

Township of Centre Wellington 1 MacDonald Square Elora, ON

R.J. Burnside & Associates Limited 292 Speedvale Avenue West Unit 20 Guelph, ON N1H 1C4 CANADA

April 2023 300055234.0000

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023

Distribution List

No. of Hard Copies	PDF	Email	Organization Name
0	Yes	Yes	Township of Centre Wellington
0	Yes	Yes	GSP
0	Yes	Yes	RDHA
0	Yes	Yes	Burnside

Record of Revisions

Revision	Date	Description
0	October 21, 2022	Issued for Client Review
1	April 24, 2023	Issued for Zoning By-Law Amendment

R.J. Burnside & Associates Limited

FG/cvh

Report

Prepared By:

Jour lo

Jacob Rooke, EIT **Engineering Assistant** JR/cvh

Report **Reviewed By:**

PROFESSIONAL BUILT FT **ENGINEER** 100516199 23/04/24 BOUNCE OF ONTARIO Frank Goulding, P.Eng. **Civil Engineer**

Table of Contents

1.0	Intro 1.1	oduction and Background Background Studies and Documentation	
	1.2	Site Description	2
	1.3	Proposed Development	4
2.0	Wat	ter Servicing	6
	2.1	Existing Water Supply	
	2.2	Proposed Water Supply	6
	2.3	Water Demand	6
	2.4	Hydrant Coverage	9
3.0	San	nitary Servicing	9
	3.1	Existing Sanitary Sewer Flow	9
	3.2	Proposed Sanitary Servicing	9
		3.2.1 New Connection	
		3.2.2 Proposed Sanitary Flows	9
4.0	Grad	ding and Storm Drainage	
	4.1	Site Grading	
	4.2	Existing Storm Drainage	
	4.3	Proposed Storm Drainage	
	4.4	Minor System Conveyance	
	4.5	Major System Conveyance	15
5.0		rmwater Management	
	5.1	Stormwater Management Criteria	
	5.2	Existing Hydrologic Conditions	
	5.3	Proposed Hydrological Conditions	
		5.3.1 Quantity Control	
		5.3.2 Volume Control to Groundwater	
		5.3.3 Water Quality and Erosion Control	
		5.3.4 Stormwater Management Facility	
6.0	Eros	sion and Sediment Control	22
7.0	Utili	ities	22
8.0	Con	nclusions and Recommendations	22
Table	S		

Table 1: Supporting Documents	
Table 2: Post Development Drainage Conditions	13
Table 3: Pre-Development Peak Flows	16
Table 4: Post-Development Peak Flows	16
Table 5: Flow Rate Summary	17
Table 6: TSS Removal Efficiency Summary	
Table 7: Summary Table for SWMF1	19

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023

Figures

Figure 1: Site Location Plan	
Figure 2: Proposed Site Plan	5
Figure 3: Proposed Servicing Plan	
Figure 4: Existing Drainage Conditions	
Figure 5: Proposed Drainage Conditions	14
Figure 6: SWMF1 Plan View	20
Figure 7: SWMF1 Section View	21
-	

Drawing List

Drawing G1	Centre Wellington Operations Centre – Grading Plan
Drawing S1	Centre Wellington Operations Centre - Servicing Plan
Drawing ESC1	Erosion and Sediment Control and Removals Plan

Appendices

Appendix A	Water Calculations
Appendix B	Sanitary Calculations
Appendix C	Storm Sewer Design Sheet
Appendix D	Modified Rational Method Calculations
Appendix E	SWM Pond Calculations

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1.0 Introduction and Background

R.J. Burnside & Associates Limited (Burnside) has been retained by the Township of Centre Wellington (the Township) to prepare a Functional Servicing Report and Stormwater Management (SWM) Report for the proposed Operations Centre located at 965 Gartshore Street, Fergus. This report is in support of the proposed Official Plan Amendment (OPA) and Zoning By-Law Amendment (ZBA), demonstrating that the subject lands can be developed in accordance with regulatory requirements and criteria.

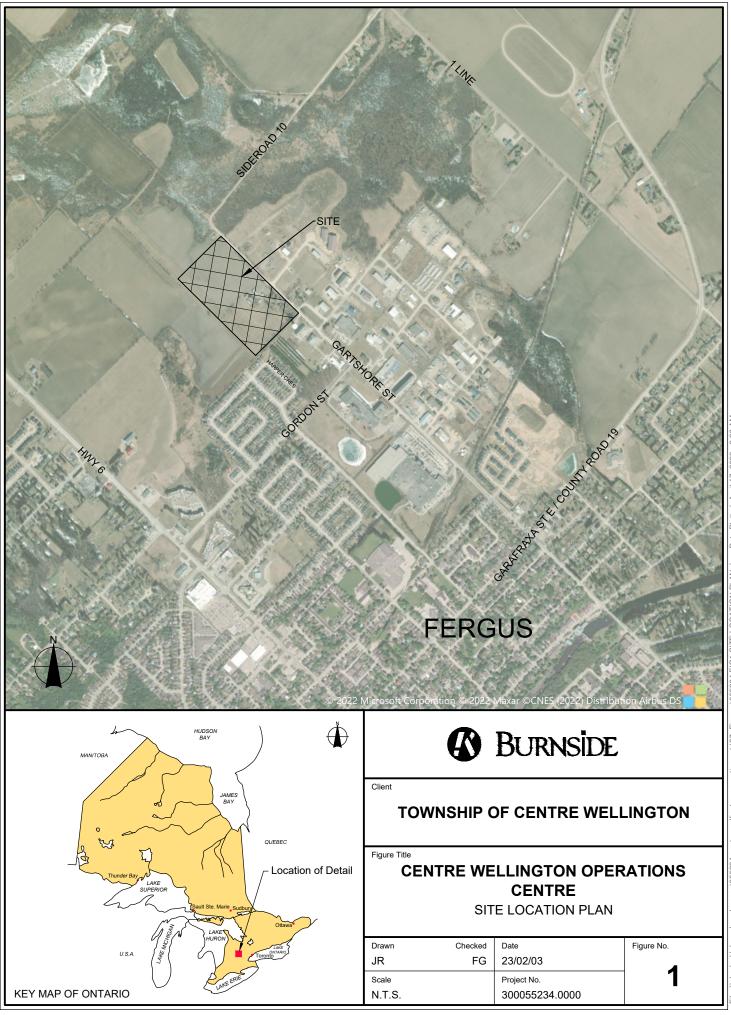
The purpose of this report is to:

- Evaluate the existing municipal water system, including:
 - Calculate the proposed domestic water and firefighting supply needs.
 - Confirm that it has adequate flow to meet the additional required domestic and fire flow demands for the proposed development.
- Evaluate on a preliminary basis the SWM opportunities and constraints, including:
 - Calculate allowable and proposed runoff rates for the development.
 - Evaluate suitable methods for attenuation and treatment of stormwater runoff.
 - Develop and propose onsite control measures and examine theoretical performance.
 - Demonstrate compliance of the proposed stormwater control measures with the Centre Wellington Development Manual (Draft 2018).
- Identify sanitary servicing opportunities and constraints, including:
 - Calculate existing and proposed sanitary flows.
 - Evaluate the feasibility of connection to municipal infrastructure.

