

PRELIMINARY HYDROGEOLOGICAL INVESTIGATION PROPOSED RESIDENTIAL DEVELOPMENT

6581 Highway 6 Fergus, Ontario

SUBMITTED TO:

Mr. Mike Puopolo Polocorp Inc. 379 Queen Street South Kitchener, ON N2G 1W6

FILE NO: 1495 / February 28, 2025

519-742-8979

February 28, 2025 **FILE NO.:** 1495

Polocorp Inc. 379 Queen Street South Kitchener, ON N2G 1W6

Attention: Mike Puopolo

Preliminary Hydrogeological Investigation

Proposed Residential Development 6581 Highway 6, Fergus, Ontario

This report summarizes the preliminary results of a hydrogeological investigation completed in support of a proposed residential development containing a combination of residential single units, stacked townhouses, mixed-use units, roadways, and parkland, located at 6581 Highway 6 in Fergus, Ontario.

If you have any questions or concerns regarding the report, please contact the undersigned.

Yours truly,

CHUNG & VANDER DOELEN ENGINEERING LTD.

Peter Dao, M.Sc., P.Geo.

Manager, Environmental & Hydrogeology

Page ii

TABLE OF CONTENTS

1 -44	-f-T	Page
	of Transmittal of Contents	ii
	Appendices and Enclosures	 iii
1.0	Introduction	1
2.0	Investigation Scope	2
2.1	Background Data Review	2
2.2	Borehole Drilling & Monitoring Well Installation	2
2.3	Well Development, Water Level Monitoring, & Response Tests	3
3.0	Site Characterization	3
3.1	Topography, Drainage & Wetland Features	3
3.2	Geologic Setting	4
3.3	Hydrogeologic Setting	5
3.	.3.1 Water Table Depth and Configuration	5
3.	.3.2 Groundwater Infiltration and Recharge	5
3.4	Source Water Protection and Groundwater Use	6
4.0	Water Budget Assessment	7
5.0	Site Servicing Requirements & Impact Assessment	8
5.1	Wastewater Systems & Potential Impact of Effluent	8
5.2	Water Supply & Potential Impact of Water Taking	8
5.3	Stormwater Management & Potential Impact to Groundwater Recharge	8
6.0	Conclusions & Recommendations	9
7.0	Closing	10
8.0	References	11

Page iii

LIST OF APPENDICES AND ENCLOSURES

Appendix A Draft Plan of Subdivision (Polocorp, December 10, 2024)

Appendix B FIGURES

Figure 1 – Site Location

Figure 2 – Quaternary Geology

Figure 3 – Watershed Mapping (GRCA)

Figure 4 – Monitoring Well and Piezometer Locations

Figure 5 – Water Table Contours Interpretation (September 18, 2024)

Appendix C Well Response Test Analysis Charts

Appendix D Table 1 – Summary of Groundwater Levels and Elevations & Hydrograph

Appendix E Water Balance Calculation

Appendix F Water Chemistry Results (AGAT Laboratories of Mississauga, Ontario)

Appendix G MECP Well Records

Appendix H Limitations of Report

Enclosure A Soil Abbreviations and Terms Used on Record of Borehole Log Sheets

Enclosures 1 to 5 & 9 to 13 Borehole Log Sheets

Enclosures 22 and 23 Grain Size Distribution Charts

Page 1

1.0 INTRODUCTION

CHUNG & VANDER DOELEN ENGINEERING LTD. (CVD) has been retained by the 'Client', Polocorp Inc., to complete a scoped hydrogeological investigation for the property located at 6581 Highway 6 in Fergus, Ontario ("Site") to support a proposed residential subdivision. The proposed development area comprises part of Lot 17, Concession 16 of the Subject Lands.

The purpose of the investigation is to evaluate existing hydrogeological conditions at the Site in support of a proposal for a residential subdivision and subsequent development, comprised of a combination of residential single units, stacked townhouses, mixed-use units, roadways, and park.

This report presents the preliminary findings of the ongoing hydrogeological investigation, conducted between February and September 2024 for the proposed subdivision. At the time of the writing of this report, only a Draft Plan of Subdivision (Polocorp Inc., December 10, 2024), as provided in Appendix A, was available for our review.

The 20.03±-hectare (ha) Site is currently comprised of a cultivated agricultural field and a residential dwelling with its related structures fronting Highway 6. The Site is bound by Highway 6 to the west and predominantly by agricultural lands to the north, east, and south. An existing residential subdivision is situated southwest of the Site on the opposite side of Highway 6, and another residential subdivision is found approximately 400± m southeast of the property. Figure 1 shows the location of the subject Site in the Town of Fergus.

It is understood that the Site is proposed to be fully municipally serviced with the water and wastewater services. Although no current plans for on-Site stormwater management (SWM) facilities are available, it is expected that the property will be connected to a 2.41± ha sized SWM facility which is proposed to be constructed in the lot directly south of the Site (968 St. David Street North). A roadway network, connected to Highway 6, is planned throughout the subdivision. This investigation characterizes the hydrogeological setting and assesses potential impacts from future servicing. Other characteristics of the future development are to include a 0.89± ha sized parkland (Block 66).

The overall objectives of the hydrogeological investigation are as follows:

- 1. To characterize the hydrogeologic setting, using data from the current and previous investigations, with primary emphasis on the near surface hydrogeologic setting.
- 2. To assess the roles (or functions) that groundwater and surface water have with respect to nearby environmental features at or adjacent to the property.
- 3. To identify and evaluate potential impacts and opportunities to enhance groundwater and surface water contribution to receptors from the proposed development, and to make recommendations to safeguard these features from the potential impacts associated with the development.

As this is a preliminary report, early in the investigation process, the objectives above cannot be fully addressed at this time. An updated report will be provided after the completion of the investigative scope of work.

Page 2

2.0 INVESTIGATION SCOPE

2.1 BACKGROUND DATA REVIEW

The following background information (Section 8.0 lists the specific information), which has been considered and reviewed as part of this investigation:

- CVD Engineering Ltd.; Preliminary Geotechnical Investigation (May 28, 2024)
- Golder; Hydrogeological Investigation, 8243 and 8282 Wellington Road 19, Ontario (February 2022)
- Grounded Engineering; Hydrogeological Assessment, 350 Wellington Road 7, Elora, Ontario (October 2022)
- Government of Canada Environment and Natural Resources; Historical Data; Fergus Shand Dam Weather Station; 2024 Daily Data Reports
- Grand River Conservation Authority; ESRI; ArcGIS; Map Your Property Tool (2024)
- Karrow, P.F.; Pleistocene Geology of the Guelph Area, Southern Ontario; Geological Report 61; Map 22153, scale 1:63,360 (1968) (Figure 2)
- Matrix Solutions Inc.; Centre Wellington Scoped Tier Three Water Budget Assessment (December 2017)
- Polocorp; Draft Plan of Subdivision (December 10, 2024) (Appendix A)
- MECP Water Well Records near Site (Appendix G)
- Toporama Topographical Map (Ministry of Natural Resources, Retrieved June 11, 2024) (Figure 1)
- WSP Canada Inc.; Hydrogeological Investigation Updated, 8243 and 8282 Wellington Road 19, Ontario (April 2023)

2.2 BOREHOLE DRILLING & MONITORING WELL INSTALLATION

As part of both the initial hydrogeological and preliminary geotechnical investigations completed between January 16 and 17, 2024, five (5) boreholes were advanced to depths of between 6.70 and 8.25 m below existing grade, and monitoring wells were installed at each borehole location (labelled BH 1 to 5). A supplemental investigation was completed, between September 11 and 12, 2024, in which eight (8) additional boreholes/monitoring wells (labelled BH 101 to 105) were drilled and installed to depths between 8.10 and 9.60 m below grade. These boreholes/wells were drilled/installed to investigate the shallow subsoil and shallow groundwater table conditions at the property.

The investigation was completed using a track-mounted CME-55 drill rig, equipped with standard 83 mm inner diameter hollow stem augers (HSA) operated by Davis Drilling Ltd. of Milton, Ontario. Soil samples collected during the borehole investigation program were examined in the field and subsequently brought to CVD's laboratory for tactile and textural examination. Moisture content determinations were performed on all retrieved soil samples from the drilling program.

The ground surface elevation of the boreholes, monitoring wells, and geomorphological features of the site were surveyed by CVD for the purpose of this report using a Network RTK Global Navigation Satellite

System (GNSS) Receiver. The survey data was collected using the UTM Zone 17N Projection, NAD83(CSRS)v7-2010 datum and Canada Geoid Model HT2_2010v70 (CGVD28).

2.3 WELL DEVELOPMENT, WATER LEVEL MONITORING, & RESPONSE TESTS

Each monitoring well was developed using Waterra™ polyethylene tubing and foot-valve hand pumps. As of the writing of this report, groundwater level monitoring was performed on five (5) occasions: on February 6, March 11, July 22, September 12, and September 18, 2024. Groundwater levels were obtained at all of the monitoring wells and piezometer locations during each occasion. Table 1 provides a summary of the groundwater levels and calculated elevations for the five monitoring events.

Well response tests (slug/bail tests) were completed at two (2) of the monitoring well locations (Boreholes 1 and 5) on March 11, 2024, to provide a more accurate estimate of the hydraulic conductivity (K) (or permeability) of the saturated aquifer subsoil strata, to assist in providing more accurate infiltration rates. The hydraulic conductivities were calculated through the Aquifer Test software utilizing the Bouwer and Rice method. The results of the tests are graphically presented in Appendix C, and a summary of the data is also included in Table 1.

Furthermore, two (2) grain size distribution analyses were carried out on representative subsoil samples to help identify and assist in providing estimates of hydraulic conductivities for the encountered groundwater-bearing subsoil deposits. The results of these tests are presented in Enclosures 22 and 23.

Additionally, to provide a more comprehensive summary of groundwater conditions at the Site, three (3) Van Essen DI801 10 m TD-Diver automated data loggers and one (1) Baro-Diver were installed in wells BH 1, 5, and 101. The automated monitoring of water level fluctuations at these wells using the data loggers is currently ongoing.

3.0 SITE CHARACTERIZATION

3.1 TOPOGRAPHY, DRAINAGE & WETLAND FEATURES

The Site is located within the Upper Grand River watershed and is split between the West Montrose – Grand River Sub watershed and the Irvine Creek Sub watershed. Locally, the groundwater table and any surface water runoff traverses across the Site in a generally north to south orientation, towards the southern portion of the property and towards a wetland, located southeast of the Site.

According to the Grand River Conservation Authority (GRCA), this wetland southeast of the property is GRCA-regulated and is split into two categories: marsh and swamp. Roughly the northern third of the wetland and a small section of the southeastern side of the area are designated as a swamp wetland, while the remainder of the wetland is designated as a marsh. The wetland includes multiple ponds connected by perennial streams. Occasional intermittent streams can be observed travelling along the north-south axis across the wetland, towards the southern streams/ponds. Various trees, frequent

cattails, and other marsh-related vegetation are present throughout most of the wetland. The GRCA mapping for the regulated lands abreast of the wetlands and water courses are shown on Figure 3.

Regionally, the surface topography decreases significantly towards Guelph and Kitchener/Waterloo, and generally increases north, towards The Grand Valley and Arthur. Elevations also decrease westward, towards Listowel, and significantly decrease eastward, towards Brampton. Currently, the topography in the area is formed from the most recent glacial activity (Wisconsin). The area around Fergus is full of kames associated with the Orangeville Moraine (Karrow, 1968). Figure 1 shows the topographic contours across the Site.

Local Site topography is considered 'rolling land', with ground elevations from north to south across the Site ranging from 430± to 425± mASL. There is also generally a slight increase in surface elevation from east to west, across the Site. The current terrain on-Site is relatively even, with no major undulations, or topographical features. In general, runoff will mimic topography flowing to low elevations where watercourses and wetlands are present. As a result, surface runoff from the farm fields is anticipated to be primarily controlled by topography and to drain towards the relatively lower lying south/wetland southeast of the Site.

Most of the Site consists of a farm field with occasional minor residential/grassy areas fronting Highway 6. Occasional medium to large sized trees can be found along the boundaries of the property.

3.2 GEOLOGIC SETTING

Surface geological mapping for the area (by Karrow P.F., 1968) is presented in the Quaternary Geology map of Figure 2. According to Karrow (1968), the Site is primarily underlain by lacustrine, kame deposits, comprising mainly outwash sands, with an underlying Wentworth till unit. Both deposits were laid down during the late Wisconsinan stage of the Pleistocene period. The local topography of the area has been largely influenced by the presence of The Wentworth Till. The entire area is underlain by dolostone bedrock of the Guelph Formation. This is confirmed through the MECP well record data for drinking water wells in the area surrounding the property, as included in Appendix G. According to the records, bedrock was encountered at depths between 24± and 32± m below existing grade (mbeg). Bedrock outcrops can be found in certain areas around Fergus and are notably present towards the southwest within the Elora Gorge.

The monitoring well recorded data and borehole log data (Enclosures 1 to 5 and 9 to 13) collected during the Site investigation are generally consistent with Quaternary geological mapping. Based on the drilled boreholes, the soils encountered generally consist of 180 to 300 mm of topsoil predominantly underlain by a major deposit of fine to medium sand with trace to some silt which extends to between at least 8.10 and 9.60 mbeg. Occasional silt and/or clayey silt seams were observed within the sand deposit. Minor seams/layers of grey silt were encountered near the bottom of Boreholes 4, 5, 101, 104, and 105, which likely indicate the transition zone to the clayey silt till underlying the area. This clayey silt geological unit is presumed to be the Wentworth Till deposit, referred to in Karrow (1968). It should be

noted that the deposit was not directly encountered during borehole investigation at the Site; however, it is expected that it is present, just at deeper depths.

3.3 HYDROGEOLOGIC SETTING

3.3.1 Water Table Depth and Configuration

The water table exists predominantly within the shallow fine granular deposits (fine to medium sand, silt subsoils) encountered beneath the entire Site. The encountered depth of the groundwater table greatly reduces from north to south across the property. Table 1 summarizes the groundwater level measurements collected thus far during this investigation from the period extending from February 2024 to September 2024 at all of monitoring well locations.

Figure 5 presents an interpretation of the water table configuration and shallow groundwater flow directions across the property using the groundwater elevation measurements gathered on September 18, 2024. As expected, the water table mimics the topography with shallow groundwater flowing southerly towards the south/southeastern portion of the Site in the direction of the nearby wetland.

During the monitoring period, according to the gathered data, groundwater levels were encountered at depths ranging between 4.83 (BH 1) and 2.02 mbeg (BH 5), corresponding to elevations ranging between 425.02 and 423.56 masl according to the July 22, 2024, water levels measurements. It should be noted that these high-water levels documented during the summer season are likely caused by the abnormally high amount of precipitation experienced throughout the first half of 2024. Furthermore, groundwater level monitoring is required to understand the seasonal and yearly variability in groundwater elevations across the Site. Ongoing groundwater monitoring is being conducted on a seasonal basis to provide an evaluation of the seasonal variability of the groundwater table and its fluctuations.

Appendix D includes a summary table of measured groundwater levels (Table 1) and interpreted hydrographs collected during the monitoring period. The hydrographs were plotted against monthly precipitation data sourced from the Government of Canada Environment and Natural Resources Daily Data Reports for the Fergus Shand Dam weather station, the nearest active weather station to the Site.

3.3.2 Groundwater Infiltration and Recharge

Groundwater infiltration rates are expected to be generally high across the Site due to the predominance of the sand deposit and the relatively deep depth of the water table. Infiltration and recharge areas are also heavily influenced by the topographical features of the land, which in this case promotes shallow groundwater to flow towards the south.

Based on the single well response tests and physical examination of the soil deposits, the correlating estimated infiltration rates for the various surficial soils at the property range as follows:

FILE NO.: 1495

February 28, 2025

Page 6

Fine to Medium Sand: 75 to 150 mm/hr

Silty Sand: 15 to 30 mm/hr

Sandy Silt to Sand and Silt: 10 to 20 mm/hr

• Silt: 3 to 5 mm/hr

Clayey Silt Till: <1 mm/hr

According to data layers provided from the GRCA-Web GIS application, the property has a recharge rate of 140± to 320± mm/year. Recharge/infiltration should be generally high due to the ubiquitous presence of the fine sand deposit and its overall 'dry' condition, since the water table during the peak groundwater elevation period (February to March 2024) was encountered at depths of between 2± to 5± mbeg.

