501
Dicamba	ug/L	<1.0	N/A	1.0				7566501
Diclofop-methyl	ug/L	<0.90	N/A	0.90				7566501
Dimethoate	ug/L	<2.5	N/A	2.5				7566501
Dinoseb	ug/L	<1.0	N/A	1.0				7566501
Malathion	ug/L	<5.0	N/A	5.0				7566501
Metolachlor	ug/L	<0.50	N/A	0.50				7566501
Metribuzin (Sencor)	ug/L	<5.0	N/A	5.0				7566501
Ethyl Parathion	ug/L	<1.0	N/A	1.0				7566501
Pentachlorophenol	ug/L	<0.50	N/A	0.50				7566501
Phorate	ug/L	<0.50	N/A	0.50				7566501
Picloram	ug/L	<5.0	N/A	5.0				7566501
Prometryne	ug/L	<0.25	N/A	0.25				7566501
Simazine	ug/L	<1.0	N/A	1.0				7566501
Terbufos	ug/L	<0.50	N/A	0.50				7566501
Triallate	ug/L	<1.0	N/A	1.0				7566501
Trifluralin	ug/L	<1.0	N/A	1.0				7566501
Benzo(a)pyrene	ug/L	<0.0050	N/A	0.0050				7566501
Methyl parathion	ug/L	<1.0	N/A	1.0				7566501

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		QOI268					1	
Sampling Date		2021/09/03 10:00						
COC Number		842984-01-01			TOXIC EQU	JIVALENCY	# of	
	UNITS	PW21-1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Volatile Organics								
1,1-Dichloroethylene	ug/L	<0.10	N/A	0.10				7559332
1,2-Dichlorobenzene	ug/L	<0.20	N/A	0.20				7559332
1,2-Dichloroethane	ug/L	<0.20	N/A	0.20				7559332
1,4-Dichlorobenzene	ug/L	<0.20	N/A	0.20				7559332
Benzene	ug/L	<0.10	N/A	0.10				7559332
Bromodichloromethane	ug/L	<0.10	N/A	0.10				7559332
Bromoform	ug/L	<0.20	N/A	0.20				7559332
Carbon Tetrachloride	ug/L	<0.10	N/A	0.10				7559332
Chlorobenzene	ug/L	<0.10	N/A	0.10				7559332
Chloroform	ug/L	<0.10	N/A	0.10				7559332
Dibromochloromethane	ug/L	<0.20	N/A	0.20				7559332
Methylene Chloride(Dichloromethane)	ug/L	<0.50	N/A	0.50				7559332
Ethylbenzene	ug/L	<0.10	N/A	0.10				7559332
Tetrachloroethylene	ug/L	<0.10	N/A	0.10				7559332
Toluene	ug/L	<0.20	N/A	0.20				7559332
Trichloroethylene	ug/L	<0.10	N/A	0.10				7559332
Vinyl Chloride	ug/L	<0.20	N/A	0.20				7559332
o-Xylene	ug/L	<0.10	N/A	0.10				7559332
p+m-Xylene	ug/L	<0.10	N/A	0.10				7559332
Total Xylenes	ug/L	<0.10	N/A	0.10				7559332
Total Trihalomethanes	ug/L	<0.20	N/A	0.20				7559332
Pesticides & Herbicides					•	· · · · · · · · · · · · · · · · · · ·		<u>.</u>
Glyphosate	ug/L	<10	N/A	10				7567026
Diquat	ug/L	<7.0	N/A	7.0				7561822
Diuron	ug/L	<10	N/A	10				7569961
Guthion (Azinphos-methyl)	ug/L	<2.0	N/A	2.0				7569961

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		QOI268					1	
Sampling Date		2021/09/03 10:00						
COC Number		842984-01-01			TOXIC EQU	JIVALENCY	# of	
	UNITS	PW21-1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Paraquat	ug/L	<1.0	N/A	1.0				7561822
Temephos	ug/L	<10	N/A	10				7569961
Calculated Parameters					•			
Aldrin + Dieldrin	ug/L	<0.006	N/A	0.006				7558226
Chlordane (Total)	ug/L	<0.006	N/A	0.006				7558226
DDT+ Metabolites	ug/L	<0.006	N/A	0.006				7558226
Heptachlor + Heptachlor epoxide	ug/L	<0.006	N/A	0.006				7558226
Total PCB	ug/L	<0.05	N/A	0.05				7558226
Pesticides & Herbicides	•	•			•	•	*	
Lindane	ug/L	<0.0060	N/A	0.0060				7565829
Heptachlor	ug/L	<0.0060	N/A	0.0060				7565829
Aldrin	ug/L	<0.0060	N/A	0.0060				7565829
Heptachlor epoxide	ug/L	<0.0060	N/A	0.0060				7565829
Oxychlordane	ug/L	<0.0060	N/A	0.0060				7565829
g-Chlordane	ug/L	<0.0060	N/A	0.0060				7565829
a-Chlordane	ug/L	<0.0060	N/A	0.0060				7565829
Dieldrin	ug/L	<0.0060	N/A	0.0060				7565829
o,p-DDE	ug/L	<0.0060	N/A	0.0060				7565829
p,p-DDE	ug/L	<0.0060	N/A	0.0060				7565829
o,p-DDD	ug/L	<0.0060	N/A	0.0060				7565829
p,p-DDD	ug/L	<0.0060	N/A	0.0060				7565829
o,p-DDT	ug/L	<0.0060	N/A	0.0060				7565829
p,p-DDT	ug/L	<0.0060	N/A	0.0060				7565829
Methoxychlor	ug/L	<0.024	N/A	0.024				7565829
Aroclor 1016	ug/L	<0.050	N/A	0.050				7565829
Aroclor 1221	ug/L	<0.050	N/A	0.050				7565829
Aroclor 1232	ug/L	<0.050	N/A	0.050				7565829