1.1 Background Studies and Documentation

The following documents, studies, and reports have been reviewed by Burnside and incorporated into this report:

Document Title	Prepared By	Date
Arborist Report	R.J. Burnside & Associates Ltd.	February 2023
Stage 1 Archaeological	Archaeological Research Associates Ltd.	October 17, 2022
Assessment		
Building Condition	R.J. Burnside & Associates Ltd.	November 17, 2022
Assessment		
5	R.J. Burnside & Associates Ltd.	January 30, 2023
and Hazardous Materials		
Survey		

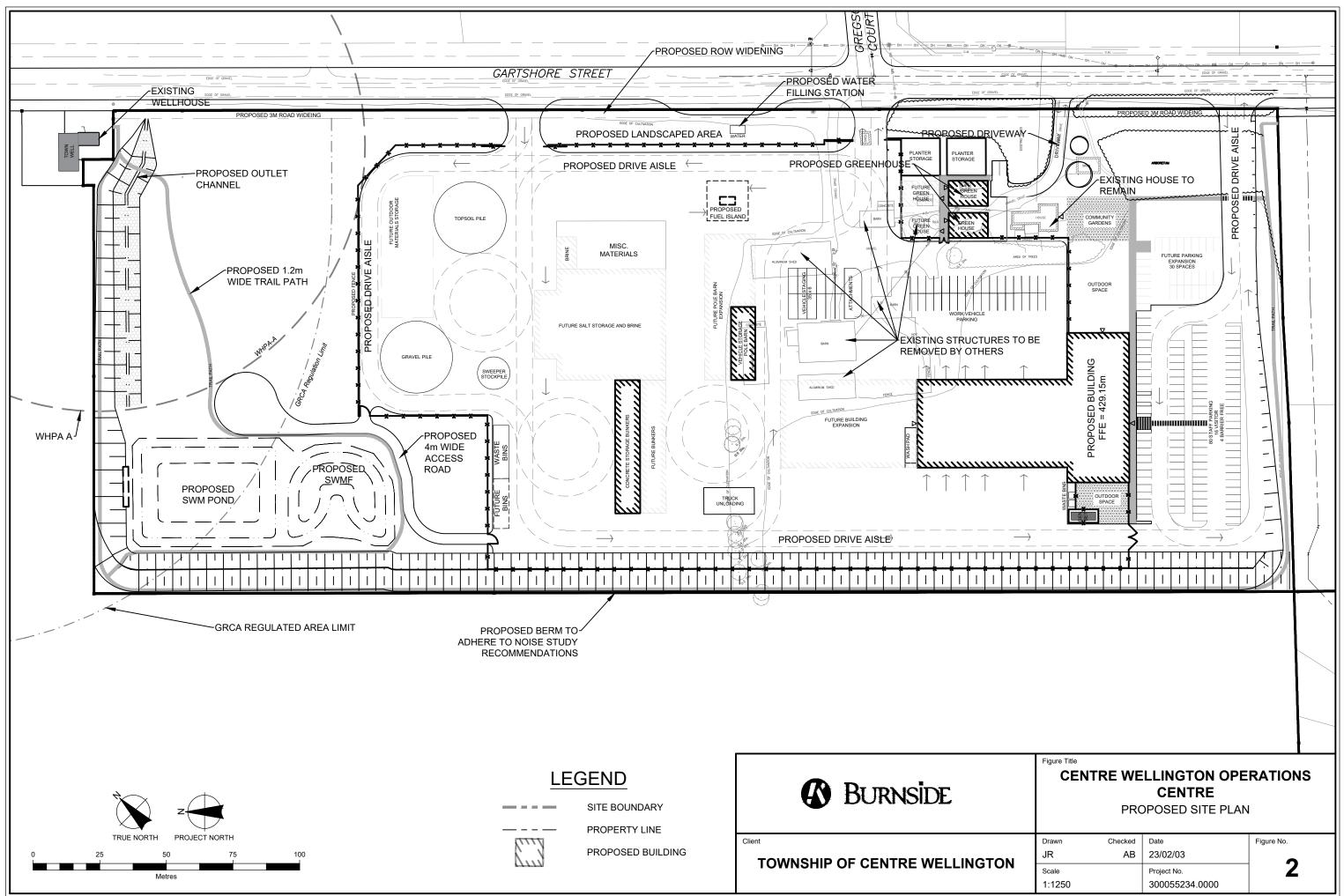

Table 1: Supporting Documents

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023

Environmental Impact	R.J. Burnside & Associates Ltd.	February 3, 2023
Study		
Preliminary Geotechnical	JLP Services Inc.	December 19, 2022
Investigation		
Hydrogeological Study	R.J. Burnside & Associates Ltd.	February 2023
Plan of Survey	Callon Dietz	September 12,
		2022
Transportation Study	R.J. Burnside & Associates Ltd.	November 2022

1.2 Site Description

The subject site is a 8.426 ha parcel of land located within the Township of Centre Wellington former geographic Township of Nichol. Referring to true north, the site sits just northwest of the Town of Fergus boundary on Gartshore Street occupying concession 16 part lots 17 and 18. The site is bound by Gartshore Street to the northeast, agricultural lands directly west and southwest, Harper Crescent Park to the southeast, a municipal well directly north, and the municipal water tower directly south. Within the subject property is a single-family farmhouse with various secondary structures associated with current farming practices. The house is proposed to be repurposed and used within the proposed development. Figure 1 below shows the site location.