3.4 SOURCE WATER PROTECTION AND GROUNDWATER USE

The entire Site is located within the Fergus Wellhead Protection Area (WHPA). Fergus currently has six (6) municipal supply wells (wells F1, F2, F4, F5, F6, F7), with the Site located in between three of these wells (F4, F6, F7). According to data provided on the GRCA-Web GIS application, most of the property is classified as WHPA-C, denoting an area in which travel time is between 2 to 5 years, and with a vulnerability score of 6. The entire eastern boundary of the Site falls with WHPA-B for the municipal well, F6, denoting an area in which the groundwater travel time to the well is 2 years or less, and having a vulnerability score of 8. Both sections are considered to have a medium vulnerability. It should also be noted that the Belwood Reservoir, where the lake levels are controlled by the Fergus Shand Dam, is located along the Grand River, upstream of Fergus.

All six (6) of the existing municipal supply wells pump groundwater from the dolostone bedrock aquifers of the Guelph, Gasport, and Goat Island Formations. They are both primarily cased and open in the Guelph Formation dolostone. One of these six wells (F2), which is now inactive, is a well with groundwater under the direct influence of surface water (GUDI). Transmissivity values of the Fergus wells range between 52 to 395 m²/day (Matrix Solutions Inc., 2017). The wells were drilled to depths of between 76.5 mbeg (F2) and 138.7 mbeg (F7).

Regarding the water quality at the Site, two (2) groundwater samples were submitted from monitoring wells BH 1 and 5 for analysis of general chemistry, nutrients, and metals. These samples were submitted to the AGAT Laboratories of Mississauga for testing/analysis, with results being provided in Appendix F. No major concerns were identified. Elevated levels of iron were present which exceed the aesthetic drinking water objectives; however, this is naturally occurring within the shallow groundwater of the area. Minor amounts of cadmium, cobalt, copper, vanadium, and zinc were also detected. Slightly elevated amounts of sulphate were also detected in monitoring well BH 5. No chemical threats to groundwater at the Site were detected.

4.0 WATER BUDGET ASSESSMENT

Pre-Development Water Balance

Precipitation ultimately becomes split into three 'water budget' components: evapotranspiration, runoff, and recharge, with the latter two often referred to together as 'the water balance' (i.e., the remainder after evapotranspiration is removed). Groundwater recharge rates will vary at a given site based on the permeability of the surficial deposits but will also depend on topography and type of vegetative cover. Most of the subject property has been historically agricultural and has had different types of crops depending on the year, with no crop planted at all during certain portions of the year.

A pre-development water balance for the property has been estimated using the Water Balance Method (WBM) of Thornthwaite and Mather (1957), a method cited in the MECP document "Stormwater Management Planning and Design Manual" (March 2003) to estimate evapotranspiration. The calculations utilize the 1981-2010 'Climate Normals' from the closest weather station located at the Fergus Shand Dam (gives an annual precipitation rate of 946 mm/yr) and considers a combination of cultivated land use with moderately deep-rooted crops (e.g. wheat), pasture & lawns, and impervious surfaces. Using these conditions, the subject Site has an average evapotranspiration rate of about 56.5% (or 536 mm/yr) and remaining 'water balance' of about 43.5% (410 mm/yr) is estimated. The 2003 MECP document also provides a methodology for estimating the proportions of the water balance that ultimately become runoff vs. recharge, based on applicable infiltration factors for soil, vegetative cover, and topography.

The overall water balance and water budget calculations are included in Appendix E. In summary, the pre-development average annual water budget for the 20.03± ha property is as follows:

A) Pervious Cultivated Land of 18.86 ha

Precipitation	946 mm/yr	178,349 m³/yr
Evapotranspiration	536 mm/yr	101,010 m³/yr
Water Balance	410 mm/yr	77,339 m³/yr
Recharge	287 mm/yr	54,137 m³/yr
Runoff	123 mm/yr	23,202 m ³ /yr

B) Pervious Pasture & Lawns of 1.00 ha

Precipitation	946 mm/yr	9,459 m³/yr
Evapotranspiration	536 mm/yr	5,357 m³/yr
Water Balance	410 mm/yr	4,102 m³/yr
Recharge	308 mm/yr	3,076 m³/yr
Runoff	103 mm/yr	1,025 m³/yr

Page 8

C) Impervious Rooftops to Pervious Areas of 0.17 ha

Precipitation	946 mm/yr	1,627 m³/yr
Evapotranspiration	95 mm/yr	163 m³/yr
Water Balance	851 mm/yr	1,464 m³/yr
Recharge	213 mm/yr	366 m³/yr
Runoff	638 mm/yr	1,098 m³/yr

The target recharge quantity for matching in post-development is 57,580 m³/yr. Recharge can likely be met through a stormwater management design utilizing enhanced infiltration facilities as Low Impact Development (LID) infrastructure for the developed Site.

5.0 SITE SERVICING REQUIREMENTS & IMPACT ASSESSMENT

5.1 WASTEWATER SYSTEMS & POTENTIAL IMPACT OF EFFLUENT

The proposed subdivision will be connected to municipal sanitary sewers. No private wastewater treatment system requirements are anticipated for the proposed subdivision.

5.2 WATER SUPPLY & POTENTIAL IMPACT OF WATER TAKING

The proposed subdivision will be serviced by municipal water services. No private water supply service requirements are anticipated.

5.3 STORMWATER MANAGEMENT & POTENTIAL IMPACT TO GROUNDWATER RECHARGE

The proposed subdivision will be serviced by municipal stormwater management works; however, at the time of the writing of this report, no specific design drawings/plans were available. It is understood there are plans to connect the proposed development at the Site to the 2.41± ha SWM facility that is proposed for a separate subdivision development on the adjacent lot south of the Site. The general shallow groundwater gradient travels towards the proposed location of the SWM facility. As the realization of the project proceeds, addendums addressing stormwater management and any theoretical impacts to groundwater recharge including proposed LID infrastructure at the Site may be provided during the detailed design stage.

It is recommended that water balance and quality of water are maintained throughout the property, and any potential effects associated with erosion and sedimentation control to the topographical/environmental features are properly designed and controlled.

The Stormwater Management Planning and Design Manual (March 2003) provided by the Ministry of Environment may be used as a reference to the planning of the stormwater systems. Additionally, the

Township of Centre Wellington Sewer Use By-Law No. 2022-66 should be consulted.

Further groundwater monitoring is being performed to better understand the water table and its seasonal variations to support development design.

Due to the abundance of 'dry' and highly permeable sands throughout much of the Site, infiltration galleries, open ditches and/or swales, and or soak away pits can be constructed into the sandy soils to maintain pre-development recharge rates. Further recommendations may be provided once a more detailed plan is available.

6.0 CONCLUSIONS & RECOMMENDATIONS

Based on the results of the hydrogeological investigation described in this report, the following conclusions and recommendations are provided:

- 1. The subject property is predominantly underlain by fine to medium grained sand deposits of the late Wisconsin stage of the Pleistocene period, which likely reduce in thickness from north to south across the property. A clayey silt till deposit, likely the Wentworth Till, is believed to underly the fine granular deposits. During the spring to early summer 2024 period, the groundwater table depths ranged between 5.39 (BH 1) and 1.99 mbeg (BH 5) across the property, corresponding to elevations between 425.02 and 423.56 masl.
- 2. Topography decreases in elevation from north to south with ground surface elevations approximately ranging from between 430± to 425± mASL. Shallow groundwater generally mimics the topography of the Site and flows towards the southern portion of the property and towards the nearby wetland located southeast of the Site.
- 3. Due to the predominance of the underlying fine sand deposits with a high infiltration rate (100± mm/hr), and the relatively deeper lying groundwater table of the Site (2± to 5± mbeg, March 2024), infiltration/recharge opportunities throughout the Site should be abundant. Based on the calculated pre-development water balance, the Site has an average evapotranspiration rate of about 56.5% (or 536 mm/yr) and a remaining 'water balance' of about 43.5% (410 mm/yr) is estimated. The target recharge quantity for matching in post-development is 57,580 m³/yr.
- 4. The property falls within the Fergus Wellhead Protection Area (WHPA) and is currently classified as WHPA-C and WHPA-B with an overall medium vulnerability rating between 6 and 8. The property is located between three (3) of the six (6) Fergus municipal supply wells. No chemical threats or concerns were identified within the property bounds.
- 5. Site servicing (wastewater, water supply, stormwater management) for the development is to be fully municipally supplied. At the time of the writing of this report, no specific design drawings / plans were available. It is also recommended that as design plans are updated and information becomes available, addendums be added to address the specific site servicing issues.

- 6. Seasonal groundwater monitoring is incomplete and is ongoing at the Site to better characterize the hydrogeological setting and groundwater/surface water interactions.
- 7. It is recommended that once finished floor elevations and a site grading plan are available, that CVD be retained to review the final design and provide updates to the recommendations and conclusions provided in this report. Based on the final design, additional boreholes/monitoring wells might be required to delineate the extent of the water table and provide additional information.

7.0 **CLOSING**

This hydrogeological investigation report has been prepared for the exclusive use of the Client and their assigns for specific application to this project property.

The assessment was conducted in accordance with the verbal and written requests from the Client, and generally accepted assessment practices. Performance of this assessment is intended to reduce, but not eliminate, uncertainty regarding the hydrogeological conditions encountered at the project site, given reasonable limits of time and cost. No other warranty, expressed or implied, is made.

We trust this report is sufficient for your immediate requirements. If you have any questions, please do not hesitate to contact the undersigned.

Respectfully submitted,

CHUNG & VANDER DOELEN ENGINEERING LTD.

Yaroslav Chudin, EIT

Peter Dao, M.Sc., P.Geo.

Manager, Environmental & Hydrogeology

Geotechnical Engineering Intern

Gavin R. O'Brien M.Sc., P.Geo. Senior Hydrogeologist

Gavin ROBrien

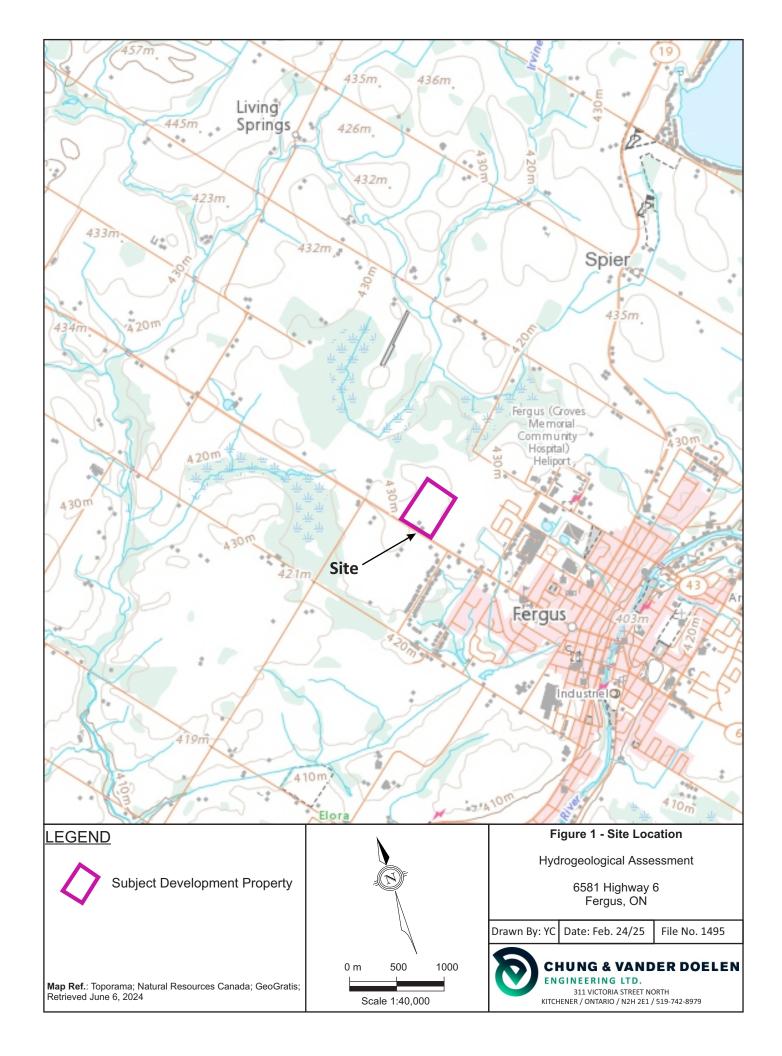
8.0 REFERENCES

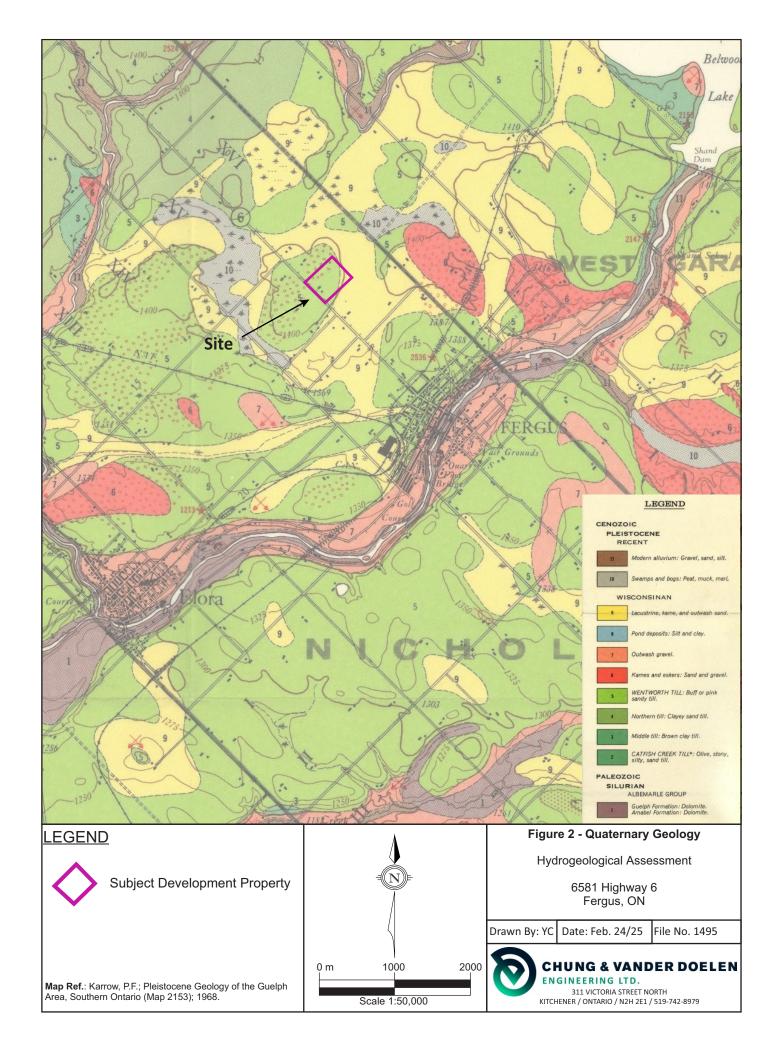
The following documents, maps, or other publications have been used in the preparation of this report.