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		Q01268						
		2021/09/03						
Sampling Date		10:00						
COC Number		842984-01-01			TOXIC EQU	IVALENCY	# of	
	UNITS	PW21-1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Aroclor 1242	ug/L	<0.050	N/A	0.050				7565829
Aroclor 1248	ug/L	<0.050	N/A	0.050				7565829
Aroclor 1254	ug/L	<0.050	N/A	0.050				7565829
Aroclor 1260	ug/L	<0.050	N/A	0.050				7565829
Dioxins & Furans	·	•						
2,3,7,8-Tetra CDD *	pg/L	<0.973	0.973	10.0	1.00	0.973	0	7615543
1,2,3,7,8-Penta CDD *	pg/L	<0.830	0.830	50.0	1.00	0.830	0	7615543
1,2,3,4,7,8-Hexa CDD *	pg/L	<0.875	0.875	50.0	0.100	0.0875	0	7615543
1,2,3,6,7,8-Hexa CDD *	pg/L	<0.778	0.778	50.0	0.100	0.0778	0	7615543
1,2,3,7,8,9-Hexa CDD *	pg/L	<0.798	0.798	50.0	0.100	0.0798	0	7615543
1,2,3,4,6,7,8-Hepta CDD *	pg/L	<0.760	0.760	50.0	0.0100	0.00760	0	7615543
Octa CDD *	pg/L	<0.666	0.666	100	0.000300	0.000200	0	7615543
Total Tetra CDD *	pg/L	<0.973	0.973	10.0			0	7615543
Total Penta CDD *	pg/L	<0.830	0.830	50.0			0	7615543
Total Hexa CDD *	pg/L	<0.814	0.814	50.0			0	7615543
Total Hepta CDD *	pg/L	<0.760	0.760	50.0			0	7615543
2,3,7,8-Tetra CDF **	pg/L	<0.671	0.671	10.0	0.100	0.0671	0	7615543
1,2,3,7,8-Penta CDF **	pg/L	<0.843	0.843	50.0	0.0300	0.0253	0	7615543
2,3,4,7,8-Penta CDF **	pg/L	<0.715	0.715	50.0	0.300	0.215	0	7615543
1,2,3,4,7,8-Hexa CDF **	pg/L	<0.384	0.384	50.0	0.100	0.0384	0	7615543
1,2,3,6,7,8-Hexa CDF **	pg/L	<0.332	0.332	50.0	0.100	0.0332	0	7615543
2,3,4,6,7,8-Hexa CDF **	pg/L	<0.349	0.349	50.0	0.100	0.0349	0	7615543
1,2,3,7,8,9-Hexa CDF **	pg/L	<0.371	0.371	50.0	0.100	0.0371	0	7615543
1,2,3,4,6,7,8-Hepta CDF **	pg/L	<0.313	0.313	50.0	0.0100	0.00313	0	7615543
1,2,3,4,7,8,9-Hepta CDF **	pg/L	<0.349	0.349	50.0	0.0100	0.00349	0	7615543

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		Q01268						
Sampling Date		2021/09/03 10:00						
COC Number		842984-01-01			TOXIC EQU	IVALENCY	# of	
	UNITS	PW21-1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Octa CDF **	pg/L	<0.982	0.982	100	0.000300	0.000295	0	7615543
Total Tetra CDF **	pg/L	<0.671	0.671	10.0			0	7615543
Total Penta CDF **	pg/L	<0.775	0.775	50.0			0	7615543
Total Hexa CDF **	pg/L	<0.358	0.358	50.0			0	7615543
Total Hepta CDF **	pg/L	<0.330	0.330	50.0			0	7615543
Semivolatile Organics								•
N-Nitrosodimethylamine	ug/L	<0.0009	N/A	0.0009				7566404
Microbiological								•
Heterotrophic plate count	CFU/mL	0	N/A	N/A				7560282
Background	CFU/100mL	0	N/A	N/A				7560239
Total Coliforms	CFU/100mL	0	N/A	N/A				7560239
Escherichia coli	CFU/100mL	0	N/A	N/A				7560239
TOTAL TOXIC EQUIVALENCY	pg/L					2.5		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	70						7615543
C13-1234678 HeptaCDD *	%	120						7615543
C13-1234678 HeptaCDF **	%	111						7615543
C13-123478 HexaCDD *	%	96						7615543
C13-123478 HexaCDF **	%	92						7615543
C13-1234789 HeptaCDF **	%	121						7615543
C13-123678 HexaCDD *	%	97						7615543
C13-123678 HexaCDF **	%	97						7615543
C13-12378 PentaCDD *	%	78						7615543
C13-12378 PentaCDF **	%	74						7615543
C13-123789 HexaCDF **	%	105						7615543

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		QOI268						
Sampling Date		2021/09/03 10:00						
COC Number		842984-01-01			TOXIC EQU	JIVALENCY	# of	
	UNITS	PW21-1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-234678 HexaCDF **	%	99						7615543
C13-23478 PentaCDF **	%	82						7615543
C13-2378 TetraCDD *	%	63						7615543
C13-2378 TetraCDF **	%	61						7615543
C13-OCDD *	%	115						7615543
D6-N-Nitrosodimethylamine	%	39						7566404
2,4,5,6-Tetrachloro-m-xylene	%	50						7565829
Decachlorobiphenyl	%	104						7565829
2,4,6-Tribromophenol	%	78						7566501
2,4-Dichlorophenyl Acetic Acid	%	79						7566501
2-Fluorobiphenyl	%	69						7566501
D14-Terphenyl (FS)	%	83						7566501
D5-Nitrobenzene	%	83						7566501
4-Bromofluorobenzene	%	96						7559332
D4-1,2-Dichloroethane	%	96						7559332
D8-Toluene	%	106						7559332