1.3 Proposed Development

The project proposes an Operations Centre for the Township of Centre Wellington. The project is proposed to occur in two phases. The operations building will include a phase one gross floor area (GFA) of $3,560 \text{ m}^2$ ($38,321 \text{ ft}^2$). It also contains a 250 m^2 ($2,702 \text{ ft}^2$) vehicle storage, pole barn and a two 149 m^2 ($1,603 \text{ ft}^2$) greenhouses. Phase 2 includes $1,476 \text{ m}^2$ ($15,888 \text{ ft}^2$) of additional GFA in the operations building as well as a $1,951 \text{ m}^2$ ($21,000 \text{ ft}^2$) salt and storage building including interior loading. Phase 2 will also include an additional 219 m^2 ($2,357 \text{ ft}^2$) of GFA to the operations building, and two additional greenhouses with 149 m^2 ($1,603 \text{ ft}^2$) of GFA directly adjacent to the primary greenhouse will be considered.

There are four proposed entrances to the site, which are all located along Gartshore Street. The north end of the site is within the Grand River Conservation Authority's (GRCA) regulation limit. The subject property is located in a wellhead protection area (WHPA). A WHPA is the area around a wellhead that contributes source water to a drinking water system. A WHPA shows where the groundwater is coming from to source the water system, and how fast it is getting there. A WHPA-A is a 100 m radius around the wellhead and a WHPA-B is an area where water and any contaminants that may be present can reach the well within 2-5 years. The northeast corner of the site intersects with the WHPA-A while the remainder of the property is within a WHPA-B.

Figure 2 below shows the proposed site plan.

2.0 Water Servicing

2.1 Existing Water Supply

Based on as-built drawings provided by the Township, the site has an existing 300 mm dia. PVC watermain along Gartshore Street. Fergus's water tower borders the property on the southeast corner. The existing farmhouse is serviced from the Gartshore Street watermain.

2.2 **Proposed Water Supply**

The proposed Operations Centre containing offices and maintenance facilities will require new service connections for both domestic and fire use. The proposed greenhouse and water filling station will also require a domestic connection. The proposed water service connection configuration will be as per Township of Centre Wellington's standards. The water service was designed to account for the full build out size of the facility and the future uses within phase 2. A 150 mm diameter fire service is proposed to connect to the existing 300 mm diameter watermain along Gartshore Street with a 100 mm diameter domestic service split off the main service connection. Both fire and domestic watermain connections will be equipped with a valve and box at the property line. The 150 mm diameter fire connection will be equipped with a detector check assembly in the building. The 100 mm diameter domestic connection will enter a 3000 mm diameter water meter chamber. Refer to Figure 3 and Drawing S1 for preliminary servicing layout.

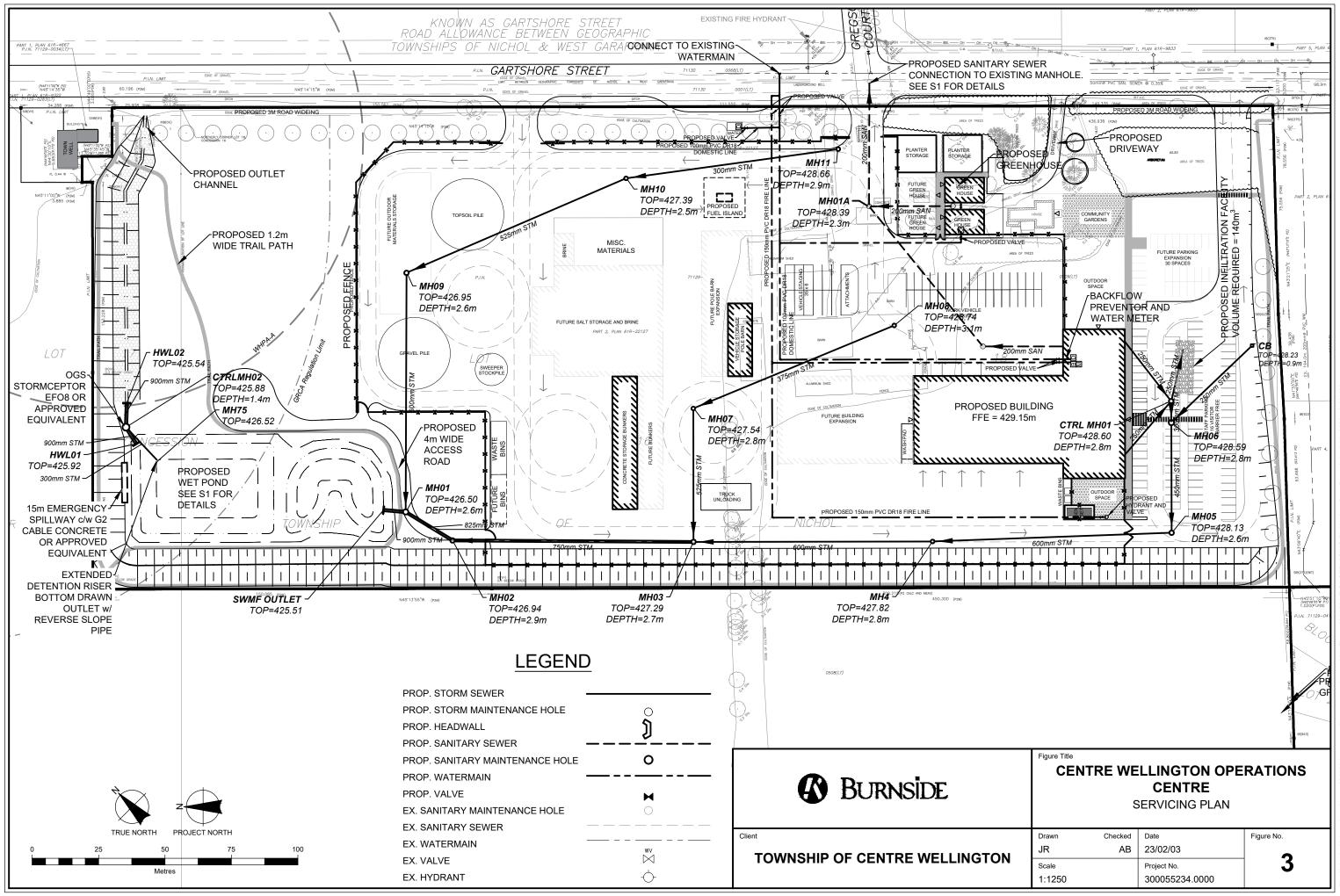
2.3 Water Demand

The proposed fire demand for the development was calculated based on the criteria outlined by the Fire Underwriters Survey (FUS) Water Supply for Public Fire Protection (2020). The proposed domestic demands for office space were calculated using the Ontario Building Code's (OBC) guidelines. The guidelines specify an average of 75 L/day/9.3 m² of GFA. Further, domestic flows for industrial space and wash bays were calculated using OBC and MOE guidelines. The OBC states 950 L/day per water closet and MOE states 400 L/wash for wash bays.