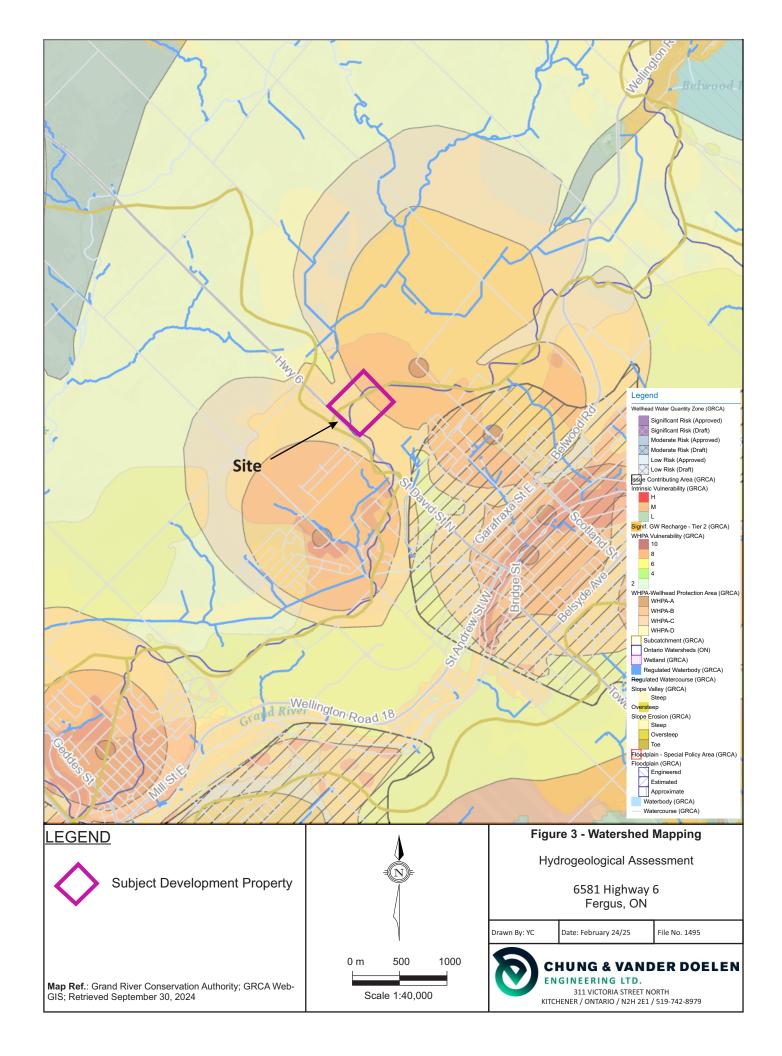
- "Centre Wellington Scoped Tier Three Water Budget Assessment", Matrix Solutions Inc. (December 2017).
- "Draft Plan of Subdivision", Polocorp (December 10, 2024).
- "Historical Data; Fergus Shand Dam Weather Station; 2024 Daily Data Reports" Government of Canada Environment and Natural Resources; Retrieved October 1, 202
- "Preliminary Geotechnical Investigation: Proposed Residential Subdivision", Project No.: 1495,
 CVD Engineering Ltd. (May 28, 2024)
- "Hydrogeological Assessment, 350 Wellington Road 7, Elora, Ontario", Grounded Engineering (October 2022)
- "Hydrogeological Investigation, 8243 and 8282 Wellington Road 19, Ontario", Golder (February 2022)
- "Hydrogeological Investigation Updated, 8243 and 8282 Wellington Road 19, Ontario", WSP Canada Inc. (April 2023)
- "Map Your Property Tool", Grand River Conservation Authority; ESRI; ArcGIS (2024)
- "Pleistocene Geology of the Guelph Area, Southern Ontario; Geological Report 61", Map 22153, scale 1:63,360, Karrow, P. F. (1968).
- Toporama Topographical Map, Ministry of Natural Resources (Retrieved June 11, 2024)

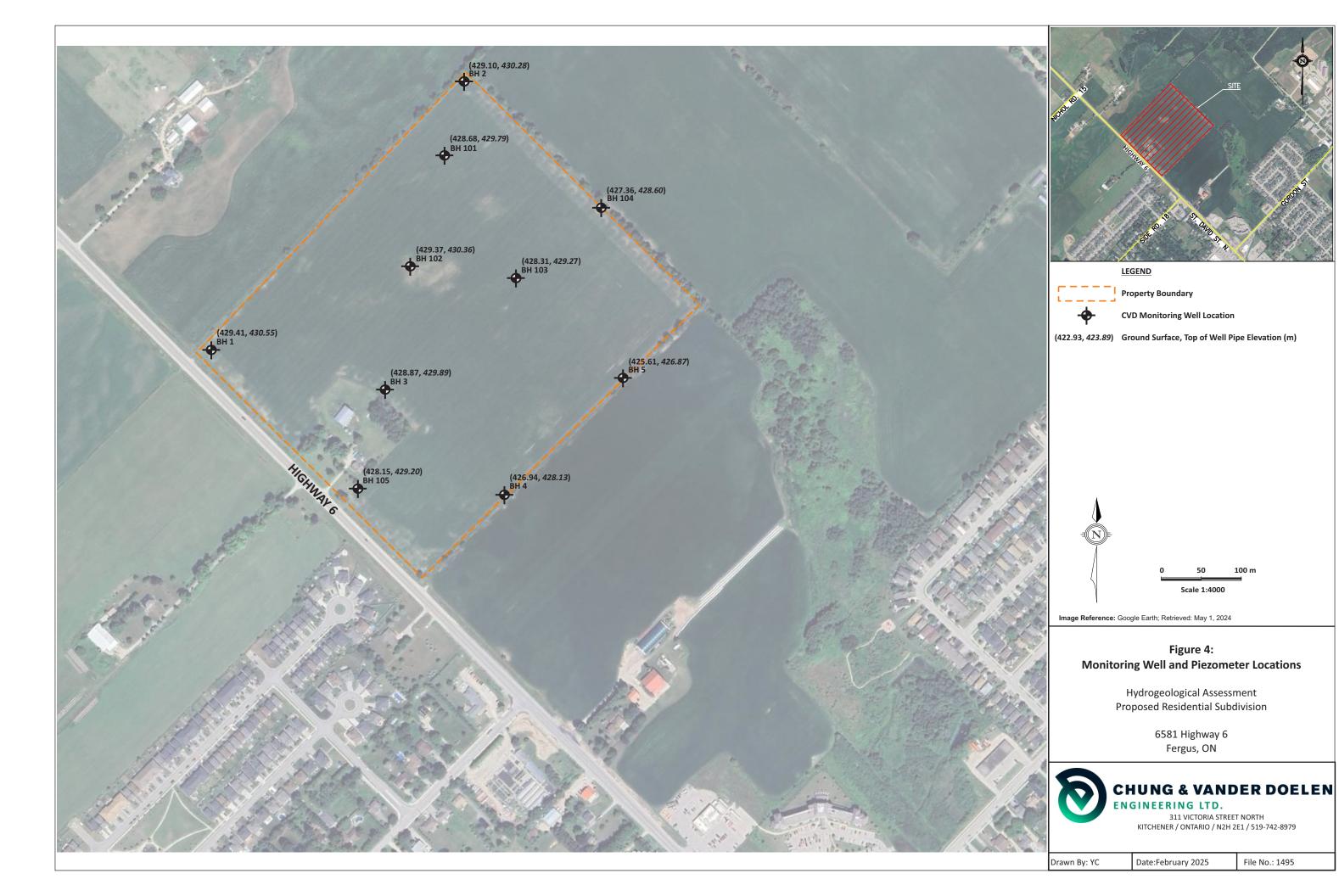
				_
ΛП	DE	ND	IV	Λ
AP	PC	ND	IA	Н

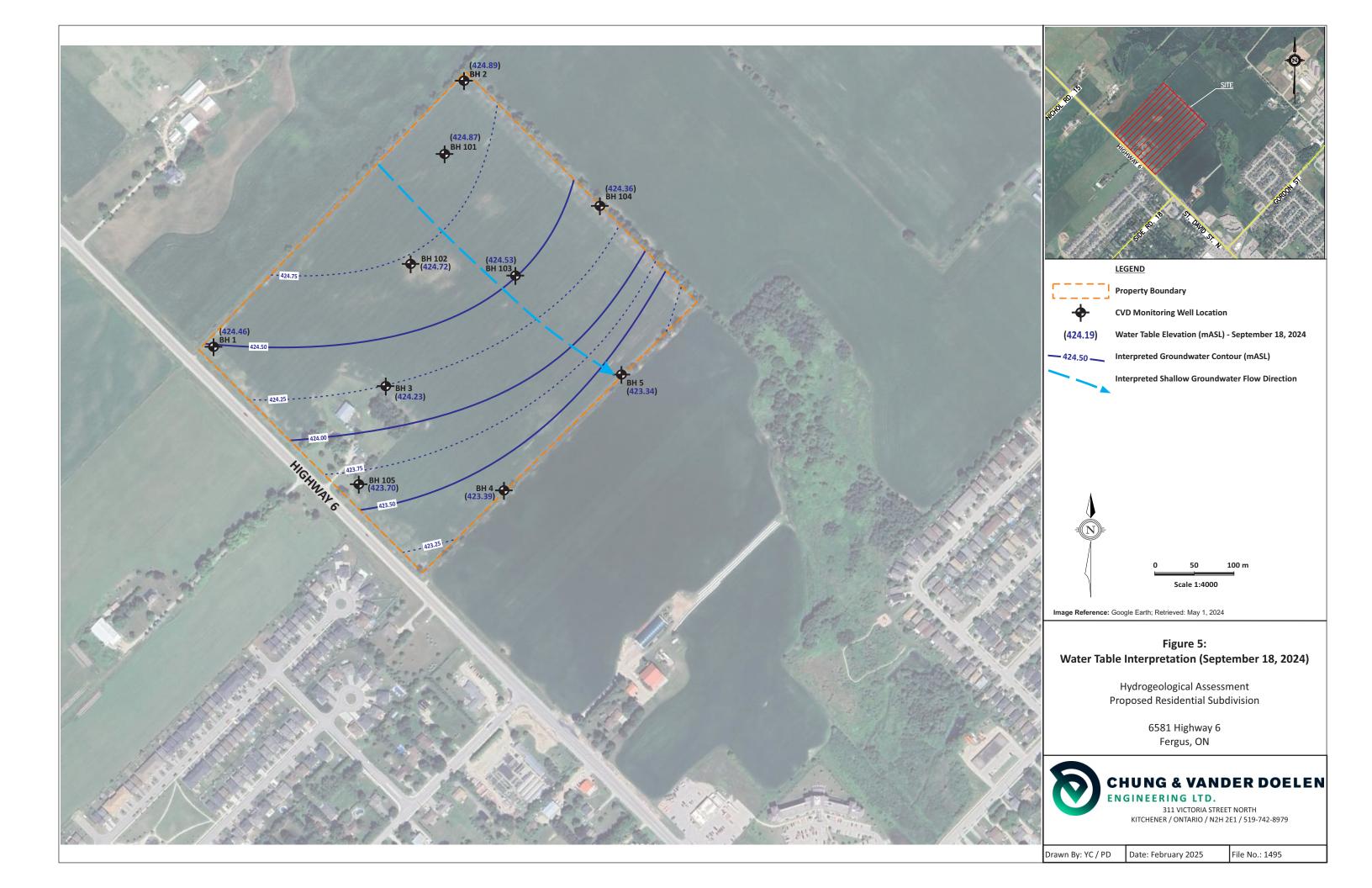
Conceptual Subdivision Plan (Polocorp, December 10, 2024)






APPENDIX B


Figures 1 to 5



APPENDIX C

Well Response Test Analysis Charts

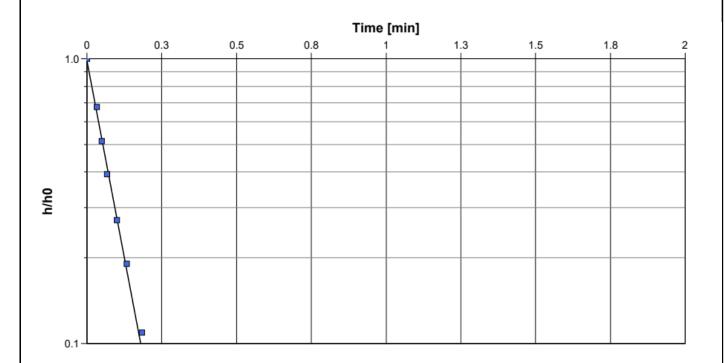
CHUNG & VANDER DOELEN

ENGINEERING LTD.

311 Victoria Street North Kitchener / Ontario / N2H 5E1 519-742-8979

Respons	Page 1 of 2	
Project:	Polocorp Fergus Subdivision	

Number: 1495


Client: Polocorp Inc.

Location: 968 St. David Street North & 6581 Highway 6, Fergus, ON Response Test: BH 1

Test Conducted by: Y.C. Test Date: 2024-03-11 Aquifer Thickness: 2.90 m

Water level at t=0 [m]: 5.46 Static Water Level [m]: 5.22 Water level change at t=0 [m]: 0.25

	Time [min]	Water Leve [m]	WL Change [m]
1	0	5.462	0.247
2	0.0333	5.382	0.167
3	0.05	5.342	0.127
4	0.0667	5.312	0.097
5	0.1	5.282	0.067
6	0.1333	5.262	0.047
7	0.1833	5.242	0.027
8	0.2333	5.232	0.017
9	0.45	5.225	0.01
10	0.6	5.222	0.007
11	0.9833	5.22	0.005
12	1.2667	5.217	0.002

Calculation	using	Bouwer	&	Rice
-------------	-------	--------	---	------

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH 1	1.06 × 10 ⁻⁴	

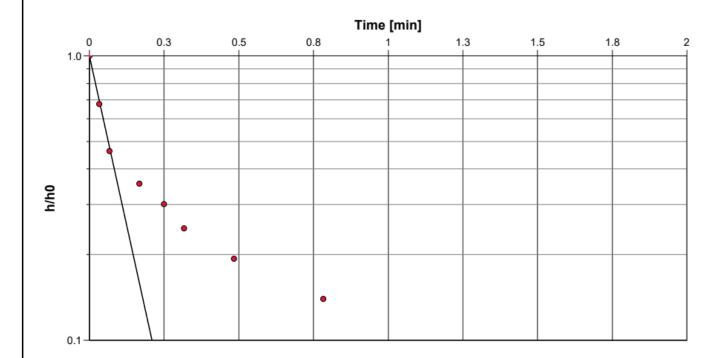
CHUNG & VANDER DOELEN

ENGINEERING LTD.

311 Victoria Street North Kitchener / Ontario / N2H 5E1 519-742-8979

Respons	Page 2 of 2	
Project:	Polocorp Fergus Subdivision	

Number: 1495


Client: Polocorp Inc.

Location: 968 St. David Street North & 6581 Highway 6, Fergus, ON Response Test: BH 5

Test Conducted by: Y.C. Test Date: 2024-03-11 Aquifer Thickness: 6.20 m

Water level at t=0 [m]: 2.09 Static Water Level [m]: 1.99 Water level change at t=0 [m]: 0.09

	Time [min]	Water Leve [m]	el WL Change [m]
	[]	ניין	נייין
1	0	2.087	0.093
2	0.0333	2.057	0.063
3	0.0667	2.037	0.043
4	0.1667	2.027	0.033
5	0.25	2.022	0.028
6	0.3167	2.017	0.023
7	0.4833	2.012	0.018
8	0.7833	2.007	0.013
9	1.1167	2.002	0.008
10	1.55	2.00	0.006

Calculation using Bouwer & Rice

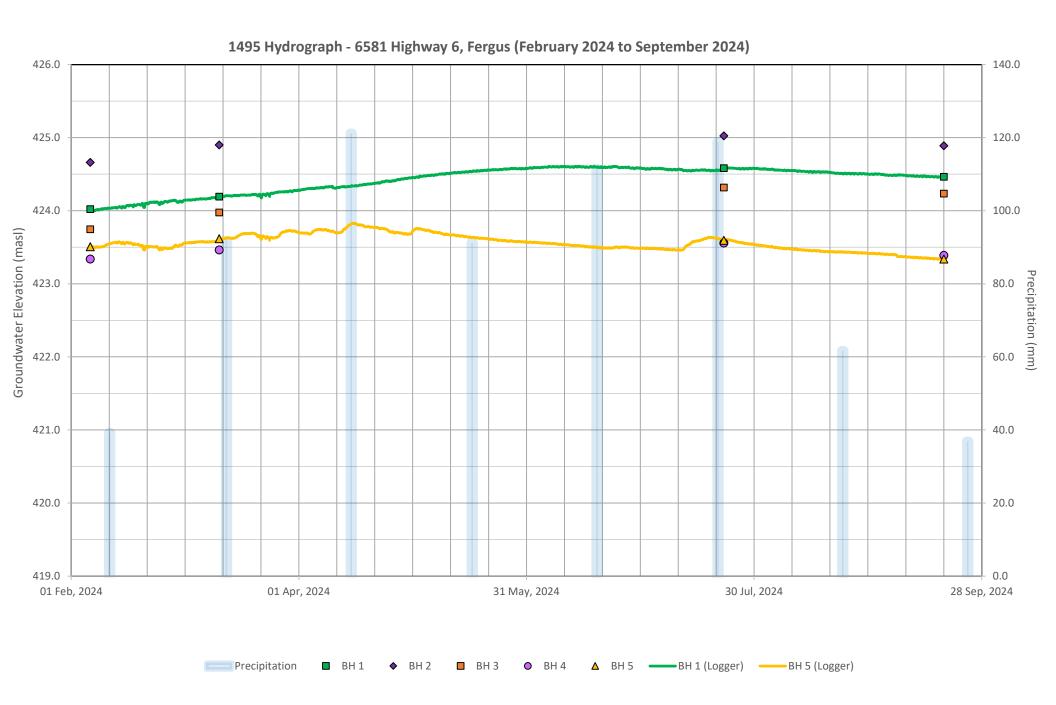
Observation Well	Hydraulic Conductivity	
	[m/s]	
BH 5	8.69 × 10 ⁻⁵	