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

* CDD = Chloro Dibenzo-p-Dioxin

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		QOI268					
Sampling Date		2021/09/03 10:00					
COC Number		842984-01-01		TOXIC EQU	IVALENCY	# of	
	UNITS	PW21-1 Lab-Dup	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Inorganics			·			-	
Fluoride (F-)	mg/L	0.62	0.10				7560960
рН	pН	8.05					7560966
Alkalinity (Total as CaCO3)	mg/L	180	1.0				7560961
Nitrite (N)	mg/L	<0.010	0.010				7560968
Nitrate (N)	mg/L	<0.10	0.10				7560968
Nitrate + Nitrite (N)	mg/L	<0.10	0.10				7560968
Metals		-	•				
Mercury (Hg)	mg/L	<0.00010	0.00010				7562014
Volatile Organics							
1,1-Dichloroethylene	ug/L	<0.10	0.10				7559332
1,2-Dichlorobenzene	ug/L	<0.20	0.20				7559332
1,2-Dichloroethane	ug/L	<0.20	0.20				7559332
1,4-Dichlorobenzene	ug/L	<0.20	0.20				7559332
Benzene	ug/L	<0.10	0.10				7559332
Bromodichloromethane	ug/L	<0.10	0.10				7559332
Bromoform	ug/L	<0.20	0.20				7559332
Carbon Tetrachloride	ug/L	<0.10	0.10				7559332
Chlorobenzene	ug/L	<0.10	0.10				7559332
Chloroform	ug/L	<0.10	0.10				7559332
Dibromochloromethane	ug/L	<0.20	0.20				7559332
Methylene Chloride(Dichloromethane)	ug/L	<0.50	0.50				7559332
Ethylbenzene	ug/L	<0.10	0.10				7559332

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

ODWQSOG TABLES 1, 2 AND 4 (WATER)

BV Labs ID		QOI268					
Sampling Date		2021/09/03 10:00					
COC Number		842984-01-01		TOXIC EQU	JIVALENCY	# of	
	UNITS	PW21-1 Lab-Dup	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Tetrachloroethylene	ug/L	<0.10	0.10				7559332
Toluene	ug/L	<0.20	0.20				7559332
Trichloroethylene	ug/L	<0.10	0.10				7559332
Vinyl Chloride	ug/L	<0.20	0.20				7559332
o-Xylene	ug/L	<0.10	0.10				7559332
p+m-Xylene	ug/L	<0.10	0.10				7559332
Total Xylenes	ug/L	<0.10	0.10				7559332
Total Trihalomethanes	ug/L	<0.20	0.20				7559332
Pesticides & Herbicides		•					
Diuron	ug/L	<10	10				7569961
Guthion (Azinphos-methyl)	ug/L	<2.0	2.0				7569961
Temephos	ug/L	<10	10				7569961
TOTAL TOXIC EQUIVALENCY	pg/L				0		
Surrogate Recovery (%)				-			
4-Bromofluorobenzene	%	96					7559332
D4-1,2-Dichloroethane	%	98					7559332
D8-Toluene	%	104					7559332
RDL = Reportable Detection Limit				•			

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

TEST SUMMARY

BV Labs ID: Sample ID: Matrix:					Shipped:	2021/09/03 2021/09/03
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

Test Description	instrumentation	Daten	LAUACIEU	Date Analyzeu	Analyst
Alkalinity	AT	7560961	N/A	2021/09/07	Yogesh Patel
Chloride by Automated Colourimetry	KONE	7560985	N/A	2021/09/07	Alina Dobreanu
Colour	SPEC	7563603	N/A	2021/09/09	Viorica Rotaru
Free (WAD) Cyanide	SKAL/CN	7567661	N/A	2021/09/10	Aditiben Patel
Dioxins/Furans in Water (1613B)	HRMS/MS	7615543	2021/10/01	2021/10/04	Cathy Xu
Diuron, Guthion, Temephos	LC/UV	7569961	2021/09/10	2021/09/10	Kimberley Linde
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7562606	N/A	2021/09/08	Julianna Castiglione
Diquat / Paraquat	LC/UV	7561822	2021/09/07	2021/09/09	James Lee
Fluoride	ISE	7560960	2021/09/04	2021/09/07	Yogesh Patel
Glyphosate	LC/FLU	7567026	2021/09/09	2021/09/09	Furneesh Kumar
Hardness (calculated as CaCO3)		7558603	N/A	2021/09/08	Automated Statchk
Mercury in Water by CVAA	CV/AA	7562014	2021/09/07	2021/09/07	Gagandeep Rai
Metals Analysis by ICPMS (as received)	ICP/MS	7561948	N/A	2021/09/07	Azita Fazaeli
Total Coliforms/ E. coli, CFU/100mL	PL	7560239	N/A	2021/09/03	Soham Patel
Dissolved Methane in Water	GC/FID	7565203	N/A	2021/09/08	Shilpa Kataria
Heterotrophic plate count, (CFU/mL)	PL	7560282	N/A	2021/09/03	Farhana Rahman
Microcystin	ELIS	7564587	N/A	2021/09/08	Chris Li
NDMA in Drinking Water (MSABN-3291Amod)	GCTQ/MS	7566404	2021/09/09	2021/09/14	Wenhui (Susie) Shi
Total Ammonia-N	LACH/NH4	7564744	N/A	2021/09/09	Viorica Rotaru
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7560968	N/A	2021/09/07	Chandra Nandlal
Nitrilotriacetic Acid (NTA)	SPEC	7561547	2021/09/07	2021/09/07	Viorica Rotaru
OC Pesticides (Selected) & PCB	GC/ECD	7565829	2021/09/08	2021/09/10	Joy Zhang
OC Pesticides Summed Parameters	CALC	7558226	N/A	2021/09/04	Automated Statchk
ODWS - Semi-Volatiles	GC/MS	7566501	2021/09/09	2021/09/10	Wendy Zhao
Organic Nitrogen	CALC	7560118	N/A	2021/09/10	Automated Statchk
рН	AT	7560966	2021/09/04	2021/09/07	Yogesh Patel
Sulphate by Automated Colourimetry	KONE	7560983	N/A	2021/09/07	Alina Dobreanu
Sulphide	ISE/S	7562455	N/A	2021/09/07	Neil Dassanayake
Total Dissolved Solids (TDS calc)	CALC	7559099	N/A	2021/09/08	Automated Statchk
Total Kjeldahl Nitrogen in Water	SKAL	7563005	2021/09/07	2021/09/09	Rajni Tyagi
Turbidity	AT	7560716	N/A	2021/09/07	Neil Dassanayake
VOCs (Drinking Water)	P&T/MS	7559332	N/A	2021/09/07	Dina Wang