The anticipated domestic demand for the Site has been calculated to be 0.65 L/s based on the design criteria. The maximum hourly demand peaking factor was assumed to be 3.0 L/s. This was also used in the sanitary calculations. Therefore, this results in a peak domestic demand of 4.18 L/s. See Appendix A for full calculations.

The required fire flow for the development was calculated to be 133.33 L/s (8,000 L/min or 2,114 USGPM). The total required fire flows and domestic demand should be delivered at a pressure no less than 140 kPa (20.3 psi). Hydrant tests to confirm acceptable pressures will be completed following zoning approval.

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023


The following criteria were applied during the calculation of fire flows, and will be updated as necessary during detailed design:

- The proposed buildings will be classified as Type II Noncombustible, with limited combustible contents, and a 15% occupancy reduction has been applied.
- The proposed buildings will be between 10.1m to 20 m from the existing house. A total separation charge of 15% has been applied.

Therefore, the overall combined peak water demand for the site was determined to be 137.51 L/s.

The use of brine on the proposed salt/sand storage building does not require additional calculations for the future water supply. Water connection is not anticipated to be necessary for brine operations in the future.

Refer to Appendix A for complete water demand calculations. Figure 3 displays the proposed servicing for the site.

2.4 Hydrant Coverage

There are 2 existing fire hydrants located within the development's proximity. Both are located along Gartshore Street's right of way. One additional hydrant is proposed to provide sufficient fire coverage within the site. The proposed hydrant will be complete with a valve and boot to satisfy Centre Wellington requirements.

3.0 Sanitary Servicing

3.1 Existing Sanitary Sewer Flow

Based on as-built drawings provided by the Township, there is an existing 250 mm dia. PVC sanitary sewer running within Gartshore Street that can be used to service the site. The sanitary sewer is a gravity system draining to the southwest. The existing sanitary sewer connection from the residence is proposed to remain.

3.2 Proposed Sanitary Servicing

3.2.1 New Connection

One new 200 mm sanitary connection is proposed at the location indicated on the Site Servicing drawing (Drawing S1 included with this report). The proposed connection is the existing sanitary manhole located at the intersection of Gregson Court and Gartshore Street. The private sanitary sewer connection will be provided in accordance with the Municipal Standards noted on the drawing.

The connection will have an inspection manhole located entirely within the site.

3.2.2 Proposed Sanitary Flows

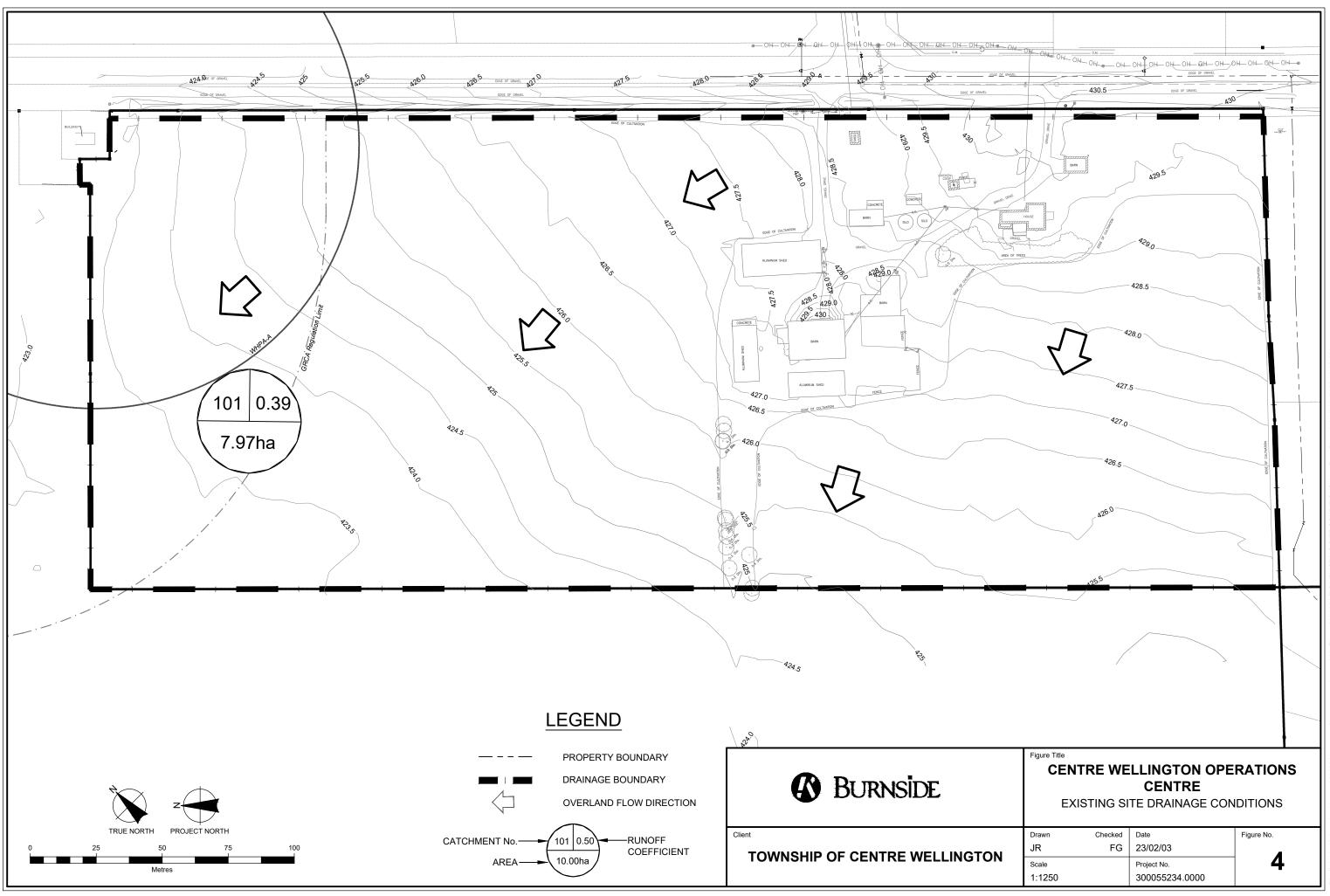
Calculations have been made based on the proposed office and industrial applications of the building. The total peak sanitary flow for the existing site (including infiltration allowance) has been estimated to be 1.25 L/s. The total peak sanitary flow for the proposed development (including infiltration allowance) has been calculated at 5.27 L/s, which represents an increase of 4.02 L/s when compared with the existing peak sanitary flows.