APPENDIX D

Table 1 – Water Level Measurements & Hydrograph (February 2024 to September 2024)

Ground Top Pipe Pipe Length Well Elevation Elevation (m)				Hydraulic Conductivity	Water Level (m Below Ground)					Water Elevation (m Above Sea Level)						Fluctuation Relative to February 6, 2024 (m)						
	(mASL)	(mASL)	,	(m/s)	10-Nov-23	12-Dec-23	06-Feb-24	11-Mar-24	22-Jul-24	12-Sep-24	18-Sep-24	10-Nov-23	12-Dec-23	06-Feb-24	11-Mar-24	22-Jul-24	12-Sep-24	18-Sep-24	11-Mar-24	22-Jul-24	12-Sep-24	18-Sep-24
BH 1	429.41	430.55	1.14	1 x 10 ⁻⁴			5.39	5.22	4.83		4.94			424.02	424.19	424.58		424.46	0.17	0.56		0.44
BH 2	429.10	430.28	1.18	-			4.44	4.20	4.08		4.21			424.66	424.90	425.02		424.89	0.24	0.36		0.23
BH 3	428.87	429.89	1.02	-			5.12	4.89	4.55		4.64			423.75	423.98	424.32		424.23	0.23	0.57		0.49
BH 4	426.94	428.13	1.18	-			3.61	3.48	3.39		3.56			423.34	423.46	423.56		423.39	0.13	0.22		0.05
BH 5	425.61	426.87	1.26	9 x 10 ⁻⁵			2.10	1.99	2.02		2.27			423.51	423.62	423.59		423.34	0.11	0.09		-0.17
BH 101	428.68	429.79	1.10	-						3.80	3.82						424.88	424.87				ŀ
BH 102	429.37	430.36	0.99	-						4.64	4.65						424.73	424.72				
BH 103	428.31	429.27	0.96	-						3.76	3.77						424.55	424.53				ŀ
BH 104	427.36	428.60	1.25	-						2.97	3.00						424.39	424.36				
BH 105	428.15	429.20	1.05	-						4.44	4.45						423.71	423.70				

Notes:


¹⁾ All Elevations Referenced to Geodetic Survey by CVD.

²⁾ **Bolded** elevations represent the maximum water table aquifer elevation measured at each monitoring well throughout all seasons.

³⁾ Negative water level indicates that water level is above ground.

^{4) :} Monitoring well/piezometer dry

⁵⁾ Negative fluctuation indicates drop in water level relative to baseline.

APPENDIX E

Water Balance Calculation

Pervious Areas (Cultivated Land and Grassed Pasture, with Trees and Shubs)

Determination of Evapotranspiration a	nd Water	Palance (Compone	ate by We	tor Palane	o Mothod	(Thornthu	aita 9 Mat	hor 1957)						
Precipitation: Fergus Shand Dam (1981-2010)			•	•			•		, ,						
reophation: rergas chana barr (1901-2010)	, vegetation	i. Woderda	oly Doop Of	opo, mataro	Crasses with	1 11005/01101	55, GOII. 1 III	o cana ana c	Jidy						
	Units	Annual	% Total	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
Temperature	deg C	6.68		-7.4	-6.3	-1.9	5.7	12.2	17.5	20.0	19.0	14.9	8.3	2.1	-3.9
Heat Index (i)	-	35.09		0.00	0.00	0.00	1.22	3.86	6.66	8.16	7.55	5.22	2.15	0.27	0.00
Unadjusted PET (UPET)	mm/day	1.038		0.00	0.00	0.00	0.87	1.91	2.78	3.20	3.03	2.35	1.28	0.31	0.00
latitude correction (r)	-			24.3	24.5	30.6	33.6	37.9	38.5	38.8	36	31.2	28.5	24.2	23
Potential Evapotranspiration (PET)	mm	559.3		0.0	0.0	0.0	29.2	72.5	107.1	124.0	109.1	73.5	36.5	7.4	0.0
Precipitation (P)	mm	945.9	100.0	67.9	55.9	59.6	74.1	86.9	83.8	89.2	96.6	93.1	77.2	93	68.6
P - PET	mm			67.9	55.9	59.6	44.9	14.4	-23.3	-34.8	-12.5	19.6	40.7	85.6	68.6
Accum. Water Loss	mm							0.0	-23.3	-58.1	-70.6				
Soil Moisture Retention (Storage - ST)	mm			75.0	75.0	75.0	75.0	75.0	54.0	34.0	28.0	47.6	75.0	75.0	75.0
Storage Change (ΔST)	mm			75.0	0.0	0.0	0.0	0.0	-21.0	-20.0	-6.0	19.6	27.4	0.0	0.0
Actual Evapotranspiration (AE)	mm	535.7	56.6	0.0	0.0	0.0	29.2	72.5	104.8	109.2	102.6	73.5	36.5	7.4	0.0
Water Balance as Surplus/Deficit	mm	410.2	43.4	67.9	55.9	59.6	44.9	14.4	-21.0	-20.0	-6.0	19.6	40.7	85.6	68.6
Determination of Water Balance as 'Co	ombined-R	unoff' (R	echarge +	Direct Ru	noff) - (usi	ng WBM A	ssumption	ns)							
Soil Moisture Surplus (SMS)	mm	158.2		0.0	0.0	0.0	44.9	14.4	0.0	0.0	0.0	0.0	13.3	85.6	0.0
Water Balance from SMS (Assumption 1)	mm	144.8		10.8	5.4	2.7	23.8	19.1	9.6	4.8	2.4	1.2	0.6	43.1	21.5
				0.03	0.01	0.00	0.00	7.20	3.60	1.80	0.90	0.45	0.22	0.11	0.06
				0.04	0.02	0.01	22.47	11.23	5.62	2.81	1.40	0.70	0.35	0.18	0.09
				10.69	5.35	2.67	1.34	0.67	0.33	0.17	0.08	0.04	0.02	42.78	21.39
Accumulated Snow (Assumption 2)	mm	252.0		0.0	0.0	0.0	252.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Balance from Snow (Assumption 3)	mm	252.0		0.5	0.3	0.1	25.2	113.4	56.7	28.4	14.2	7.1	3.5	1.8	0.9
Water Balance as 'Combined-Runoff'	mm	396.8	42.0	11.3	5.7	2.8	49.0	132.5	66.3	33.1	16.6	8.3	4.1	44.8	22.4

Assumptions for Monthly 'Combined-Runoff' Estimations (from WBM):

- 1 Combined 'Runoff' from the Soil Moisture Surplus is assumed to be 50% in the first month and then 50% of the remaining soil surplus each following month.
- 2 All Snow is Accumulated and Stored throughout Winter Sub-Zero Months (i.e. No melt until first above-zero month)
- 3 Combined 'Runoff' from Snowmelt is assumed to be 10% of the Accumulated Snow in the first month and then 50% of the remaining snowmelt in each following month.

Determination of Recharge + Direct Runoff Components - using MOE Infiltration Factor Method (MOE 1995, 2003)															
MOE Infiltration Factors (0 to 1.00)									Annua	l Rates		Annual Rates			
Catchment Area (m²)		WOL minuauon i actors (0 to 1.00)							Balance	Recharge	Runoff	EvapoT	Balance	Recharge	Runoff
	Topography		Soil		Cover		Sum	(mm)	(mm)	(mm)	(mm)	(m³/yr)	(m³/yr)	(m³/yr)	(m³/yr)
Pervious, Cultivated Land	Rolling	0.2	Sand	0.4	Cultivated	0.1	0.7	535.7	410.2	287.1	123.1	101,010	77,339	54,137	23,202
188,550 m2								56.6%	43.4%	30.4%	13.0%	56.6%	43.4%	30.4%	13.0%
Pervious, Pasture & Lawns	Rolling	0.2	Sand	0.4	Pasture	0.15	0.75	535.7	410.2	307.6	102.5	5,357	4,102	3,076	1,025
10,000 m2					& Lawns			56.6%	43.4%	32.5%	10.8%	56.6%	43.4%	32.5%	10.8%
Pervious, Woodland/Wetland	Rolling	0.2	Sand	0.4	Woodland	0.2	0.8	535.7	410.2	328.1	82.0	0	0	0	0
0 m2					& Wetland			56.6%	43.4%	34.7%	8.7%	0.0%	0.0%	0.0%	0.0%
Impervious Rooftops to Pervious Areas							0.25	94.6	851.3	212.8	638.5	163	1,464	366	1,098
1,720 m2								10.0%	90.0%	22.5%	67.5%	10.0%	90.0%	22.5%	67.5%
Total Site					-	•		•	•			106,530	82,905	57,580	25,325
200,270 m2												56.2%	43.8%	30.4%	13.4%

Assumptions for Evapotranspiration/Recharge/Runoff Proportioning

- 1 Pervious Areas by MOE Infiltration Factor Method (MOE 1995, 2003)
- 2 Impervious Areas Shed to Pervious Areas Assume 10% Lost to Evapotranspiration and Balance Split 25/75% to Recharge/Runoff

APPENDIX F

Water Chemistry Results (AGAT Laboratories of Mississauga, Ontario)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: CHUNG AND VANDER DOELEN 311 VICTORIA STREET NORTH KITCHENER, ON N2H5E1 (519) 742-8979

ATTENTION TO: Yaroslav Chudin

PROJECT: 1495

AGAT WORK ORDER: 24T129206

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: Mar 22, 2024

PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 24T129206

PROJECT: 1495

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: CHUNG AND VANDER DOELEN SAMPLING SITE:968 ST. DAVID ST. N. FERGUS

ATTENTION TO: Yaroslav Chudin

SAMPLED BY:Y.C.

Water Quality Assessment - PWOO (mg/L)

			٧١	rater Quali	ty Assessm	ent - PWQC	(mg/L)		
DATE RECEIVED: 2024-03-13									DATE REPORTED: 2024-03-22
		SAM	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:		BH5 Water 2024-03-11 11:30	BH6 Water 2024-03-11 11:30		BH7 Water 2024-03-11 11:30	
Parameter	Unit	G/S	RDL	5722603	5722663	5722665	RDL	5722666	
Electrical Conductivity	μS/cm		2	480	497	596	2	1620	
ρΗ	pH Units	6.5-8.5	NA	7.43	7.64	7.62	NA	7.41	
Saturation pH (Calculated)				6.53	6.62	6.72		6.36	
_angelier Index (Calculated)				0.896	1.02	0.896		1.05	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	679	688	664	0.5	1260	
Total Dissolved Solids	mg/L		10	224	338	412	10	706	
Alkalinity (as CaCO3)	mg/L		5	291	255	206	5	271	
Bicarbonate (as CaCO3)	mg/L		5	291	255	206	5	271	
Carbonate (as CaCO3)	mg/L		5	<5	<5	<5	5	<5	
Hydroxide (as CaCO3)	mg/L		5	<5	<5	<5	5	<5	
Fluoride	mg/L		0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	
Chloride	mg/L		0.10	9.18	2.04	27.3	0.12	269	
Nitrate as N	mg/L		0.05	1.48	12.8	24.9	0.05	< 0.05	
Nitrite as N	mg/L		0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	
Bromide	mg/L		0.05	< 0.05	< 0.05	<0.05	0.05	< 0.05	
Sulphate	mg/L		0.10	1.62	30.1	6.71	0.10	31.5	
Ortho Phosphate as P	mg/L		0.10	<0.10	<0.10	<0.10	0.10	<0.10	
Ammonia as N	mg/L		0.02	0.05	0.06	<0.02	0.02	0.03	
Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.000002	0.000774	0.00151	< 0.000002	0.000002	0.000453	
Total Phosphorus	mg/L	*	0.02	0.73	0.74	1.22	0.06	2.03	
Total Organic Carbon	mg/L		0.5	7.6	9.2	8.4	0.5	14.4	
Frue Colour	TCU		2.50	<2.50	<2.50	<2.50	2.50	4.55	
Turbidity	NTU		0.5	92.5	192	60.3	0.5	97.6	
Fotal Calcium	mg/L		0.20	204	209	192	0.20	394	
Total Magnesium	mg/L		0.10	41.1	40.4	44.9	0.10	65.9	
Total Potassium	mg/L		0.50	3.04	3.57	3.32	0.50	6.64	
Total Sodium	mg/L		0.10	3.94	4.32	3.03	0.10	98.5	
Aluminum-dissolved	mg/L	*	0.004	0.004	0.008	<0.004	0.004	< 0.004	
Total Antimony	mg/L	0.020	0.003	<0.003	< 0.003	<0.003	0.003	< 0.003	

Certified By:

Inis Verastegui

CLIENT NAME: CHUNG AND VANDER DOELEN

SAMPLING SITE:968 ST. DAVID ST. N. FERGUS

Certificate of Analysis

AGAT WORK ORDER: 24T129206

PROJECT: 1495

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Yaroslav Chudin

SAMPLED BY:Y.C.

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2024-03-13									DATE REPORTED: 2024-03-22
			CRIPTION: PLE TYPE: SAMPLED:	BH1 Water 2024-03-11	BH5 Water 2024-03-11	BH6 Water 2024-03-11		BH7 Water 2024-03-11	
Parameter	Unit	G/S	RDL	11:30 5722603	11:30 5722663	11:30 5722665	RDL	11:30 5722666	
Total Arsenic	mg/L	0.1	0.003	0.006	0.008	0.007	0.003	0.007	
Total Barium	mg/L		0.002	0.043	0.059	0.050	0.002	0.203	
Total Beryllium	mg/L	*	0.001	<0.001	<0.001	<0.001	0.001	< 0.001	
Total Boron	mg/L	0.2	0.010	0.026	0.031	0.017	0.010	0.031	
Total Cadmium	mg/L	0.0002	0.0001	0.0003	0.0003	0.0003	0.0001	0.0004	
Total Chromium	mg/L		0.003	0.011	0.018	0.011	0.003	0.042	
Total Cobalt	mg/L	0.0009	0.0005	0.0066	0.0096	0.0084	0.0005	0.0137	
Total Copper	mg/L	0.005	0.002	0.021	0.029	0.030	0.002	0.037	
Total Iron	mg/L	0.3	0.050	12.2	18.0	15.2	0.050	31.5	
Total Lead	mg/L	*	0.0005	0.0224	0.0322	0.0318	0.0005	0.0249	
Total Manganese	mg/L		0.002	0.651	0.860	0.991	0.002	1.03	
Total Mercury	mg/L		0.0001	<0.0001	<0.0001	<0.0001	0.0001	< 0.0001	
Total Molybdenum	mg/L	0.040	0.002	< 0.002	< 0.002	<0.002	0.002	< 0.002	
Total Nickel	mg/L	0.025	0.003	0.012	0.019	0.018	0.003	0.032	
Total Selenium	mg/L	0.1	0.002	< 0.002	0.004	<0.002	0.002	0.004	
Total Silver	mg/L	0.0001	0.0001	< 0.0001	< 0.0001	<0.0001	0.0001	< 0.0001	
Total Strontium	mg/L		0.005	0.298	0.281	0.304	0.005	0.670	
Total Thallium	mg/L	0.0003	0.0003	< 0.0003	<0.0003	< 0.0003	0.0003	< 0.0003	
Total Tin	mg/L		0.002	0.002	0.002	0.002	0.002	< 0.002	
Total Titanium	mg/L		0.010	0.199	0.325	0.302	0.010	0.832	
Total Tungsten	mg/L	0.030	0.010	<0.010	<0.010	<0.010	0.010	< 0.010	
Total Uranium	mg/L	0.005	0.0005	<0.0005	0.0006	<0.0005	0.0005	0.0023	
Total Vanadium	mg/L	0.006	0.002	0.017	0.022	0.017	0.002	0.052	
Total Zinc	mg/L	0.030	0.020	0.153	0.185	0.136	0.020	0.498	
Total Zirconium	mg/L	0.004	0.004	<0.004	< 0.004	<0.004	0.004	0.004	
Lab Filtration Aluminum Dissolved				Υ	Υ	Υ		Υ	

Certified By:

Inis Verastegui

Certificate of Analysis

AGAT WORK ORDER: 24T129206

PROJECT: 1495

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: CHUNG AND VANDER DOELEN SAMPLING SITE:968 ST. DAVID ST. N. FERGUS

ATTENTION TO: Yaroslav Chudin SAMPLED BY:Y.C.