BV Labs ID: QOI268 Dup Sample ID: PW21-1 Matrix: Water

Collected: 2021/09/03 Shipped: Received: 2021/09/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7560961	N/A	2021/09/07	Yogesh Patel
Diuron, Guthion, Temephos	LC/UV	7569961	2021/09/10	2021/09/10	Kimberley Linde
Fluoride	ISE	7560960	2021/09/04	2021/09/07	Yogesh Patel
Mercury in Water by CVAA	CV/AA	7562014	2021/09/07	2021/09/07	Gagandeep Rai
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7560968	N/A	2021/09/07	Chandra Nandlal
рН	AT	7560966	2021/09/04	2021/09/07	Yogesh Patel
VOCs (Drinking Water)	P&T/MS	7559332	N/A	2021/09/07	Dina Wang

Page 14 of 25

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Pack	age 1	10.7°C
Pack	age 2	15.0°C

Results relate only to the items tested.

Page 15 of 25 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7559332	4-Bromofluorobenzene	2021/09/07	98	70 - 130	97	70 - 130	94	%				
7559332	D4-1,2-Dichloroethane	2021/09/07	91	70 - 130	95	70 - 130	98	%				
7559332	D8-Toluene	2021/09/07	105	70 - 130	103	70 - 130	105	%				
7565829	2,4,5,6-Tetrachloro-m-xylene	2021/09/09	58	30 - 130	57	30 - 130	58	%				
7565829	Decachlorobiphenyl	2021/09/09	108	30 - 130	95	30 - 130	98	%				
7566404	D6-N-Nitrosodimethylamine	2021/09/14			39	10 - 85	40	%				
7566501	2,4,6-Tribromophenol	2021/09/09	77	30 - 130	76	30 - 130	82	%				
7566501	2,4-Dichlorophenyl Acetic Acid	2021/09/09	75	30 - 130	71	30 - 130	77	%				
7566501	2-Fluorobiphenyl	2021/09/09	63	30 - 130	65	30 - 130	67	%				
7566501	D14-Terphenyl (FS)	2021/09/09	81	30 - 130	81	30 - 130	87	%				
7566501	D5-Nitrobenzene	2021/09/09	75	30 - 130	77	30 - 130	85	%				
7615543	37CL4 2378 Tetra CDD	2021/10/03			77	35 - 197	84	%				
7615543	C13-1234678 HeptaCDD	2021/10/03			119	23 - 140	111	%				
7615543	C13-1234678 HeptaCDF	2021/10/03			110	28 - 143	105	%				
7615543	C13-123478 HexaCDD	2021/10/03			97	32 - 141	88	%				
7615543	C13-123478 HexaCDF	2021/10/03			93	26 - 152	96	%				
7615543	C13-1234789 HeptaCDF	2021/10/03			121	28 - 138	111	%				
7615543	C13-123678 HexaCDD	2021/10/03			95	28 - 130	103	%				
7615543	C13-123678 HexaCDF	2021/10/03			98	26 - 123	96	%				
7615543	C13-12378 PentaCDD	2021/10/03			77	25 - 181	72	%				
7615543	C13-12378 PentaCDF	2021/10/03			75	24 - 185	73	%				
7615543	C13-123789 HexaCDF	2021/10/03			104	29 - 147	102	%				
7615543	C13-234678 HexaCDF	2021/10/03			98	28 - 136	96	%				
7615543	C13-23478 PentaCDF	2021/10/03			81	21 - 178	78	%				
7615543	C13-2378 TetraCDD	2021/10/03			66	25 - 164	75	%				
7615543	C13-2378 TetraCDF	2021/10/03			63	24 - 169	75	%				
7615543	C13-OCDD	2021/10/03			114	17 - 157	100	%				
7559332	1,1-Dichloroethylene	2021/09/07	93	70 - 130	92	70 - 130	<0.10	ug/L	NC	30		
7559332	1,2-Dichlorobenzene	2021/09/07	88	70 - 130	90	70 - 130	<0.20	ug/L	NC	30		
7559332	1,2-Dichloroethane	2021/09/07	78	70 - 130	83	70 - 130	<0.20	ug/L	NC	30		
7559332	1,4-Dichlorobenzene	2021/09/07	105	70 - 130	105	70 - 130	<0.20	ug/L	NC	30		