Refer to Appendix B for calculations. Refer to Figure 3 for the proposed servicing layout.

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023

4.0 Grading and Storm Drainage

4.1 Site Grading


The grading design for this site has been completed in compliance with the following requirements and constraints:

- Matching existing grades along the development boundary as defined by the property boundary.
- Control and conveyance of stormwater within the site and minimization of external runoff.
- Providing major overland flow routes to convey runoff.

4.2 Existing Storm Drainage

The existing site has an overall high point near the northeast corner of the property. The result is that the entire site drains east to west via overland flow to the adjacent agricultural property. There is an overall elevation difference of approximately 3.9 m across the site. External drainage areas are negligible as the road runoff is conveyed by the municipal right of way and adjacent lots are directed away from the site.

The existing site consists of primarily agricultural lands, but also includes a single-family dwelling and several accessory structures that contribute a small amount of impervious area. The site was assumed as one large catchment with an area of 7.97 ha. The Preliminary Geotechnical Investigation completed by JLP Geotechnical and Environmental Consultants, dated December 19, 2022 indicates that the subsurface conditions generally consist of 200-250 mm thick topsoil, followed by discontinuous deposits of sandy silt till and silty sand. Based on Centre Wellington recommended stormwater runoff coefficients and Ontario Ministry of Transportation (MTO) Drainage Manual, design charts were used to calculate the site runoff coefficient of 0.34. The pre-development catchment can be seen within Figure 4.

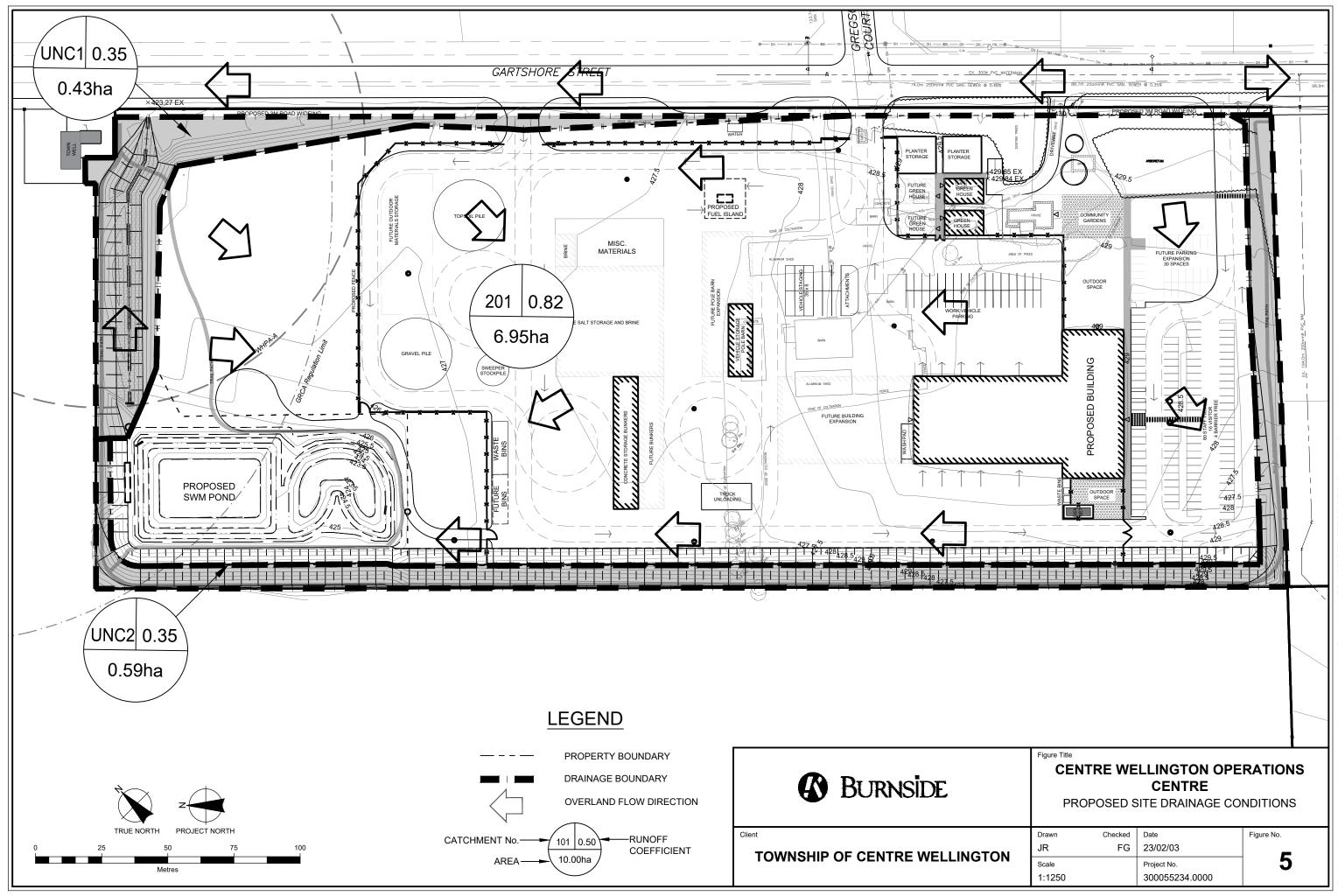
4.3 Proposed Storm Drainage

The proposed development has several different areas, including the main operations building, paved parking areas, as well as a paved works yard. To control runoff, the proposed development has been designed to collect all impervious and developed areas of the site into a SWM facility located near the west corner of the property. The design will utilize a combination of surface drainage and storm sewers to convey the runoff to the SWM facility.

Two outlet scenarios were explored with township staff: The first was outletting through the WHPA-A area and into the Gartshore roadside ditch with quality control measures in place such as a clay liner along the outlet channel and an oil grit separator (OGS) at the outlet structure. The second was to petition for a municipal drain or explore a mutual drain agreement (under the Drainage Act) with the neighbouring landowner. The second option proved to have more disadvantages than the first including but not limited to:

- The Drainage Act can be a timely process;
- The cost to direct flows across the neighboring lands via an open ditch or closed pipe system would likely all be borne by the Municipality;
- The neighbouring lands, although agricultural at the present time, are zoned for future development. At the time of development would likely require the outlet from the subject property to be re-routed, which would be solely paid for by the municipality.

After further discussions with Township staff and the Risk Management Official for Wellington Source Water Protection, it was determined that the location of the SWM facility should be in the WHPA-B zone.