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2024-03-13 DATE REPORTED: 2024-03-22

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5722603-5722666 Dilution required, RDL has been increased accordingly.

Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as

calculated.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

Exceedance Summary

AGAT WORK ORDER: 24T129206

PROJECT: 1495

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: CHUNG AND VANDER DOELEN ATTENTION TO: Yaroslav Chudin

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
5722603	BH1	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cadmium	mg/L	0.0002	0.0003
5722603	BH1	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cobalt	mg/L	0.0009	0.0066
5722603	BH1	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Copper	mg/L	0.005	0.021
5722603	BH1	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	12.2
5722603	BH1	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Vanadium	mg/L	0.006	0.017
5722603	BH1	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Zinc	mg/L	0.030	0.153
5722663	BH5	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cadmium	mg/L	0.0002	0.0003
5722663	BH5	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cobalt	mg/L	0.0009	0.0096
5722663	BH5	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Copper	mg/L	0.005	0.029
5722663	BH5	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	18.0
5722663	BH5	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Vanadium	mg/L	0.006	0.022
5722663	BH5	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Zinc	mg/L	0.030	0.185
5722665	BH6	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cadmium	mg/L	0.0002	0.0003
5722665	BH6	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cobalt	mg/L	0.0009	0.0084
5722665	BH6	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Copper	mg/L	0.005	0.030
5722665	BH6	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	15.2
5722665	BH6	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Vanadium	mg/L	0.006	0.017
5722665	BH6	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Zinc	mg/L	0.030	0.136
5722666	BH7	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cadmium	mg/L	0.0002	0.0004
5722666	BH7	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cobalt	mg/L	0.0009	0.0137
5722666	BH7	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Copper	mg/L	0.005	0.037
5722666	BH7	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	31.5
5722666	BH7	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Nickel	mg/L	0.025	0.032
5722666	BH7	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Vanadium	mg/L	0.006	0.052
5722666	BH7	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Zinc	mg/L	0.030	0.498

Quality Assurance

CLIENT NAME: CHUNG AND VANDER DOELEN

PROJECT: 1495

AGAT WORK ORDER: 24T129206 ATTENTION TO: Yaroslav Chudin SAMPLED BY:Y.C.

SAMPLING SITE:968 ST. DAVID ST. N. FERGUS

			Wate	# AI	iaiys	IS								
RPT Date: Mar 22, 2024		I	DUPLICATI	.		REFEREN	ICE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
DADAMETED	Samp	le 5#4	D #0	RPD	Method Blank	Measured		eptable mits	B	Liv	eptable mits	D		eptable mits
PARAMETER	Batch Id	Dup #1	Dup #2	KPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
Water Quality Assessment - P	PWQO (mg/L)	<u>'</u>	'		•					•				
Electrical Conductivity	5722603 572260	3 480	477	0.6%	< 2	104%	90%	110%						
рН	5722603 572260	3 7.43	7.55	1.6%	NA	99%	90%	110%						
Total Dissolved Solids	5720157	190	168	12.3%	< 10	92%	80%	120%						
Alkalinity (as CaCO3)	5722603 572260	3 291	306	5.0%	< 5	95%	80%	120%						
Bicarbonate (as CaCO3)	5722603 572260	3 291	306	5.0%	< 5	NA								
Carbonate (as CaCO3)	5722603 572260	3 <5	<5	NA	< 5	NA								
Hydroxide (as CaCO3)	5722603 572260	3 <5	<5	NA	< 5	NA								
Fluoride	5718363	< 0.05	< 0.05	NA	< 0.05	105%	70%	130%	91%	80%	120%	98%	70%	130%
Chloride	5718363	153	152	0.7%	< 0.10	96%	70%	130%	91%	80%	120%	NA	70%	130%
Nitrate as N	5718363	<0.05	<0.05	NA	< 0.05	100%	70%	130%	98%	80%	120%	100%	70%	130%
Nitrite as N	5718363	<0.05	<0.05	NA	< 0.05	101%	70%	130%	101%	80%	120%	109%	70%	130%
Bromide	5718363	< 0.05	< 0.05	NA	< 0.05	105%	70%	130%	96%	80%	120%	95%	70%	130%
Sulphate	5718363	<0.10	<0.10	NA	< 0.10	94%	70%	130%	94%	80%	120%	94%	70%	130%
Ortho Phosphate as P	5718363	<0.10	<0.10	NA	< 0.10	101%	70%	130%	104%	80%	120%	105%	70%	130%
Ammonia as N	5724966	<0.02	<0.02	NA	< 0.02	108%	70%	130%	105%	80%	120%	103%	70%	130%
Total Phosphorus	5737950	0.05	0.05	NA	< 0.02	99%	70%	130%	99%	80%	120%	105%	70%	130%
Total Organic Carbon	5720157	1.8	1.7	NA	< 0.5	98%	90%	110%	98%	90%	110%	99%	80%	120%
True Colour	5720157	<2.50	<2.50	NA	< 2.5	100%	90%	110%						
Turbidity	5722603 572260	3 92.5	144	43.6%	< 0.5	90%	80%	120%						
Total Calcium	5724836	80.1	80.4	0.4%	< 0.20	113%	70%	130%	107%	80%	120%	108%	70%	130%
Total Magnesium	5724836	6.75	6.85	1.5%	< 0.10	118%	70%	130%	111%	80%	120%	94%	70%	130%
Total Potassium	5724836	5.43	5.50	1.3%	< 0.50	113%	70%	130%	106%	80%	120%	97%	70%	130%
Total Sodium	5724836	858	817	4.9%	< 0.10	114%	70%	130%	108%	80%	120%	NA	70%	130%
Aluminum-dissolved	5722603 572260	3 0.004	0.005	NA	< 0.004	104%	70%	130%	110%	80%	120%	104%	70%	130%
Total Antimony	5724836	<0.003	<0.003	NA	< 0.003	105%	70%	130%	105%	80%	120%	100%	70%	130%
Total Arsenic	5724836	<0.003	<0.003	NA	< 0.003	99%	70%	130%	105%	80%	120%	102%	70%	130%
Total Barium	5724836	0.009	0.010	NA	< 0.002	100%	70%	130%	105%	80%	120%	97%	70%	130%
Total Beryllium	5724836	< 0.001	< 0.001	NA	< 0.001	104%	70%	130%	115%	80%	120%	94%	70%	130%
Total Boron	5724836	0.072	0.076	5.4%	< 0.010	101%	70%	130%	112%	80%	120%	93%	70%	130%
Total Cadmium	5724836	0.0002	0.0002	NA	< 0.0001	102%	70%	130%	106%	80%	120%	98%	70%	130%
Total Chromium	5724836	0.005	0.005	NA	< 0.003	100%	70%	130%	106%	80%	120%	105%	70%	130%
Total Cobalt	5724836	0.0013	0.0015	NA	< 0.0005		70%	130%	104%	80%	120%	103%	70%	
Total Copper	5724836	0.026	0.026	0.0%	< 0.002	99%	70%	130%	106%	80%	120%	98%		130%
Total Iron	5724836	1.68	1.67	0.6%	< 0.050	102%	70%		112%	80%	120%	108%		130%
Total Lead	5724836	0.0079	0.0081	2.5%	< 0.0005	101%		130%	98%		120%	89%		130%
Total Manganese	5724836	0.383	0.389	1.6%	< 0.002	103%	70%	130%	109%	80%	120%	105%	70%	130%
Total Mercury	5722014	<0.0001	<0.0001	NA	< 0.0001			130%	97%	80%	120%	98%	70%	130%
Total Molybdenum	5724836	0.009	0.010	NA	< 0.002	106%	70%	130%	91%	80%	120%	116%	70%	130%
Total Nickel	5724836	0.030	0.028	6.9%	< 0.003	102%	70%		105%	80%	120%	101%		130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: CHUNG AND VANDER DOELEN

PROJECT: 1495 SAMPLING SITE:968 ST. DAVID ST. N. FERGUS AGAT WORK ORDER: 24T129206
ATTENTION TO: Yaroslav Chudin

SAMPLED BY:Y.C.

SAMPLING SITE:900 ST.	DAVID ST. N.	FERGU	3					AIVIP	LED D	1:1.C.					
		1	Nate	r Ana	lysis	(Cor	ntinu	ed)							
RPT Date: Mar 22, 2024				DUPLICATI	E		REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	eptable mits	Recovery	1 1 10	eptable mits
		la la					Value	Lower	Upper		Lower	Upper		Lower	Upper
Total Selenium	5724836		0.004	0.006	NA	< 0.002	101%	70%	130%	108%	80%	120%	101%	70%	130%
Total Silver	5724836		0.0001	<0.0001	NA	< 0.0001	103%	70%	130%	110%	80%	120%	96%	70%	130%
Total Strontium	5724836		1.15	1.14	0.9%	< 0.005	104%	70%	130%	109%	80%	120%	99%	70%	130%
Total Thallium	5724836		<0.0003	< 0.0003	NA	< 0.0003	92%	70%	130%	105%	80%	120%	94%	70%	130%
Total Tin	5724836		< 0.002	< 0.002	NA	< 0.002	100%	70%	130%	109%	80%	120%	105%	70%	130%
Total Titanium	5724836		<0.010	<0.010	NA	< 0.010	102%	70%	130%	110%	80%	120%	106%	70%	130%
Total Tungsten	5724836		<0.010	<0.010	NA	< 0.010	94%	70%	130%	100%	80%	120%	97%	70%	130%
Total Uranium	5724836		<0.0005	<0.0005	NA	< 0.0005	92%	70%	130%	109%	80%	120%	106%	70%	130%
Total Vanadium	5724836		0.003	0.002	NA	< 0.002	103%	70%	130%	110%	80%	120%	111%	70%	130%
Total Zinc	5724836		0.119	0.125	4.9%	< 0.020	100%	70%	130%	105%	80%	120%	93%	70%	130%
Total Zirconium	5724836		< 0.004	< 0.004	NA	< 0.004	101%	70%	130%	106%	80%	120%	109%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

Inis Verástegui

Method Summary

SAMPLED BY:Y.C.

CLIENT NAME: CHUNG AND VANDER DOELEN

PROJECT: 1495

AGAT WORK ORDER: 24T129206

ATTENTION TO: Yaroslav Chudin

SAMPLING SITE:968 ST. DAVID ST. N. FERGUS

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis		1	
Electrical Conductivity	INOR-93-6000	modified from SM 2510 B	PC TITRATE
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Saturation pH (Calculated)		SM 2320 B	CALCULATION
Langelier Index (Calculated)		SM 2330B	CALCULATION
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Alkalinity (as CaCO3)	INOR-93-6000	Modified from SM 2320 B	PC TITRATE
Bicarbonate (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE
Carbonate (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE
Hydroxide (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Bromide	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ortho Phosphate as P	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Ammonia-Un-ionized (Calculated)		MOE REFERENCE, PWQOs Tab 2	CALCULATION
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Total Organic Carbon	INOR-93-6049	modified from SM 5310 B	SHIMADZU CARBON ANALYZER
True Colour	INOR-93-6074	modified from SM 2120 B	LACHAT FIA
Turbidity	INOR-93-6000	modified from SM 2130 B	PC TITRATE
Total Calcium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Total Magnesium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Total Potassium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Total Sodium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Aluminum-dissolved	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Barium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

Method Summary

CLIENT NAME: CHUNG AND VANDER DOELEN

PROJECT: 1495 SAMPLING SITE:968 ST. DAVID ST. N. FERGUS AGAT WORK ORDER: 24T129206 ATTENTION TO: Yaroslav Chudin SAMPLED BY:Y.C.

SAMPLING SHE. 900 ST. DAVID ST.	N. FERGUS	SAIVIPLED B1.1.	C.
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Mercury	MET-93-6100	modified from EPA 245.2 and SM 311	¹² CVAAS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Strontium	INOR-93-6003	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tungsten	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zirconium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Lab Filtration Aluminum Dissolved	SR-78-9001		FILTRATION

Have feedback?

Scan here for a quick survey!

Legal Sample

Paint

Soil

Sample Matrix Legend

Ground Water SD Sediment

SW Surface Water

Rock/Shale

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

O. Reg 153

iltered - Metals, Hg, CrVI, DOC

Laboratory Use Only

Work Order #:	247	1212	
Cooler Quantity:	1 mac	Q.	
Arrival Temperatures:	3-7	13.9	4.3
Depot Temperatures:	-	,	10.2
Custody Seal Intact:	□Yes	□No	□N/A
Notes:	1025	eia	

Custody Seal Intact: Notes:	☐Yes	□No e (a	□N//
Turnaround Tim	e (TAT) Re	quired:	
Regular TAT	5 to 7 B	usiness Days	
Rush TAT (Rush Surchar	ges Apply)		
3 Business Days	2 Busin	ess Ne	ext Busines ay
OR Date Requ	ired (Rush Sur	charges May Ap	ply):
Please prov *TAT is exclusiv For 'Same Day' ana	e of weekends	r	olidays

6 SPLP Rainwater Leach vocs □ABNs □B(a)P□PCB Moisture Sulphide HWSB VI, □ Hg, [

Dute	Time 1 . (((
Date LS	Time / c 4	Op
		Page of
Date	Time	№: T-153484

Report Inform Company:	nation: CVD Engineering Und.	Regulatory Requ		
Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email:	Yarashar Chadia Cardengia en my car	Regulation 153/04 Table	Regulation 406 Table	Sewer Use Sanitary Storm Region Prov. Water Quality Objectives (PWQO) Other Indicate One
Project Inform Project: Site Location: Sampled By:	1495 968 St. David St. N., Fengus.	Is this submission of Site Condition Yes		Report Guideline on Certificate of Analysis

Invoice Infor	mation:	В	II To Same: Ye	es 🖪 No 🗆	
Company: Contact: Address: Email:	apecides	out set us. (
Sam	ple Identification	Date Sampled	Time Sampled	# of Containers	
1. P.14:		Now at 11/21	- 11.3 PM	8	

PO:

Please note: If quotation number is not provided, client will be billed full price for analysis

						Asia de la composición dela composición de la composición dela composición de la composición de la composición de la com	Field	8 50	ļ	F1-F4		locio	ation 4	2	O D M	l∺ ši	vity:	3	3		- 2	IV Haz	lly 15
	Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	BTEX, F	NOC NOC	PCBs: A	10 -	EC, SAR	Regulati mSPLP:	Landfill Dispo TCLP: □ M&I [Corrosivity: [Rose				Potentía	2000
1.	PILI	No. 5 11/2	11.3 AM	90	92		N						E					4 ×				711	
2.	BHS	er	12. Z. AM				7	UT AL										V		710			
3.	3H 6	9	1:43 AM	3	7		N								0.1			1					
4.	P.H.T	и	3 is CPM		ч		2	100			-		1.17%					1					
5.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AM PM												H 1							11	
6.			AM PM																	-			
7			AM PM			orka i Lilia																	
8.	124 THO SEE STATE AND		AM PM				34,6				-												
9.			AM PM		1			1					500		110								
10.			AM PM								- 4												
11.		Lee M	AM PM			THIS IS A SECOND OF THE SECOND							-										
*****			Total Control of the		* * * * * * * * * * * * * * * * * * * *	aliana and a same and			_	-													_

Copy - Client | Yellow Copy - AGAT | White Copy- AGAT

Samples Relinguished By (Print Name and Sign)

AGAT Quote #:

Samples Received By (Print Name and Sign):