Page 16 of 25

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD		QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7559332	Benzene	2021/09/07	81	70 - 130	84	70 - 130	<0.10	ug/L	NC	30		
7559332	Bromodichloromethane	2021/09/07	NC	70 - 130	88	70 - 130	<0.10	ug/L	NC	30		
7559332	Bromoform	2021/09/07	82	70 - 130	87	70 - 130	<0.20	ug/L	NC	30		
7559332	Carbon Tetrachloride	2021/09/07	88	70 - 130	88	70 - 130	<0.10	ug/L	NC	30		
7559332	Chlorobenzene	2021/09/07	90	70 - 130	90	70 - 130	<0.10	ug/L	NC	30		
7559332	Chloroform	2021/09/07	NC	70 - 130	89	70 - 130	<0.10	ug/L	NC	30		
7559332	Dibromochloromethane	2021/09/07	82	70 - 130	87	70 - 130	<0.20	ug/L	NC	30		
7559332	Ethylbenzene	2021/09/07	88	70 - 130	86	70 - 130	<0.10	ug/L	NC	30		
7559332	Methylene Chloride(Dichloromethane)	2021/09/07	85	70 - 130	86	70 - 130	<0.50	ug/L	NC	30		
7559332	o-Xylene	2021/09/07	87	70 - 130	86	70 - 130	<0.10	ug/L	NC	30		
7559332	p+m-Xylene	2021/09/07	95	70 - 130	90	70 - 130	<0.10	ug/L	NC	30		
7559332	Tetrachloroethylene	2021/09/07	85	70 - 130	83	70 - 130	<0.10	ug/L	NC	30		
7559332	Toluene	2021/09/07	88	70 - 130	88	70 - 130	<0.20	ug/L	NC	30		
7559332	Total Trihalomethanes	2021/09/07					<0.20	ug/L	NC	30		
7559332	Total Xylenes	2021/09/07					<0.10	ug/L	NC	30		
7559332	Trichloroethylene	2021/09/07	92	70 - 130	91	70 - 130	<0.10	ug/L	NC	30		
7559332	Vinyl Chloride	2021/09/07	92	70 - 130	88	70 - 130	<0.20	ug/L	NC	30		
7560716	Turbidity	2021/09/07			99	85 - 115	<0.1	NTU	5.2	20		
7560960	Fluoride (F-)	2021/09/07	101	80 - 120	96	80 - 120	<0.10	mg/L	1.4	20		
7560961	Alkalinity (Total as CaCO3)	2021/09/07			96	85 - 115	<1.0	mg/L	0.48	20		
7560966	рН	2021/09/07			101	98 - 103			0.36	N/A		
7560968	Nitrate (N)	2021/09/07	99	80 - 120	101	80 - 120	<0.10	mg/L	NC	20		
7560968	Nitrite (N)	2021/09/07	104	80 - 120	103	80 - 120	<0.010	mg/L	NC	20		
7560983	Dissolved Sulphate (SO4)	2021/09/07	NC	75 - 125	103	80 - 120	<1.0	mg/L	0.25	20		
7560985	Dissolved Chloride (Cl-)	2021/09/07	NC	80 - 120	104	80 - 120	<1.0	mg/L	1.3	20		
7561547	NTA	2021/09/07	83	80 - 120	93	80 - 120	<0.050	mg/L	NC	20		
7561822	Diquat	2021/09/09	83	50 - 130	95	50 - 130	<7.0	ug/L	4.2	40		
7561822	Paraquat	2021/09/09	62	50 - 130	101	50 - 130	<1.0	ug/L	7.7	40		
7561948	Aluminum (Al)	2021/09/07	101	80 - 120	101	80 - 120	<4.9	ug/L	NC	20		
7561948	Antimony (Sb)	2021/09/07	103	80 - 120	99	80 - 120	<0.50	ug/L	NC	20		
7561948	Arsenic (As)	2021/09/07	100	80 - 120	97	80 - 120	<1.0	ug/L	0.41	20		

Page 17 of 25

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7561948	Barium (Ba)	2021/09/07	97	80 - 120	98	80 - 120	<2.0	ug/L	1.4	20		
7561948	Boron (B)	2021/09/07	97	80 - 120	97	80 - 120	<10	ug/L	2.0	20		
7561948	Cadmium (Cd)	2021/09/07	100	80 - 120	100	80 - 120	<0.090	ug/L	NC	20		
7561948	Calcium (Ca)	2021/09/07	NC	80 - 120	99	80 - 120	<200	ug/L	2.1	20		
7561948	Chromium (Cr)	2021/09/07	100	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		
7561948	Copper (Cu)	2021/09/07	98	80 - 120	98	80 - 120	<0.90	ug/L	11	20		
7561948	Iron (Fe)	2021/09/07	98	80 - 120	97	80 - 120	<100	ug/L	1.1	20		
7561948	Lead (Pb)	2021/09/07	96	80 - 120	98	80 - 120	<0.50	ug/L	NC	20		
7561948	Magnesium (Mg)	2021/09/07	NC	80 - 120	97	80 - 120	<50	ug/L	1.4	20		
7561948	Manganese (Mn)	2021/09/07	98	80 - 120	99	80 - 120	<2.0	ug/L	1.0	20		
7561948	Potassium (K)	2021/09/07	98	80 - 120	96	80 - 120	<200	ug/L	1.9	20		
7561948	Selenium (Se)	2021/09/07	103	80 - 120	102	80 - 120	<2.0	ug/L	NC	20		
7561948	Sodium (Na)	2021/09/07	97	80 - 120	98	80 - 120	<100	ug/L	1.2	20		
7561948	Uranium (U)	2021/09/07	100	80 - 120	104	80 - 120	<0.10	ug/L	3.0	20		
7561948	Zinc (Zn)	2021/09/07	98	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
7562014	Mercury (Hg)	2021/09/07	95	75 - 125	97	80 - 120	<0.00010	mg/L	NC	20		
7562455	Sulphide	2021/09/07	103	80 - 120	103	80 - 120	<0.020	mg/L	NC	20		
7562606	Dissolved Organic Carbon	2021/09/08	80	80 - 120	96	80 - 120	<0.40	mg/L	0.84	20		
7563005	Total Kjeldahl Nitrogen (TKN)	2021/09/09	NC	80 - 120	95	80 - 120	<0.10	mg/L			96	80 - 120
7563603	Colour	2021/09/09			99	80 - 120	<2	TCU	NC	25		
7564587	Microcystin	2021/09/08	96	60 - 140	94	60 - 140	<0.10	ug/L	NC	20		
7564744	Total Ammonia-N	2021/09/09	100	75 - 125	97	80 - 120	<0.050	mg/L	2.8	20		
7565203	Methane	2021/09/09					<0.005	L/m3	6.1	20		
7565829	a-Chlordane	2021/09/09	89	30 - 130	85	30 - 130	<0.0060	ug/L	6.5	40		
7565829	Aldrin	2021/09/09	78	30 - 130	71	30 - 130	<0.0060	ug/L	5.0	40		
7565829	Aroclor 1016	2021/09/09					<0.050	ug/L				
7565829	Aroclor 1221	2021/09/09					<0.050	ug/L				
7565829	Aroclor 1232	2021/09/09					<0.050	ug/L				
7565829	Aroclor 1242	2021/09/09					<0.050	ug/L				
7565829	Aroclor 1248	2021/09/09					<0.050	ug/L				
7565829	Aroclor 1254	2021/09/09					<0.050	ug/L				