Considering the potential complications, unknown costs and unknown timelines required for petitioning for a Municipal Drain through the neighbour's property, it was decided to proceed with the option to outlet the flows toward the northeast, past the WHPA-A area.

Although the existing site flows to the neighbouring property, this proposed facility will control and release site flows to the existing Gartshore Street ROW. This will provide a suitable outlet without impacting the neighbouring property. A small portion of the site (UNC1 and UNC2) will be uncontrolled due to grading constraints. These areas will be solely landscaped. Catchment UNC1 will be directed to the Gartshore ditch, while UNC2 will discharge via overland flow to the adjacent agricultural property in a similar fashion to the existing site. Figure 5 displays the post development catchment plan and Table 2 provides a summary of the proposed drainage areas.

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023

Catchment	Discharge Location	Area (ha)	Runoff Coefficient
201	Gartshore Street R.O.W.	6.95	0.78
UNC1	Gartshore Street R.O.W.	0.43	0.35
UNC2	Adjacent agricultural property	0.59	0.35
Total	-	7.97	

Table 2: Post	Development	Drainage	Conditions
---------------	-------------	----------	------------

4.4 Minor System Conveyance

As per *Centre Wellington Development Manual (draft 2018),* the minor system flow will be conveyed within the site through a series of storm sewers sized in combination with catchbasins and catchbasin manholes. The conceptual storm servicing design for the development shown in Figure 3 and S1 displays the minor system. The minor system consists of 2 storm networks a North line and South line, joining at a control manhole to the southwest of the site before out letting to the SWM facility. One SWM facility is proposed to collect the storm discharge. Please refer to Appendix C for the storm sewer design sheet.

4.5 Major System Conveyance

The major system will convey the 100-year return period storm within the development site and direct the flow into the proposed SWM pond as overland flow.

5.0 Stormwater Management

5.1 Stormwater Management Criteria

The SWM criteria for this development are based on the Township of Centre Wellington's *Development Manual (draft 2018)* as well as the Ministry of the Environment, Conservation and Park' s(MECP) *Stormwater Management Planning and Design Manual (2003).* Climate change and severity of storm events was considered during the planning and design of the proposed SWM facility to ensure resiliency to climate change.

From these design criteria, the following SWM guidelines are to be applied:

Volume Control	Maintain or improve infiltration to aquifer in Q1/Q2 Zones.
Water Quality:	Level 1 - Enhanced protection corresponds to the end-of-pipe storage volumes required for the long-term removal of 80% of suspended solids.
Erosion Control:	Extended detention of the 25 mm storm event
Water Quantity:	Peak flow control for 2 year through 100 year storms

5.2 Existing Hydrologic Conditions

The rational method was used to calculate pre-development peak flows for existing catchments. The Intensity-Duration-Frequency (IDF) parameters used to calculate rainfall intensity were obtained from the MTO IDF Curve Lookup tool. Detailed

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023

calculations can be found in Appendix D and the pre-development peak flow rates for the site are summarized in Table 3.

Return Period	Peak Flow (cms)
2-year	0.613
5-year	0.807
10-year	0.936
25-year	1.209
50-year	1.464
100-year	1.673

Table 3: Pre-Development Peak Flows

5.3 Proposed Hydrological Conditions

5.3.1 Quantity Control

The proposed development will utilize SWMF1 with and an outlet to the Gartshore Street ROW. SWMF1 will operate as a wet pond complete with a forebay and extended detention for the first 25 mm and detain of the 100-year post development flows. There are 2 uncontrolled areas that drain from the site, which have been accommodated in the allowable release rate from SWMF1. The rational method was used to evaluate peak flow rates from the site. Table 4 shows post-development sub-catchment areas and peak flows, detailed calculations can be found in Appendix D.

Catchment	201	UNC1	UNC2
Drainage Area (ha)	6.95	0.43	0.59
2-year cms	1.219	0.034	0.047
5-year cms	1.606	0.045	0.061
10-year cms	1.863	0.052	0.071
25-year cms	2.406	0.067	0.092
50-year cms	2.914	0.081	0.112
100-year cms	3.435	0.093	0.128

Table 4: Post-Development Peak Flows

Table 5: Flow Rate Summary, summarizes the net storm flows leaving the development site under both pre- and post-development conditions.

	Flow Rates (m ³ /s) Development Site					
Storm Event						
	Pre	Post				
2-Year	0.613	0.244				
5-Year	0.807	0.336				
10-Year	0.936	0.444				
25-Year	1.209	0.702				
50-Year	1.464	0.836				
100-Year	1.673	1.265				

Table 5: Flow Rate Summary

As shown in the tables above, the post-development flows for the subject property will be restricted to at or below pre-development flows for all storms 2-thourgh 100-year storm events. The final SWM modelling will be completed at detailed design.

5.3.2 Volume Control to Groundwater

Pre to post infiltration to groundwater is to be conserved by infiltrating the first 25 mm of roof runoff from the Operations Centre. An infiltration facility is proposed under the asphalt parking area sized for the 25 mm runoff from both the Phase 1 and Phase 2 portions of the operations building. See Drawing S1 for additional details. Water balance and drawdown calculations will be completed during detailed design.

5.3.3 Water Quality and Erosion Control

Based on requirements outlined in the MECP's *Stormwater Management Planning and Design Manual (2003)* and Centre Wellington's Development Manual (draft), stormwater quality control for this site is required to achieve an average of 80% long-term removal of total suspended solids (TSS) for the enhanced protection level. This is based on the annual loading of all runoffs leaving the site. The wet pond has been designed to meet the guidelines to achieve 80% TSS removal with an appropriately sized permanent pool and forebay. In addition to the engineered pond, for redundancy and for additional potential to overcontrol water quality, an oil grit separator will be utilized at the pond outlet to further reduce the sediment loading on the downstream lands. Table 6 shows ultimate TSS removal efficiencies.