APPENDIX G

MECP Well Records

The Ontario Water Resources Act WATER WELL RECORD

Envir Ontario	ronment 1. PRINT ONLY IN 5		11 (57 0 98	34	57009	CON.	1 1 1	16
OUNTY OR DISTRICT	2. CHECK 🗵 CORRE	TOWNSHIP, BOROUGH CITY.	TOWN, VILLAGE		CON BLOG	CK TRACT, SURVEY	ETC	LOT	25-27
Wellingt	on	Nichol			7%	/I	DATE COMPLETED	44-5	3
WNER (SURNAME FIRS	ST) 28-47	P.O. Box	10, Fergus	s, Ont.	NIM 2U	7	DAY 15	. 5	_{. Y} 89
Fergus P	ZONE EASTING	NORTHING	RC.	ELEVATION	RC BAS	IN CODE		· l	, v
21		1 13 13 13	1 1 1 1 1 2 1	128	30 31				47
	LO	G OF OVERBURDEN	AND BEDRO	CK MATERIA	LS (SEE INSTR	RUCTIONS)		DEPTH . F	EET
ENERAL COLOUR	MOST COMMON MATERIAL	OTHER MATE	ERIALS		GENERAL D	ESCRIPTION		FROM	10
_	03	Fill, Gravel S	Silt				C)	18
Brown	Clay	· ·	/]	8	24
Brown	Clay	Gravel					1	24	84
Grey	Clay	Gravel						34	165
Grey	Limestone						1	165	213
Brown	Limestone							213	225
Grey	Limestone							225	232
Brown	Limestone							-	315
Lt.Grey	Limestone							232	
Brown	Limestone							315	378
Grey	Limestone							378	400
White	Limestone							400	402
			1:3						
31				†inti	با ليليه		لبنا لبا		
32	بيا ليلياليا	111111111111111111111111111111111111111	لبليليل		1111 54		لللبا للل	34-38 LEI	75 80
3 2 10 41 WA	TER RECORD	51 CASING &	OPEN HOLE		SIZE (5) O	OF OPENING	31-33 DIAMETER		- FEET
WATER FOUND AT - FEET	KIND OF WATER	INSIDE MATERIAL INCHES	THICKNESS	DEPTH - FEET		L AND TYPE	DEF	TH TO TOP SCREEN	41-44 30
128'-" ;	FRESH 3 SULPHUR SALTY 4 MINERALS SOURCE	10-31 1₩STEEL	375	9.5					FEET
402'		12 2 GALVANIZED 3 CONCRETE 4 OPEN HOLE	.375 10		61	PLUGGIN	G & SEALIN	G RECO	RD
	SALTY 6 GAS	5 D PLASTIC	19	20-2	DEPTH SET	AT - FEET	MATERIAL AND TYP	PE (CEMEN	T GROUT KER ETC)
	FRESH 3 SULPHUR 4 MINERALS GGAS	11 3 GALVANIZED 3 GCONCRETE 4 GOPEN HOLE 5 O PLASTIC	109.5	9.5 402	0	100 5 1	2" casing	cemen	ted
	FRESH 3 SULPHUR 4 MINERALS SALTY 6 GAS	24-25 1 □ STEEL	26	27-3	0 10-2		n 18" dia		
	FRESH 3 SULPHUR 34	4 DOPEN HOLE			26-21	30-33 80	11 10 416		
	SALTY 6 GAS	TF 11-14 DURATION OF	PUMPING		1.0	CATION	DE WELL	10	
71 PUMPING TEST M		0.4	S-16 17-18 OURS MINS	-		SHOW DISTANC			
STATIC LEVEL	WATER LEVEL 25 END OF WATER	1 C	PUMPING RECOVERY		LINE INDIC	ATE NORTH BY A	RROW.		
ST		6:28 29:31	35-37			λ λ	A. C.		N
	153.29 109.5	TECH TOTAL	FEET FEET						Å
Z GIVE RATE		FEET 1 CLEA		/	WELL		12		Ŧ
IF FLOWING. GIVE RATE RECOMMENDED	PUMP	DED 43-45 RECOMMENDE PUMPING			17 4	9-1-19			
☐ SHALL 50-53	OW DEEP SETTING	250 FEET RATE	300 GPM	1 /6	o. /	~ \ \	1/2/3	k	
	1 WATER SUPPLY	■ □ ABANDONED, INS	SUFFICIENT SUPPLY	1 18/6 -	/ "		£ /'.'	/3,	
FINAL STATUS	→ □ OBSERVATION V		YTIJAUP RC	1 12/2	Lorib	DWIN LIMITE	113	120	
OF WELL	L 4 RECHARGE WEL			181		Durk	F.	1,	
14/ATED	1 DOMESTIC	S COMMERCIAL MUNICIPAL			Fee Gus 1				
WATER	4 INDUSTRIAL	7 PUBLIC SUPPLY COOLING OR AIR CO			ç.		fr'		
	OTHER		NOT USED	41					
METHO		6 ☐ BORING FENTIONAL) 7 ☐ DIAMON	N D					21	205
OF CONSTRUC	3 ☐ ROTARY (REVE	RSE)	G _					3 L	325
	S AIR PERCUSSIO		IG OTHER	DRILLERS REM		ONTRACTOR 59	62 DATE RECEIVED		63-68
	ELL CONTRACTOR	LIC	ell contractors cence number 2801	SOURCE		2801	JUL	2 0 198	9
ADDRESS	rnational Water	Dupper			INSPECTION	INSPECTOR	:		
MAME OF Y	Bayview Dr., Ba	rrie, Ont. L4M	4T5	O REMARKS					
R.C.	Magee		T0117	OFFICE	, etc			Ccc	ES C
SIGNATURE	OF TECHNICIAN/CONTRACTO	, n	е мо. _97 yr. <mark>8</mark> .	ᆁᄫ					
MINIST	TRY OF THE ENVIR						FOR	RM NO. 0506	(11/86) FORM

					3	
Minis of the	•	WA	The Onto	ario Water Resources Act	CO	RD
Ontario	ronment 1. PRINT ONLY IN S 2. CHECK 図 CORRI		671006	8 67009 CO) K	22 23 20 OT 25-27
COUNTY OR DISTRICT WELLING OWNER (SURNAME FIR	ton	Nichol Address 745 St. D	avid ST. N.,	DATE COM		20 3,89
W. Dixor	ZONE EASTING	NORTHING 15 18 24	PC ELEVATION	RC BASIN CODE 11		, , , , , , , , , , , , , , , , , , ,
	LC	G OF OVERBURDEN AND BE	DROCK MATERIALS	(SEE INSTRUCTIONS)	DEPTH	- FEET
GENERAL COLOUR	MOST	OTHER MATERIALS		GENERAL DESCRIPTION	FROM	10
GENERAL COLOGN	COMMON MATERIAL	T;II		i.	0	3_
R.	Gravel	Stores		1	3	20
	Clay	OTOTO			20	30
Gr.	Clay	Stones			30	72
Br /Gr	Limeston	e	. P. San 1989 V. Carlo Britan State Spiritude and Construction Con-		77	196

CASING & OPEN HOLE RECORD SCREEN DEPTH MATERIAL AND TYPE DEPTH TO TOL 85 PLUGGING & SEALING RECORD 0 61 FEET MATERIAL AND TYPE FROM 265 85 LOCATION OF WELL IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE INDICATE NORTH BY ARROW. LOT 15 LUT 16 1 FERGUS 36914 DRILLERS REMARKS DATA SOURCE NOV 1 5 1989 ONLY DATE OF INSPECTI OFFICE USE REMARK T-0158 CSS.ES FORM NO. 0506 (11/86) FORM 9

125

Limestone

WATER RECORD

FRESH

FRESH Z SALTY

1 🗆 FRESH

2 G SALTY

I FRESH

2 SALTY FRESH

SHALLOW DEEP

HOD FIR

NATER LEVEL END OF PUMPING 22-2

140

KIND OF WATER

3 □ SULPHUR 4 □ MINERALS 6 □ GAS

3 □ SULPHUR 4 □ MINERALS 6 □ GAS

1 X WATER SUPPLY

TEST HOLE

4 | RECHARGE WELL

I ☐ DOMESTIC 2 STOCK
3 RRIGATION

4 D INDUSTRIAL

☐ OTHER

S AIR PERCUSSION

CABLE TOOL

CABLE TOOL

CONVENTIONAL

OBSERVATION WELL

51

68

30 MINUTES

PUMP /60

MATERIAL

1 Steel
2 GALVANIZED
3 CONCRETE
4 OPEN HOLE
5 PLASTIC

1 STEEL 2 GALVANIZED

3 □ CONCRETE
4 □ COPEN HOLE
5 □ PLASTIC

1 STEEL
2 GALVANIZED
3 CONCRETE
4 OPEN HOLE
5 PLASTIC

.188

PUMPING RECOVERY

1 CLEAR

8 🗆 ABANDONED, INSUFFICIENT SUPPLY

• □ NOT USED

OTHER

well contracto licence number 33/7

B ABANDONED POOR QUALITY

■ BORING 7 DIAMOND

9 DRIVING

DIGGING

43-45 RECOMMENDED PUMPING RATE

7 UNFINISHED

9 DEWATERING 5 COMMERCIAL

PUBLIC SUPPLY COOLING OR AIR CONDITIONING

6 MUNICIPAL

143

31

32

41

71

PUMPING

I 🗍 PUMP

STATIC

IF FLOWING

FINAL

STATUS

OF WELL

WATER

USE

METHOD

OF

CONSTRUCTION

CONTRACTOR

WATER FOUND AT - FEET

300

The Ontario Water Resources Act WATER WELL RECORD

Print only in spaces provided. Mark correct box with a checkmark, where applicable.

6712246

unicipality	Con.	1 1	ļ	•	5	
14	15		 22	20	2	

CSS. S

0506 (07/94) Front Form 9

25 -97 County or District Township/Borough/City/Town/Village Con block tract survey, etc. NICHOL TWP
Address 18 15 Date completed Z/ LOG OF OVERBURDEN AND BEDROCK MATERIALS (see instructions) Depth - feet General description General colour Most common material Other materials From То 30 SAND BROWN GREY SAND 50 CLAY CLAY GREY GRAVEL 94 50 Rock 94 BROWN //5 ROCK TOTAL DEPTH 140 6" DRIVE SHOE 31 32 | ASING & OPEN HOLE RECORD | Wall | Depth - fit hickness inches | From | WATER RECORD Sizes of opening (Slot No.) Inside diam inches Water found at - feet Kind of water ☐ Sulphur ☐ Minerals ☐ Gas Depth at top of screen Steel
Galvanized
Concrete
Copen hole
Plastic □ Fresh 2 Salty Sulphur Minerals Gas .188 ı 🛚 Fresh **PLUGGING & SEALING RECORD** 2 Salty Steel
Galvanized
Concrete
Copen hole
Plastic Sulphur Minerals Gas 20-23 ı ☐ Fresh Depth set at - feet 2 Salty Material and type (Cement grout, bentonite, etc. 140 95 То From 25 - 28 ı 🗌 Fresh Sulphur BENTONITE Steel
Galvar
Concre
Open I 。 ☐ Saltv Gas Galvanized Concrete Open hole Plastic Sulphur Minerals Gas ı ☐ Fresh 2 Salty Pumping rate Duration of pumping Pumping test method **LOCATION OF WELL** X Pump 2 🛘 Baile GPM In diagram below show distances of well from road and lot line. Indicate north by arrow. 1 Pumping ₂ ☐ Recovery Static level Water levels during 15 minutes 28-28 /05 feet 30 minutes H_{feet} 125 PUMPING wing give rate Water at end of test R Clear ☐ Cloudy 3 ☐ Shallow Deep 1.35 feet GPM FINAL STATUS OF WELL Water supply
Observation well
Test hole
Recharge well 5 ☐ Abandoned, insufficient supply 9 ☐ Unfinished
6 ☐ Abandoned, poor quality 10 ☐ Replacement well
7 ☐ Abandoned (Other)
8 ☐ Dewatering got WATER USE 5 Commercial
6 Municipal
7 Public supply
8 Cooling & air conditioning Domestic
Stock
Irrigation 9 🗆 Notused 10 Other ... METHOD OF CONSTRUCTION 5 Air percussion
6 Boring
7 Diamond
8 Jetting , ☐ Cable tool
2 ☐ Rotary (conventional)
3 ☐ Rotary (reverse)
4 ☑ Rotary (air) 9 🗌 Driving 176191 10 Digging Differ ... Data source 2336 "JUN"2 7 1997 ONLY GRAHAM WELL DRILLING-LTU 2336

Date of inspection

Remarks

USE (

-1924 05

R#5 ROCKWOOD, ONT. NOB-2KO

The Ontario Water Resources Act WATER WELL RECORD

Print only in spaces provided. 6713078 Municipality 6,70,0,9 Mark correct box with a checkmark, where applicable. CON 11 64-99 Con block tract survey, Township/Borough/City/Town/Village County or District TWP WELLING-TON
28-47 First name NICHOL Date South RIVER Rd. 1 1 18 LOG OF OVERBURDEN AND BEDROCK MATERIALS (see instructions) Depth - feet General description Other materials Most common material General colour From То 25 SAND. BROWN 70 25 CLAY STONES GREY 83 GRAVEL CLAY 83 115 190 GREY-BROWN 190 TOTAL DEPTH 6" DRIVE SHOE 21 **CASING & OPEN HOLE RECORD** Sizes of opening (Slot No.) WATER RECORD Water found at – feet Kind of water Depth at top of screen 30 ☐ Sulphur ☐ Minerals ☐ Gas Fresh 3
2 Salty 6 Steel

Galvanized

Galvanized

Concrete

Open hole

Plastic 90 3 Sulphur
4 Minerals
6 Gas ¹ ☐ Fresh 84 188 **PLUGGING & SEALING RECORD** 2 🗆 Salty Steel
Galvarized
Concrete
Copen hole
Plastic ☐ Abandonment Annular space ☐ Sulphur ☐ Minerals ☐ Gas ¹ 🛘 Fresh Depth set at - fe Material and type (Cement grout, bentonite, etc.) 2 🗌 Salty 84 190 ☐ Sulphur ☐ Minerals ☐ Gas BENTONITE. Steel 2
Galvanized
Concrete
Copen hole
Plastic 2 Salty ¹ □ Fresh 2 🗌 Salty Duration of pumping Pumping test method

Pump 2
Bailer Pumping rate **LOCATION OF WELL** In diagram below show distances of well from road and lot line. Water level end of pumping ² ☐ Recovery Water levels during Static level Indicate north by arrow. 15 minutes 26-28 30 minutes 80 _{feet} 104 teet /20 feet 93 feet 115 feet If flowing give rate Water at end of test 🕰 Clear ☐ Cloudy GPM Recommended pump rate Recommended pump setting /30 Recommended pump type ☐ Shallow 🙀 Deep GPM FINAL STATUS OF WELL ☐ Abandoned, insufficient supply 9 ☐ Unfinished
☐ Abandoned, poor quality 10 ☐ Replacement well
☐ Abandoned (Other)
☐ Dewatering 1 Water supply
2 Observation well
3 Test hole
4 Recharge well 55-56 WATER USE Domestic
Stock
Irrigation
Industrial 9 🗌 Not used 10 🗍 Other METHOD OF CONSTRUCTION 9 Driving
10 Digging
11 Other ... 196667 Feagus Imi Well Contractor's Licence No 2336 SEP 0 8 1999 GRAHAM WELL DRILLING LTD Date of inspection MINISTRY USE RRAS ROCKWOOD, ONT. NOB-ZKO 1924. _mo 08. 0506 (07/94) Front Form 9