Page 18 of 25

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7565829	Aroclor 1260	2021/09/09					<0.050	ug/L				
7565829	Dieldrin	2021/09/09	105	30 - 130	99	30 - 130	<0.0060	ug/L	5.2	40		
7565829	g-Chlordane	2021/09/09	94	30 - 130	85	30 - 130	<0.0060	ug/L	5.6	40		
7565829	Heptachlor epoxide	2021/09/09	100	30 - 130	89	30 - 130	<0.0060	ug/L	3.4	40		
7565829	Heptachlor	2021/09/09	83	30 - 130	75	30 - 130	<0.0060	ug/L	6.1	40		
7565829	Lindane	2021/09/09	97	30 - 130	88	30 - 130	<0.0060	ug/L	3.7	40		
7565829	Methoxychlor	2021/09/09	110	30 - 130	100	30 - 130	<0.024	ug/L	6.6	40		
7565829	o,p-DDD	2021/09/09	105	30 - 130	102	30 - 130	<0.0060	ug/L	6.0	40		
7565829	o,p-DDE	2021/09/09	114	30 - 130	94	30 - 130	<0.0060	ug/L	4.5	40		
7565829	o,p-DDT	2021/09/09	104	30 - 130	90	30 - 130	<0.0060	ug/L	7.6	40		
7565829	Oxychlordane	2021/09/09	91	30 - 130	84	30 - 130	<0.0060	ug/L	5.0	40		
7565829	p,p-DDD	2021/09/09	101	30 - 130	93	30 - 130	<0.0060	ug/L	6.0	40		
7565829	p,p-DDE	2021/09/09	82	30 - 130	74	30 - 130	<0.0060	ug/L	6.8	40		
7565829	p,p-DDT	2021/09/09	107	30 - 130	91	30 - 130	<0.0060	ug/L	9.9	40		
7566404	N-Nitrosodimethylamine	2021/09/14			102	65 - 135	<0.0009	ug/L	1.5	25		
7566501	2,3,4,6-Tetrachlorophenol	2021/09/09	83	30 - 130	82	30 - 130	<0.50	ug/L	1.7	40		
7566501	2,4,5-T	2021/09/09	82	30 - 130	80	30 - 130	<1.0	ug/L	4.9	40		
7566501	2,4,6-Trichlorophenol	2021/09/09	77	30 - 130	78	30 - 130	<0.50	ug/L	2.4	40		
7566501	2,4-D	2021/09/09	74	30 - 130	70	30 - 130	<1.0	ug/L	3.3	40		
7566501	2,4-Dichlorophenol	2021/09/09	68	30 - 130	69	30 - 130	<0.25	ug/L	0.99	40		
7566501	Alachlor	2021/09/09	108	40 - 130	108	40 - 130	<0.50	ug/L	2.0	40		
7566501	Aldicarb	2021/09/09	89	70 - 130	90	70 - 130	<5.0	ug/L	3.4	40		
7566501	Atrazine + Desethyl-atrazine	2021/09/09	64	30 - 130	62	30 - 130	<1.0	ug/L	0.36	40		
7566501	Atrazine	2021/09/09	86	30 - 130	84	30 - 130	<0.50	ug/L	0.95	40		
7566501	Bendiocarb	2021/09/09	89	40 - 130	90	40 - 130	<2.0	ug/L	2.4	40		
7566501	Benzo(a)pyrene	2021/09/09	101	30 - 130	96	30 - 130	<0.0050	ug/L	3.3	40		
7566501	Bromoxynil	2021/09/09	87	40 - 130	85	40 - 130	<0.50	ug/L	1.3	40		
7566501	Carbaryl	2021/09/09	91	40 - 130	91	40 - 130	<5.0	ug/L	0.80	40		
7566501	Carbofuran	2021/09/09	92	40 - 130	90	40 - 130	<5.0	ug/L	0.47	40		
7566501	Chlorpyrifos (Dursban)	2021/09/09	86	40 - 130	86	40 - 130	<1.0	ug/L	3.0	40		
7566501	Cyanazine (Bladex)	2021/09/09	80	40 - 130	76	40 - 130	<1.0	ug/L	1.9	40		