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023

Description	Area	Landscape ¹	Infiltration ²	Wet	OGS	Total TSS	
	(ha)			Pond ²		Removal	
Uncontrolled	1.02	80%				80%	
Landscape	1.02	00 /0	-	-		00 /0	
Controlled	4.40	0.0%		000/		000/	
Landscape	1.46	80%	80%		50%	92%	
Parking, Yard							
and SWM	4.92	-	-	80%	50%	90%	
Facility							
Roof	0.55	-	75%	80%	50%	90%	
Site Total	7.97					89.1%	

Table 6: TSS Removal Efficiency Summary

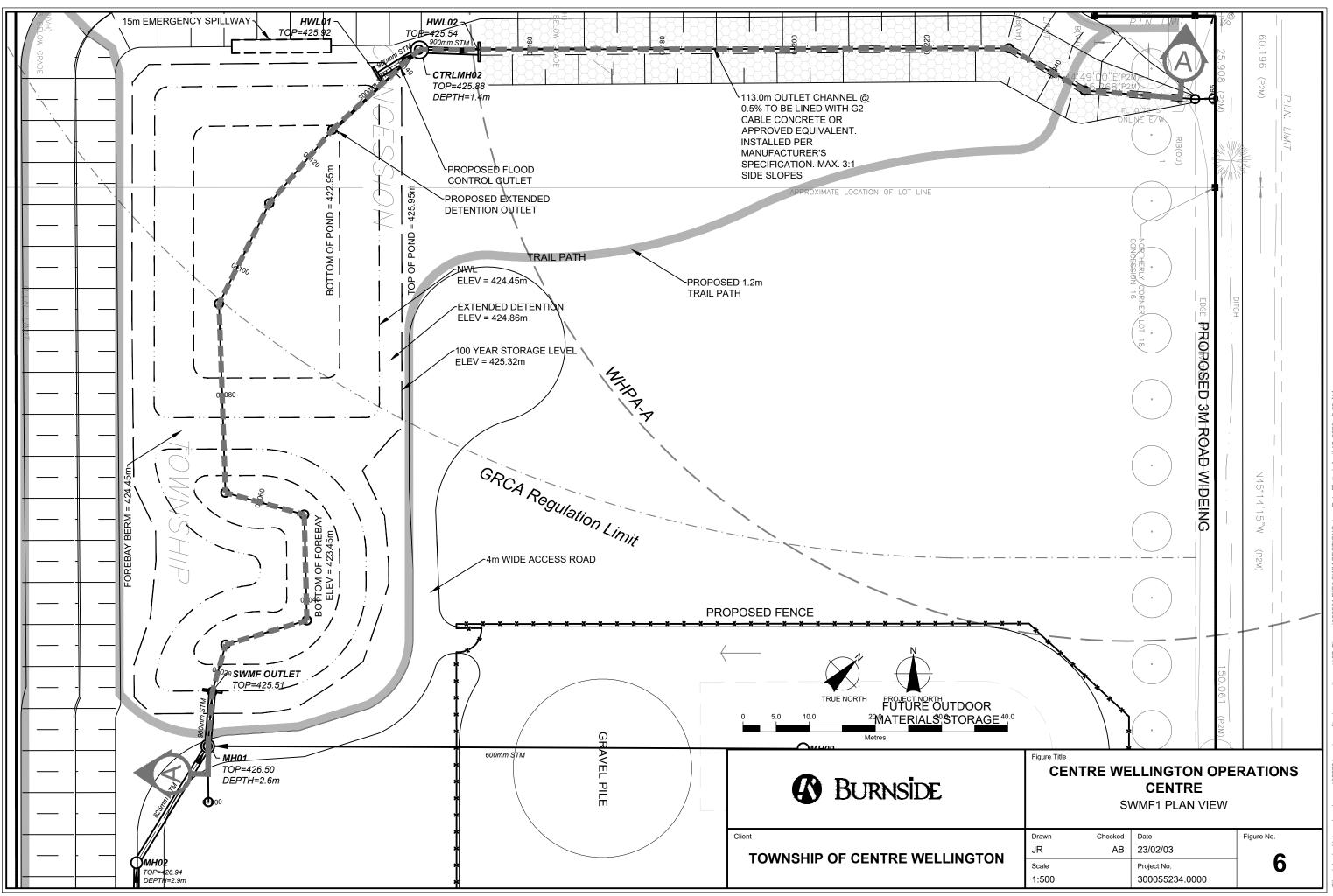
1 Removal efficiencies from STEP/TRCA LID Treatment Train Tool.

2 Removal efficiency from City of Toronto guidelines.

The proposed plan shows a TSS removal of 89.1% has been achieved and the Enhanced Protection Level target of 80% has been met. Incorporating these measures to the proposed site plan will provide the site with the necessary water quality treatment, erosion control, and water quantity attenuation prior to out letting to the existing ditch.

The township will incorporate best practices to prevent stockpiles of any potential hazardous materials from being stored on the site within the WHP-A limit. Organic materials such as wood chips, mulch, branches or rocks, are permitted to be stored in the WHPA-A. This will avoid having access roads and road salt within the WHPA-A, preventing possible fuel spills from equipment. During detailed design, low impact development opportunities will be explored including but not limited to installation of rainwater gardens, soakaway pits, pervious pipe systems and bioswales where groundwater levels and native conditions allow. A drinking water threat disclosure report is likely to be required at detailed design to further address water quality concerns regarding the development. There is no intention to accommodate township snow storage or snow disposal on the site. All snow storage is strictly limited to snow accumulated on site. There will not be a dump out pit for the hydrovac on site.

5.3.4 Stormwater Management Facility

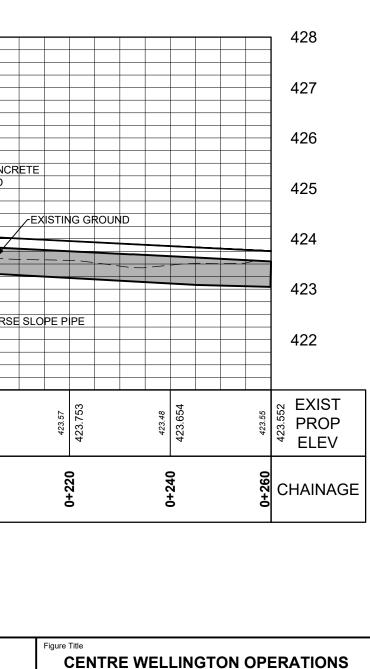

SWMF1 is located along the western property boundary outside of the WHPA-A limits. The pond has been designed with 4:1 side slopes and a 4 m wide access road to provide access to forebay, inlet and outlet. The pond outlet will be directed to Gartshore Street ROW through a 113 m outlet channel. SWMF1 and the outlet channel is to be lined with a 0.5m impermeable clay liner to prevent infiltration within the WHPA-A zone. A cable concrete liner is proposed for energy dissipation and erosion control during peak events. Appendix E shows detailed calculations for SWMF1 and Table 7 summarizes the

Functional Servicing and Stormwater Management Report Centre Wellington Operations Centre April 2023

operating characteristics and storage volumes to meet the design criteria. Figure 6 and Figure 7 show the plan and section for SWMF1.