Ministry of the Environment

Measurements recorded in: Metric Imperial

Well Tag No. (Place Sticker and/or Print Below) Tag#: A139028

	,	V	V	е			3	е	C	O	ľ	d	
_	0-41-	14	١/.		 _	_					А	۱.,	6

4 4 C I	
Regulation 903 Ontario Water	Resources Act
Page	of

Address of Well Location (Street Number/Name)	Township West Go	Lot 12	Conces	sion	
County/District/Municipality Wellington UTM Coordinates Zone Easting Northing	City/Town/Village Fergus Municipal Plan and Sub	ιταιταχα	Province Ontario Other	Postal	Code M 2 W 3
NAD 8 3 1 7 5 4 8 5 0 8 4 8 4 0 5 Overburden and Bedrock Materials/Abandonment Sealing		e back of this form)	at the major		
General Colour Most Common Material	Other Materials	General Description	1	Dept From	th (<i>m/ft)</i> To
Brown Sand				0	10.60
God Clay & stones				10.66	29.87
			***************************************	29.87	
Gray Clay				32.30	1
Diocon Timest one					
		Devile state			
Annular Space Depth Set at (m/ft) Type of Sealant Used	Volume Placed	After test of well yield, water was:	ell Yield Testii Draw Dowr	2000	ecovery
From To (Material and Type)	(m³/ft³)	Clear and sand free	Time Water L (min) (m/ft)		Water Level (m/ft)
0 10m Bentonite Goo.	J . 25	Other, specify If pumping discontinued, give reason:	Statio		
		n pumping discontinued, give reason.	Level 30.		33.38
		Pump intake set at (m/to	1 31.4		32.56
		175	2 31	22 2 -	32.03
Method of Construction	Well Use	Pumping rate (I/min / GPM)	3 31.5	50 3	31.72
Cable Tool Diamond Public	Commercial Not used	5 LGPM	4 31.7	72 4	31.55
	Municipal ☐ Dewatering Test Hole ☐ Monitoring	Duration of pumping hrs + min	5 31.8	310 5	31.36
☐ Boring ☐ Digging ☐ Irrigation ☐	Cooling & Air Conditioning	Final water level end of pumping (n)/ft)	J 		31.08
☐ Air percussion ☐ Industrial ☐ Other, specify ☐ Other,		33-78			30.95
Construction Record - Casing	Status of Well	If flowing give rate (I/min / GPM)			
Inside Open Hole OR Material Wall Depth (m. Diameter (Galvanized, Fibreolass, Thickness	/ft) Water Supply	Recommended pump depth (m/t)	20 32.		30.85
Diameter (Galvanized, Fibreglass, (cm/in) Concrete, Plastic, Steel) Thickness (cm/in) From	To Replacement Well Test Hole	175	25 32.	87 25	30.78
15.9 steel 188 :50 3	Recharge Well	Recommended pump rate (I/min / GPM)	30 32.5	77 30	30.72
	☐ Dewatering Well ☐ Observation and/or	Well production (I/min / GPM)	40 33.1	40 3	30.62
	Monitoring Hole Alteration	Tron production (minima or my	50 33.2	28 50	30.54
	(Construction)	Disinfected? Yes No	60 33.		30.47
Construction Record - Screen	Abandoned, Insufficient Supply		ell Location	78 00 7	
Outside Material Depth (m/	Abandoned, Poor Water Quality	Please provide a map below following		e back.	
Diameter (cm/in) (Plastic, Galvanized, Steel) Slot No. From	To Abandoned, other, specify	well			1
	-	X X			n /
	Other, specify	Him			20
Water Details	Hole Diameter	× /2			
Water found at Depth Kind of Water: Fresh X Untested	Depth (<i>m/ft</i>) Diameter From To (<i>cm/in</i>)	The			
54 · 15 (m/ft) ☐ Gas ☐ Other, specify Water found at Depth Kind of Water: ☐ Fresh ☐ Untested	4 33.2 72.8	1 1	h~		/
(m/ft) Gas Other specify		16 8M			
valor round at Depth Rand of Water.	3.2 54.25 15.6			/	/X/
(m/ft) Gas Other, specify			A		/
Well Contractor and Well Technician In: Business Name of Well Contractor	formation Well Contractor's Licence No.	\ \	\ /	Gord or	,
Well Initiatives	7221		\mathcal{L}	1	
Business Address (Street Number/Name)	Municipality //	Comments:	7		**************************************
Province Postal Code Business E-mail Address	Ovangeville				
ON L9W3RH		Well owner's Date Package Delivered	Min	istry Use (Only
Bus.Telephone No. (inc. area code) Name of Well Technician (Last I	Name, First Name)	information package	Audit No.		
5 1 9 8 4 6 8 2 8 9 Losc Moll Technician's Licence No. Signature of Technician and/or Contract	Char Data Submitted	delivered Date Work Completed	귀 Z	:159	2/6
T 9 2 7	2013063p	10 No 2013061	12		เกรว
0506E (2007/12)	Ministry's Copy	101000	—)U	L 0-9-2	.413

APPENDIX H

Limitations of Report

STATEMENT OF LIMITATIONS

- 1. The work performed in this report was carried out in accordance with the Standard Terms of Conditions made part of our contract. The conclusions presented herein are based solely upon the scope of services and time and budgetary limitations described in our contract.
- 2. The report has been prepared in accordance with generally accepted hydrogeological study and/or engineering practices. No other warranties, either expressed or implied, are made as to the professional services provided under the terms of our contract and included in this report.
- 3. The services performed and outlined in this report were based, in part, upon visual observations of the site and attendant structures. Our opinion cannot be extended to portions of the site which were unavailable for direct observation, reasonably beyond the control of CHUNG & VANDER DOELEN ENGINEERING LTD.
- 4. The objective of this report was to assess hydrogeological conditions at the site, within the context of our contract and hydrogeological assessment guidelines within the applicable jurisdiction. Evaluating compliance of past or future owners with applicable local, provincial and federal government laws and regulations was not included in our contract for services.
- 5. CHUNG & VANDER DOELEN ENGINEERING LTD. has relied in good faith on information and services provided by others while conducting the record search. We accept no responsibility for any deficiency, misstatements or inaccuracies contained in this report as a result of omission, misinterpretation or fraudulent acts of the services used.
- 6. It should be noted that the observations and recommendations presented in this report are limited to the actual locations explored. The information presented in terms of the thickness and types of the subsoils encountered, groundwater levels, and chemical testing results, etc., are only applicable to the actual locations explored. Variations may be present between these locations. Should significant variation become apparent during later investigations, it may be necessary to reevaluate the findings of this report.
- 7. The conclusions of this report are based in part, on the information provided by others. The possibility remains that unexpected environmental conditions may be encountered at the site in locations not specifically investigated. Should such an event occur, CHUNG & VANDER DOELEN ENGINEERING LTD. must be notified in order that we may determine if modifications to our conclusions are necessary.

ENCLOSURES

Soil Abbreviations and Terms Used on Record of Borehole Sheets

TERMINOLOGY DESCRIBING COMMON SOIL TYPES:

Topsoil	- mixture of soil and humus capable of supporting vegetation
Peat	 mixture of visible and invisible fragments of decayed organic matter
Till	 unstratified glacial deposit which may range from clay to boulders
Fill	 soil materials identified as being placed anthropologically

CLASSIFICATION (UNIFIED SYSTEM)

Clay	<0.002mm	
Silt	0.002 to .075mm	
Sand	0.075 to 4.75mm	
	Fine	0.075 to 0.425 mm
	Medium	0.425 to 2.0 mm
	Coarse	2.0 to 4.75 mm
Gravel	4.75 to 75mm	
	Fine	4.75 to 19 mm
	Coarse	19 to 75 mm
Cobbles	75 to 300mm	
Boulders	>300mm	
	Coarse 75 to 300mm	

TERMINOLOGY

Soil Composition	% by Weight
"traces"	<10%
"some"(eg. some silt)	10-20%
Adjective (eg. sandy)	20-35%
"and"(eg. sand and gravel)	35-50%

Standard Penetration Resistance (SPT): Standard Penetration Resistance ('N' Values) refers to the number of blows required to advance a standard (ASTM D1586) 51 mm Ø (2 inch) split-spoon sampler by the use of a free falling, 63.5 Kg (140lbs) hammer. The number of blows from the drop weight is recorded for every 15 cm (6 inches). The hammer is dropped from a distance of 0.76m (30 inches) providing 474.5 Joules per blow. When the sampler is driven a total of 45 cm (18 inches) into the soil, the standard penetration index ('N' Value) is the total number of blows for the last 30 cm (12 inches).

Dynamic Cone Penetration Resistance (DCPT): Dynamic Cone Penetration Resistance is similar to a SPT with the 474.5 Joule/blow impulse provided by the free falling hammer where the split-spoon sampler is replaced by a 51 mm \emptyset , 60° conical point and the number of blows is recorded continuously for every 30 cm (12 inches).

COHESIVE SOILS CONSISTENCY

	(kPa)	(P.S.F.)	Nominal 'N' Value
Very Soft	<12	<250	0-2
Soft	12-25	250-500	2-4
Firm	25-50	500-1000	4-8
Stiff	50-100	1000-2000	8-15
Very Stiff	100-200	2000-4000	15-30
Hard	>200	>4000	>30

RELATIVE DENSITY OF COHESIONLESS SOIL

	'N' Value
Very Loose	0-4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

MOISTURE CONDITIONS:

Cohesive Soil	
DTPL- Drier than plastic limit	
APL- About plastic limit	
WTPL- Wetter than plastic limit	
MWTPL- Much wetter than plastic limit	

Cohesionless Soil	
Damp	
Moist	
Wet	
Saturated	

UNC

SAMPLE TYPES AND ADDITIONAL FIELD TESTS

SS	Split Spoon Sample	GS	Grab Sample	PP	Pocket Penetrometer
	(obtained from SPT)	BS	Bulk Sample	VANE	Peak & Remolded shear
AS	Auger Sample	TW	Thin Wall Sample or Shelby Tube	DMT	Flat Plate Dilatometer
LAB	ORATORY TESTS				
SG	Specific Gravity	S	Sieve Analysis	W	Water Content
Н	Hydrometer	Р	Field Permeability	K	Lab Permeability
W_p	Plastic Limit	\mathbf{W}_{I}	Liquid Limit	l _p	Plasticity Index

Consolidation

GSA

Grain Size Analysis

Unconfined compression

BOREHOLE No. 1

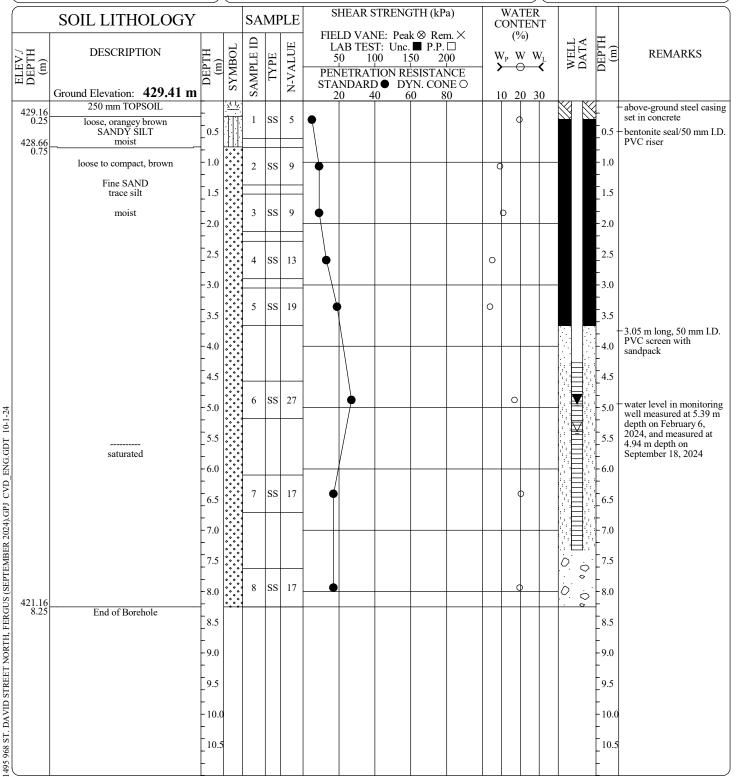
Enclosure No.: 1 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus,


Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**

Date: Jan 17 - 24 TO Jan 17 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

BOREHOLE No. 2

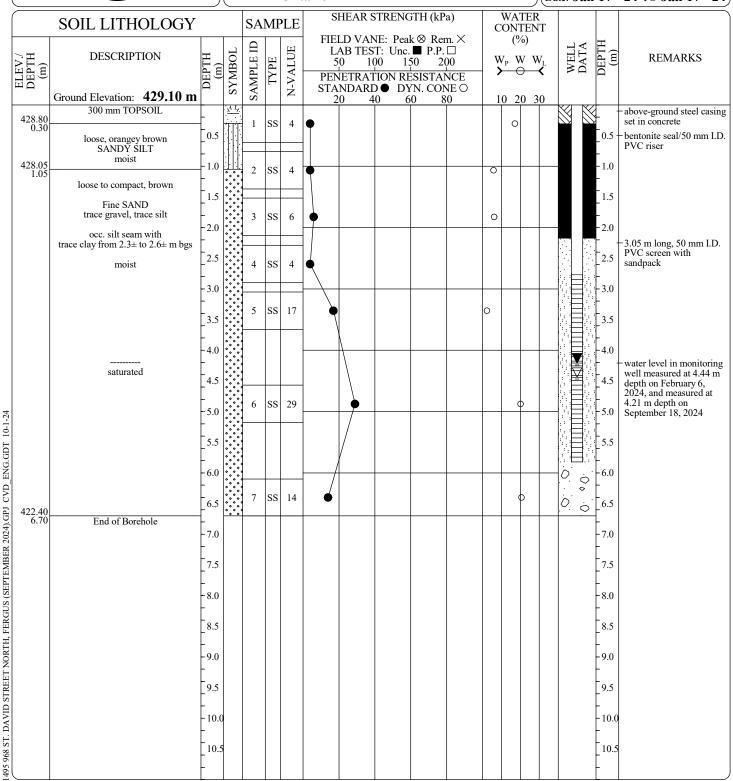
Enclosure No.: 2 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus,


Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**

Date: Jan 17 - 24 TO Jan 17 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

BOREHOLE No. 3

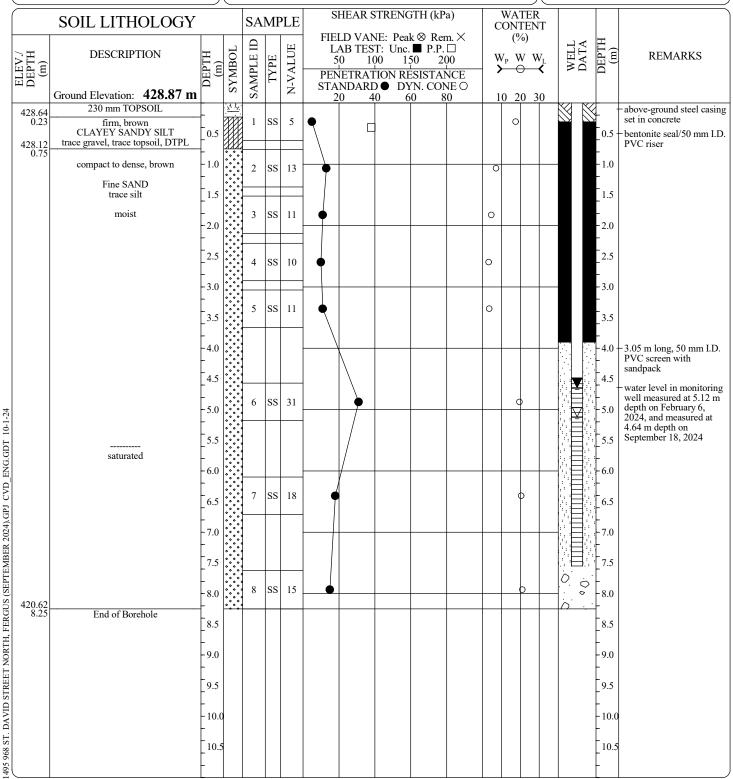
Enclosure No.: 3 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus,


Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**

Date: Jan 16 - 24 TO Jan 16 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

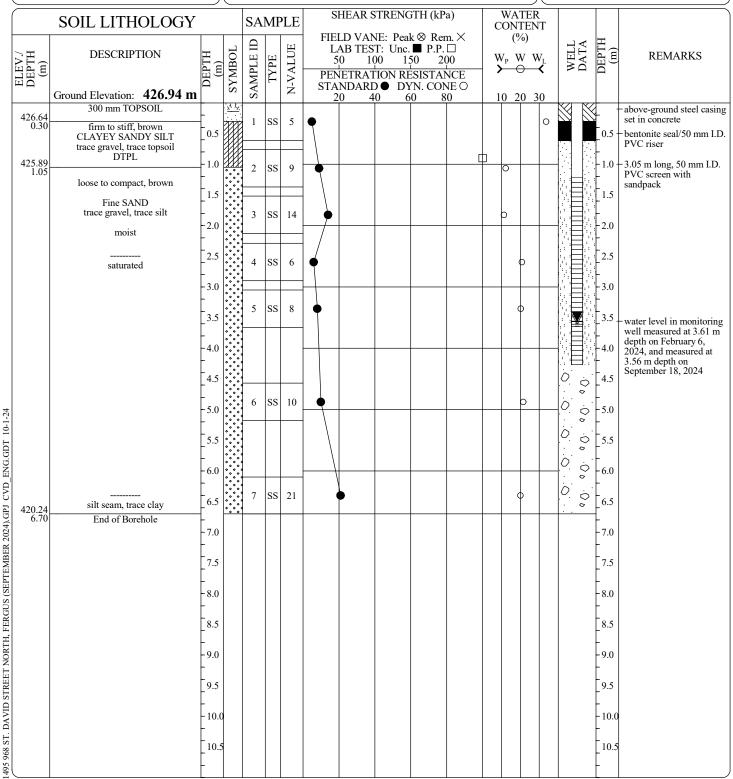
BOREHOLE No. 4

Enclosure No.: 4 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision


Location: 968 St. David Street North, Fergus,

Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Solid Stem Auger
Size: 152 mm O.D.