Page 19 of 25

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7566501	Des-ethyl atrazine	2021/09/09	42	30 - 130	40	30 - 130	<0.50	ug/L	3.1	40		
7566501	Diazinon	2021/09/09	77	40 - 130	78	40 - 130	<1.0	ug/L	2.4	40		
7566501	Dicamba	2021/09/09	75	30 - 130	73	30 - 130	<1.0	ug/L	2.8	40		
7566501	Diclofop-methyl	2021/09/09	89	40 - 130	87	40 - 130	<0.90	ug/L	1.2	40		
7566501	Dimethoate	2021/09/09	76	40 - 130	74	40 - 130	<2.5	ug/L	1.9	40		
7566501	Dinoseb	2021/09/09	84	40 - 130	82	40 - 130	<1.0	ug/L	1.3	40		
7566501	Ethyl Parathion	2021/09/09	80	40 - 130	78	40 - 130	<1.0	ug/L	0.67	40		
7566501	Malathion	2021/09/09	86	40 - 130	85	40 - 130	<5.0	ug/L	0.19	40		
7566501	Methyl parathion	2021/09/09	81	30 - 130	79	30 - 130	<1.0	ug/L	0.14	40		
7566501	Metolachlor	2021/09/09	77	40 - 130	77	40 - 130	<0.50	ug/L	0.72	40		
7566501	Metribuzin (Sencor)	2021/09/09	107	40 - 130	105	40 - 130	<5.0	ug/L	0.63	40		
7566501	Pentachlorophenol	2021/09/09	80	25 - 130	79	25 - 130	<0.50	ug/L	0.13	40		
7566501	Phorate	2021/09/09	74	40 - 130	74	40 - 130	<0.50	ug/L	2.5	40		
7566501	Picloram	2021/09/09	41	10 - 130	38	10 - 130	<5.0	ug/L	13	40		
7566501	Prometryne	2021/09/09	85	30 - 130	81	30 - 130	<0.25	ug/L	4.9	40		
7566501	Simazine	2021/09/09	80	40 - 130	78	40 - 130	<1.0	ug/L	0.038	40		
7566501	Terbufos	2021/09/09	79	40 - 130	79	40 - 130	<0.50	ug/L	1.3	40		
7566501	Triallate	2021/09/09	84	40 - 130	83	40 - 130	<1.0	ug/L	1.2	40		
7566501	Trifluralin	2021/09/09	94	40 - 130	91	40 - 130	<1.0	ug/L	3.6	40		
7567026	Glyphosate	2021/09/09	106	50 - 130	108	50 - 130	<10	ug/L	NC	40		
7567661	WAD Cyanide (Free)	2021/09/10	97	80 - 120	98	80 - 120	<0.0010	mg/L	NC	20		
7569961	Diuron	2021/09/10	88	40 - 130	85	40 - 130	<10	ug/L	NC	40		
7569961	Guthion (Azinphos-methyl)	2021/09/10	102	40 - 130	98	40 - 130	<2.0	ug/L	NC	40		
7569961	Temephos	2021/09/10	70	40 - 130	65	40 - 130	<10	ug/L	NC	40		
7615543	1,2,3,4,6,7,8-Hepta CDD	2021/10/03			105	70 - 140	<1.02, EDL=1.02	pg/L	2.8	25		
7615543	1,2,3,4,6,7,8-Hepta CDF	2021/10/03			99	82 - 122	<1.20, EDL=1.20	pg/L	3.0	25		
7615543	1,2,3,4,7,8,9-Hepta CDF	2021/10/03			99	78 - 138	<1.38, EDL=1.38	pg/L	2.0	25		

Page 20 of 25

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7615543	1,2,3,4,7,8-Hexa CDD	2021/10/03			104	70 - 164	<1.19, EDL=1.19	pg/L	8.3	25		
7615543	1,2,3,4,7,8-Hexa CDF	2021/10/03			103	72 - 134	<1.32, EDL=1.32	pg/L	1.9	25		
7615543	1,2,3,6,7,8-Hexa CDD	2021/10/03			114	76 - 134	<0.906, EDL=0.906	pg/L	0.88	25		
7615543	1,2,3,6,7,8-Hexa CDF	2021/10/03			103	84 - 130	<1.21, EDL=1.21	pg/L	2.9	25		
7615543	1,2,3,7,8,9-Hexa CDD	2021/10/03			111	64 - 162	<0.995, EDL=0.995	pg/L	4.4	25		
7615543	1,2,3,7,8,9-Hexa CDF	2021/10/03			103	78 - 130	<1.37, EDL=1.37	pg/L	0.97	25		
7615543	1,2,3,7,8-Penta CDD	2021/10/03			110	25 - 181	<1.03, EDL=1.03	pg/L	1.8	25		
7615543	1,2,3,7,8-Penta CDF	2021/10/03			107	80 - 134	<1.47, EDL=1.47	pg/L	3.7	25		
7615543	2,3,4,6,7,8-Hexa CDF	2021/10/03			108	70 - 156	<1.29, EDL=1.29	pg/L	1.8	25		
7615543	2,3,4,7,8-Penta CDF	2021/10/03			111	68 - 160	<1.27, EDL=1.27	pg/L	3.5	25		
7615543	2,3,7,8-Tetra CDD	2021/10/03			99	67 - 158	<1.33, EDL=1.33	pg/L	2.0	25		
7615543	2,3,7,8-Tetra CDF	2021/10/03			102	75 - 158	<1.06, EDL=1.06	pg/L	1.9	25		
7615543	Octa CDD	2021/10/03			112	78 - 144	<1.14, EDL=1.14	pg/L	2.6	25		
7615543	Octa CDF	2021/10/03			116	63 - 170	1.31, EDL=1.24	pg/L	3.4	25		
7615543	Total Hepta CDD	2021/10/03					<1.02, EDL=1.02	pg/L				
7615543	Total Hepta CDF	2021/10/03					<1.28, EDL=1.28	pg/L				

Page 21 of 25

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7615543	Total Hexa CDD	2021/10/03					<1.02, EDL=1.02	pg/L				
7615543	Total Hexa CDF	2021/10/03					<1.30, EDL=1.30	pg/L				
7615543	Total Penta CDD	2021/10/03					<1.03, EDL=1.03	pg/L				
7615543	Total Penta CDF	2021/10/03					<1.36, EDL=1.36	pg/L				
7615543	Total Tetra CDD	2021/10/03					<1.33, EDL=1.33	pg/L				
7615543	Total Tetra CDF	2021/10/03					<1.06, EDL=1.06	pg/L				

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

(XM.

Cathy Xu, Scientific Specialist, Ultra Trace Analysis, HRMS

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Farhan Ralman

Farhana Rahman, Senior Analyst

M Di Grazia

Melissa DiGrazia, Operations Manager, HRMS Department

Scham N Patel

Soham Patel, Analyst 2

Tom Mitchell, B.Sc, Supervisor, Compressed Gases

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports.

Page 23 of 25

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

VALIDATION SIGNATURE PAGE(CONT'D)

The analytical data and all QC contained in this report were reviewed and validated by:

For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:				REPO	RT TO:						PROJE	CT INFOR	MATION:			1	Laboratory Use O	nly:
	v Name: #21375 Golde			Company							Quotation	n#	B80	683	7		BV Labs Job #:			Bottle Order #:
tentio	010 01 11 D	115		Attention	Gregor	y Padusenko					P.O.#		21456909		-later			_		I DEBUGARDADE
noi eas	Cambridge ON			Address:			7. 11		-		Project:	lines	2145	00909	0	-	-	-	COC #	842984 Project Manager:
eł.	(519) 620-8182	1 0.4		Tel		20-8182 Ext:			620-987	78	Project N Site #	arne:					2	I ITTU		A CONTRACTOR OF
mail.		tsPayableInvoices@golder.co		Email:		/_Padusenko	@golder.co	ma			Sampled			EN		_			C#842984-01-01	Ema Gitej
M	DE REGULATED DRINKIN SUBMITTED	IG WATER OR WATER INTENI ON THE BV LABS DRINKING	DED FOR HUN	MAN CO N OF CL	NSUMPTION I	MUST BE		-		AN	ALYSIS RE	EQUESTER	DIPLEASE	BE SPECI	F(C)			-	Turnaround Time (TAT) Re Please provide advance notice for	
	Regulation 153 (2011)	Other Regu	A DA		Special In:	structions	cle):	8										Regular (Standard) TAT:	rusir projects
Table	head head		Sewer Bylaw		op or an	a denotio		4											ed if Rush TAT is not specified). T = 5-7 Working days for most tests.	L
Table	2 Ind/Comm Coars						pleas g / Cr	2 41										Please note:	Standard TAT for certain lests such as BO	D and Dioxins/Furans are >
Table		SC MISA Municipality		-			() pe.	ples											ct your Project Manager for details	
		Other					eld Filtered (please c Metals / Hg / Cr VI	(G Ta										Date Require	ic Rush TAT (If applies to entire submit ed:Time	Required:
		ia on Certificate of Analysis (Y/N	17				Pield N	NOSC										Rush Confin	nation Number(call	(ab for #)
-	Sample Barcode Label	Sample (Location) Identification	Date Sar	mpled	Time Sampled	Matrix	-	Ido		-	1	-			1		_	# of Bottles	Commen	ts
ř.		PW21-1	21/09/	03	10:00	GW		X										27	his regard date i	m label
															1					
T											1									-
1	4								-		-		-			-	-			
+				-		-				_	_				_	-				
-		· · · · ·		_							-								REC'D IN WAT	ERLOO
																			1	
																	2		03-Sep-21 1	3:54
									-	-		-							Ema Gitei	
																			I THE REPORT OF THE PARTY OF THE	111
	20 A											-							C1P4129	
				-			-						-		_	_			YTH ENV-12	70
																			On The Par	
1.	RELINQUISHED BY: (SI	ignature/Print) Date:	(YY/MM/DD)	Time	,	RECEIVED B	Y: (Signature/i	Print	D	ate: (YY/N	M/DD)	Ť	ime		used and			Labora	tory Use Only	1
d	Mr. Pail	Mertich 21/	09/03	13:5	5 300	preet	tau	1/The	52	020	903	13:4	54	nor su	bmitted	Time Ser	sitive	Temperatu	ure (°C) on Recai Custody Seal	Yes No
_		NTING, WORK SUBMITTED ON THIS CH			they	TKOLFA	com	(3	11041	03	18-1	15					19/11	12 15/15/15 Intact	

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Bureau Veritas Canada - Mississauga

Attn : Subcontract Coordinator

6740 Campobello Road Mississauga, ON L5N 2L8, Canada

Phone: 905-817-5798 Fax: Works #: 210000568-NR

22-September-2021

Date Rec. :07 September 2021LR Report:CA15208-SEP21Reference:Job#: C1P4129

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Sample ID	Sample Date & Time	Temperature Upon Receipt °C	Bromate mg/L
1: Analysis Start Date			16-Sep-21
2: Analysis Start Time			13:01
3: Analysis Completed Date			22-Sep-21
4: Analysis Completed Time			11:40
5: MAC			0.01
6: MDL			0.005
7: QC - Blank			< 0.005
8: QC - STD % Recovery			98%
9: QC - DUP % RPD			ND
10: NR PW21-1	03-Sep-21 10:00	14.0	< 0.005

MAC - Maximum Acceptable Concentration

MDL - SGS Method Detection Limit

NR - Not regulated / reportable under applicable Provincial drinking water regulations as per client.

ND - Not Detected

Method	Doscri	nti	onc
MELIUU	DESCLI	νι	ULIS

Parameter	Description	SGS Method Code
Bromate	Bromate by Ion Chromatograph	ME-CA-[ENV]IC-LAK-AN-006

desur

Kimberley Didsbury Project Specialist, Environment, Health & Safety

OnLine LIMS

Page 1 of 1 Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sas.ca/en/terms-and-conditions (Printed copies are available upon request.)

General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

golder.com