Date: Jan 16 - 24 TO Jan 16 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

BOREHOLE No. 5

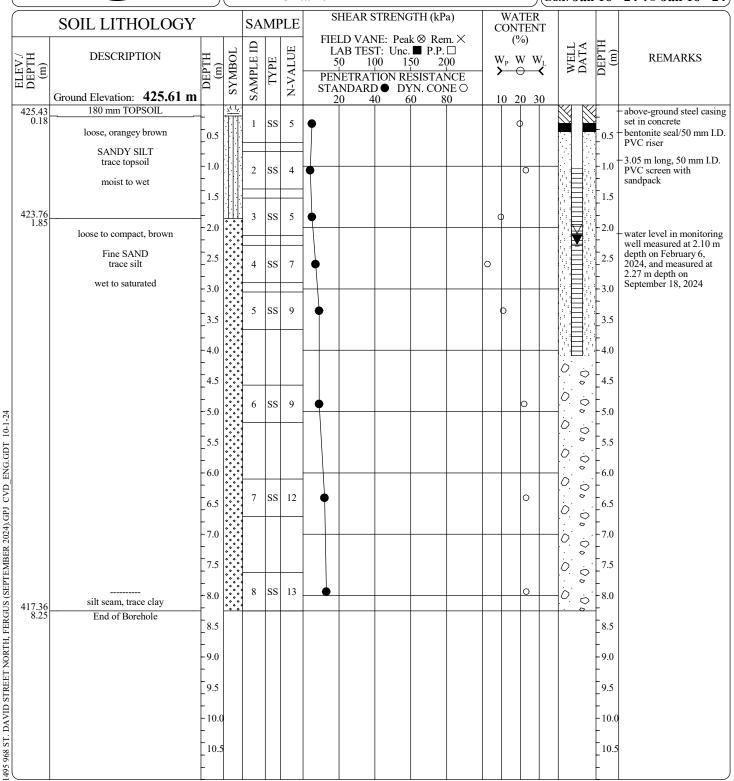
Enclosure No.: 5 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus,


Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**

Date: Jan 16 - 24 TO Jan 16 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

BOREHOLE No. 101

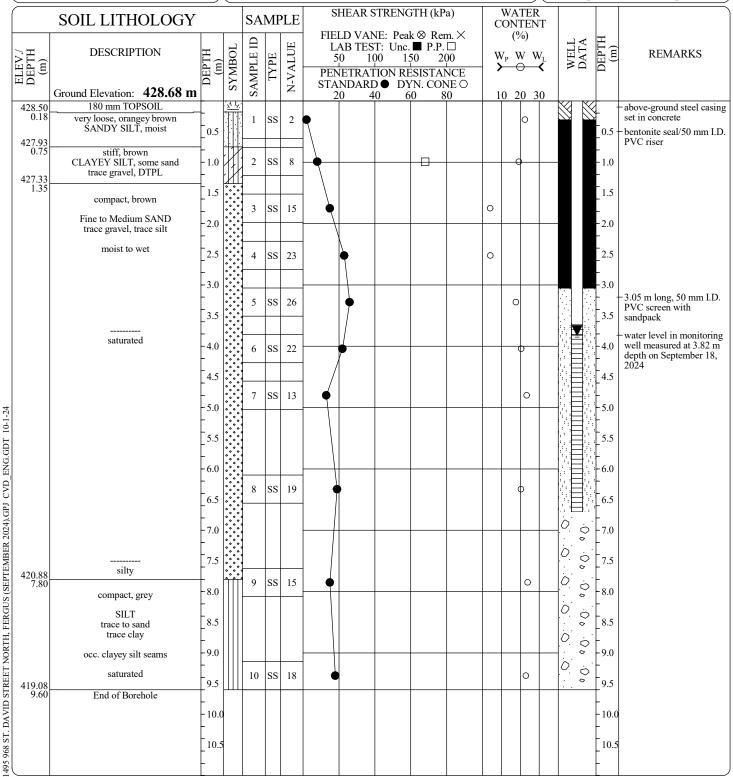
Enclosure No.: 9 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus,


Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**

Date: Sep 11 - 24 TO Sep 11 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

BOREHOLE No. 102

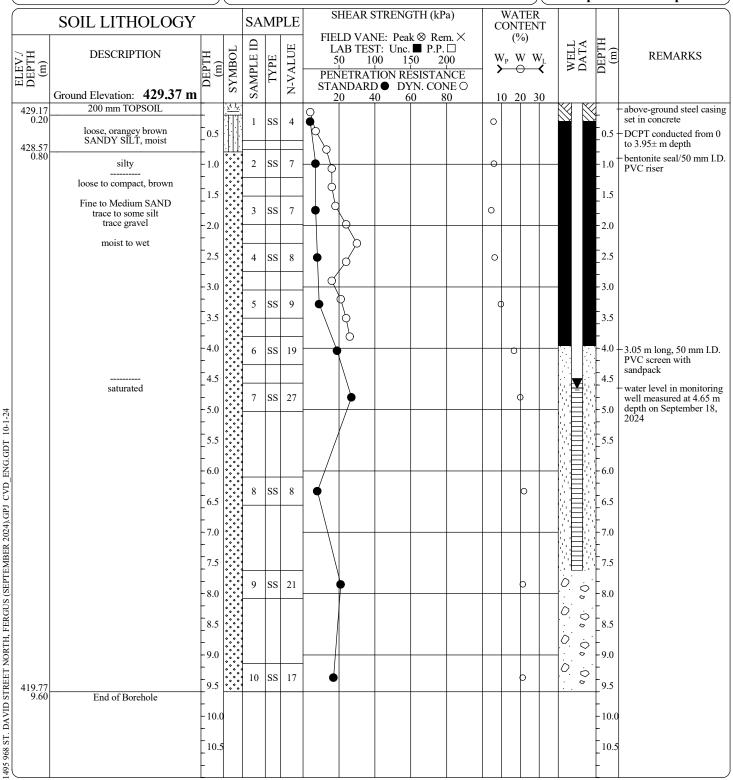
Enclosure No.: 10 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus,


Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**

Date: Sep 12 - 24 TO Sep 12 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

BOREHOLE No. 103

Enclosure No.: 11 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus,

Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**

Date: Sep 11 - 24 TO Sep 11 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

BOREHOLE No. 104

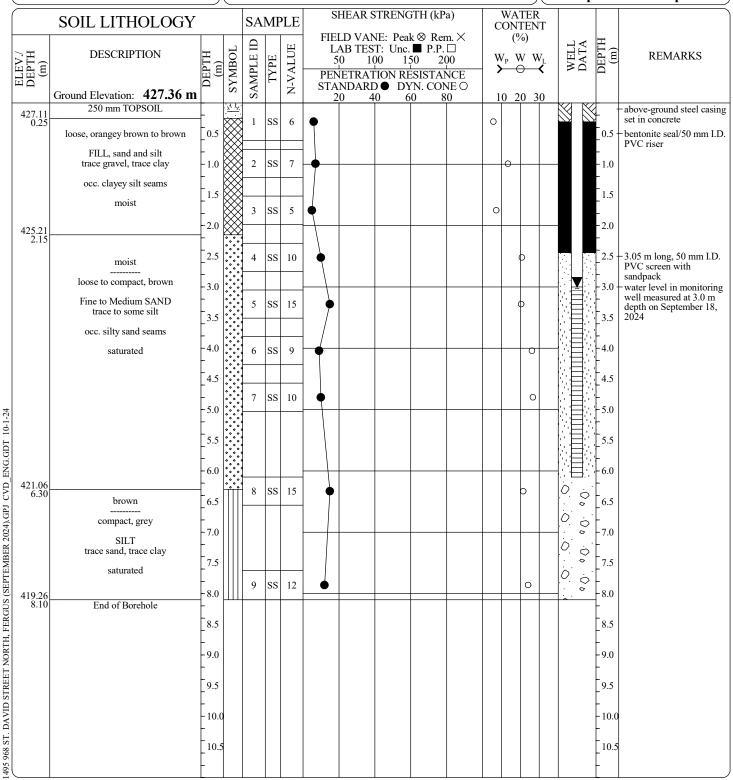
Enclosure No.: 12 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus,


Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**

Date: Sep 11 - 24 TO Sep 11 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

BOREHOLE No. 105

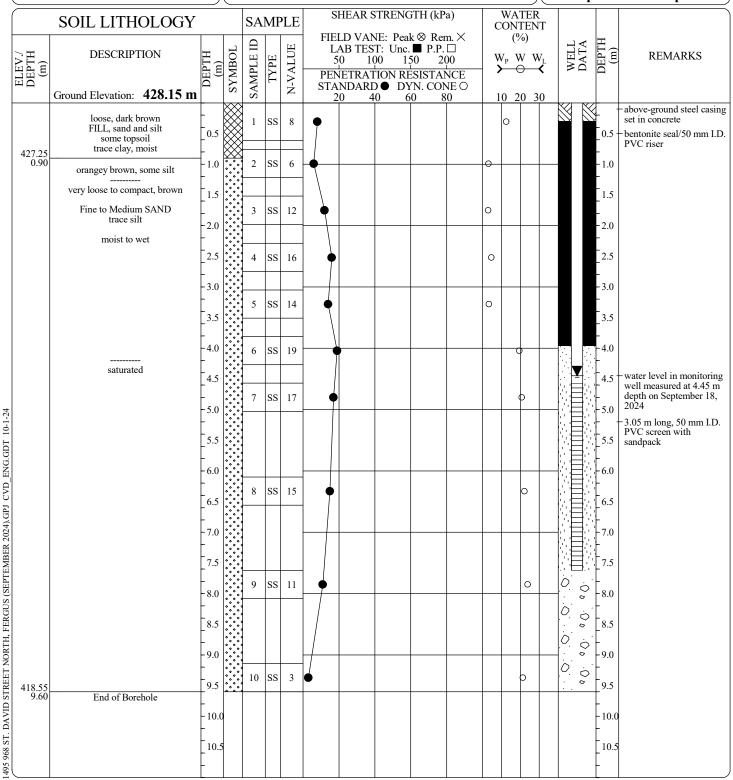
Enclosure No.: 13 Sheet 1 of 1

0

Client: PoloCorp Inc.

Project: Proposed Residential Subdivision

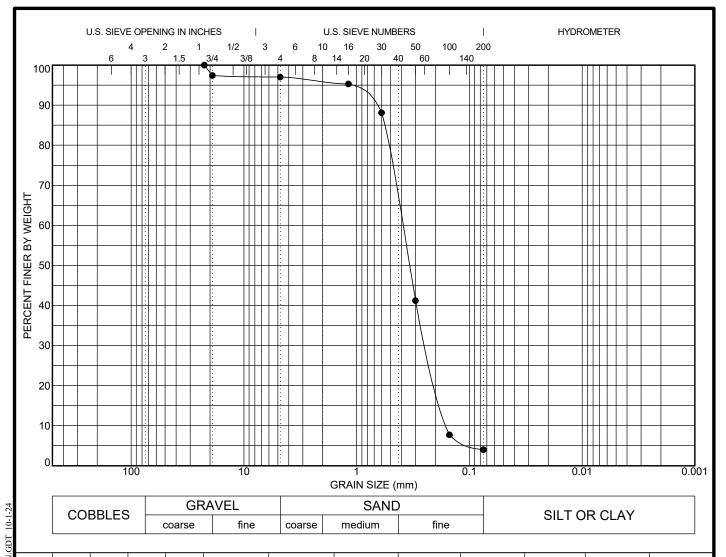
Location: 968 St. David Street North, Fergus,


Ontario

EQUIPMENT DATA

Machine: CME-55 Track
Method: Hollow Stem Auger

Size: **83 mm I.D.**


Date: Sep 12 - 24 TO Sep 12 - 24

PROJECT MANAGER: EYC

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

LL	PL	PI	Сс	Cu	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay
			0.91	2.52	22.4	0.396	0.238	0.157	3.0	93.0	4.0	
Date: Sep. 25 - 2024 Client: PoloCorp Inc.						Sieve Size (mm		Percent Passing		No Specifications		
Contractor:												

Source: Sampled From:

BH 101 - SA 4, 2.30 to 2.75 m depth

Sample No.: 101-4

Date Sampled: Sep. 11 - 2024

Sampled By: RS Lab No.: 1033

Date Tested: Sep. 25 - 2024

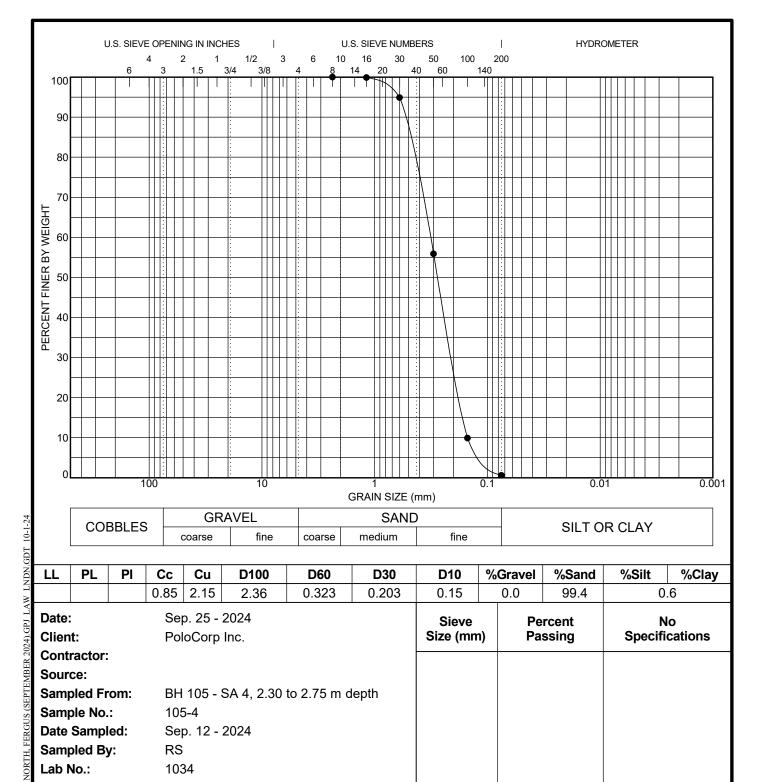
Type of Material: Fine to Medium Sand, trace gravel, trace s It

DM - NO SPECIFICATIONS 1495 968 ST. DAVID STREET

CHUNG & VANDER DOELEN ENGINEERING LTD.

311 Victoria Street North Kitchener, Ontario N2H 5E1 Telephone: 519-742-8979

Fax: 519-742-7739


e-mail: info@cvdengineering.com

GRAIN SIZE DISTRIBUTION

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus, Ontario

File No.: 1495 Enclosure No.: 22

			0.85	2.15	2.36	0.323	0.203	0.15		0.0	99.4	0.6
Date: Sep. 25 - 2024						Sieve		Percent		No		
Clien	ent: PoloCorp Inc.							Size (mm) Passing		ssing	Specifications	
Cont	ractor	:										
Sour	ce:											
Sampled From: BH 105 - SA 4, 2.30 to 2.75 m depth												
Sam	Sample No.: 105-4											
Date	Samp	led:	Sep	o. 12 -	2024							
Sam	oled B	y:	RS									

Type of Material: Fine to Medium Sand, trace silt

Sep. 25 - 2024

1034

Lab No.:

DM - NO SPECIFICATIONS 1495 968 ST. DAVID STREET

Date Tested:

CHUNG & VANDER DOELEN ENGINEERING LTD.

311 Victoria Street North Kitchener, Ontario N2H 5E1 Telephone: 519-742-8979

Fax: 519-742-7739

e-mail: info@cvdengineering.com

GRAIN SIZE DISTRIBUTION

Project: Proposed Residential Subdivision

Location: 968 St. David Street North, Fergus, Ontario

File No.: 1495 Enclosure No.: 23