-							
Drainage Are	ea	=	6.95 ha	% IMP= 65			65
Pond Block A	Area	=			0.45 ha		
Permanent F	Pool Required	=	173 m³/ha	х	6.95 ha	=	1,204 m ³
Permanent F	Pool Provided	=	2,140 m ³				
Max Depth		=	1.5 m				
-	Pool Elevation	=	424.45 m				
Erosion Cont	trol	=	25 mm x	1123 m ³		1123 m ³	
Release Rate	e	=	11.55	11.55 L/s			
ED Active St	orage Provided	=	1155 m³				
Depth		=	0.41 m	at	424.86 m		
Return Event	Pond Out-Flow (m ³ /s)	Sto	orage Volume (m³)	Water Elevation (m)		ation	
2-year	0.163		929		424.87		
5-year	0.230		1182	82 424.88			
10-year	0.321		1243	424.90			
25-year	0.498		1445		2	124.96	
50-year	0.643		1689		2	425.03	
100-year	1.044		2736		2	125.32	

Table 7: Summary Table for SWMF1


428 /---8.4m - 900mmØ STM @ 0.50% 427 CTKLINI... (2400Ø) TOP=425.88 OPSD 701.012 9.0m - 900mmØ STM @ 0.51% MAX. 3:1 SIDE SLOPES CTRLMH02 7.4m - 900mmØ STM @ 4.31% 426 HWL01 TOP=425 92 OPSD 804.030 ▼ 100 YR HWL = 425.32m G2 CABLE CONCRETE 425 HWL02 TOP=425.54 **v** NWL = 424.45m OPSD 804 030 424 FOREBAY (1.0m DEEP) PROPOSED 0.5m THICK */-//<u>*</u> MAIN CELL (1.5m DEEP) MH01 1800Ø) PROPOSED 0.5m THICK TOP=426.50 CLAY LINER <u>17.5m - 300mmØ STM @ -11.48%</u> 423 OPSD 701.01 PROPOSED 0.5m THICK CLAY LINER VEXTENDED DETENTION RISER BOTTOM DRAWN OUTLET W/REVERSE SLOPE PIPE 422 R10 RIP-RAP 100mm-200mmØ SUPPORT @ 3:1 MAX \$LOPE **EXIST** 423.60 423.690 423.69 423.450 423.53 423.450 423.48 422.950 423.50 424.056 423.39 422.950 423.63 423.854 423.594 425.695 423.58 423.954 423.40 426.56 47 PROP 123.4 ELEV 0+100 0+020 0+040 090+0 0+080 0+120 0+140 0+160 0+180 0+200

055234 SWM Section AA

Client

TOWNSHIP OF CENTRE WELLINGTO

SWMF1 SECTION

	Drawn	Checked	Date	Figure No.
N	JR	AB	23/02/03	-
NI	Scale		Project No.	l (
	H 1:750	V 1:7500	300055234.0000	

6.0 Erosion and Sediment Control

The erosion and sediment control plan for the site will be designed in conformance with the standards outlined by the Toronto and Region Conservation Authority (TRCA) in the *Erosion and Sediment Control Guide for Urban Construction (2019).* Details for erosion and sedimentation control during construction will be subject to the GRCA approval prior to the issuance of the building permit. Erosion and sediment control measures include but are not limited to a heavy-duty silt fence, rock check dams and a mud mat at the construction entrance. See ESC1 for details.

7.0 Utilities

Unless stated otherwise, utilities will be installed in a joint utility trench, and design will be provided by the individual utility companies. Existing gas, telecommunications, and overhead hydro available on Gartshore Street will be used to service the proposed site. Coordination with utility companies and sizing of connections will be completed during the detailed design stage of this project.

8.0 Conclusions and Recommendations

The preceding report provides an investigation of the existing servicing with a design for the proposed servicing and SWM of this development. The proposed Centre Wellington Operations Centre on Gartshore Street will be able to be serviced using existing water and sanitary services within the ROW. A new 150 mm watermain will be required to provide domestic and fire servicing, with a 200 mm sanitary sewer required to connect into the existing 250 mm sanitary line. The design also meets requirements for site grading and SWM with a proposed wet pond on the west property line to outlet to Gartshore Street. The existing municipal infrastructure is sufficient and capable of supporting the proposed development. As such, no external upgrades to the existing infrastructure will be required.

Accordingly, we propose that this Functional Servicing and SWM Report be accepted for review and approval to facilitate the rezoning application for the subject property.

Appendix A

Water Calculations

K	BURN	NSID	E			CAL	CULATION SHE
ect: Centr	re Wellington Operatio	ons Centre				Prepared by: Checked by:	
_	• / •					Project No:	300055234.0
_	us, Ontario						
Wate	r Demand Calculation	S				Date:	April 14, 2
_	Flow Calculation	ey.					
1	F= 220 C (A) ^{1/2}						
	Where F= Fire flow in	Lpm					
		Construction type					
	=	Type II - Noncon 0.8	IDUSTIDIE				
				g basements, in	cludes gara	ge*	
	Floor 1st Floor	Area (: 4856		% 100%		*Lowest floor even + 25% of edisining	
	2nd Floor	1308		25%		*Largest floor area + 25% of adjoining floor areas, assuming vertical opening	
	N/A		m ²	25%		are properly protected (one hour rating)	
		E 102	0.7 m		-		
	Largest Area = F =	5,183 12,671.38					
	F =	Round to neares 13,000					
2	Occupancy Contents	•		1			
	Type = I Factor =	imited Combus ⁻ -15%	tible Contents		*Office space		
	Adjustment =	-1,950	L/min				
	F =	11,050	L/min				
3	<u>Sprinkler Reduction</u> Sprinkler D	esian System =	Automate sprin	kler protection i	accorance	with NFPA standards	
	Factor =	30%					
	Reduction =	3,315	L/min				
4	Exposure Adjustment	<u>Charge</u>					
ſ		vative method =	Separation				
	Face North	Distance >30m	Charge 0%				
	West	>30m >30m	0% 0%				
4	South	>30m	0%				
	East	>30m	0%				
	Total Sena	ration Charge =	0%				
		ration Charge =					

	Charge =		0 L/min			
F =	8,000 L 133.33 L					
F =	2,114 U					
Fire Flow R Fire Flow R		133.33 8,000	L/s L/min	2,114	US GPM	

MAX Separation Charge =

75%

BURNSIDE			CA	ALCULATION SHEE
ect: Centre Wellington Operations Centre			Prepared by: Checked by:	
			Project No:	
Fergus, Ontario <i>Water Demand Calculations</i>			Date:	April 14, 20
II Demostic Flow Colouisticano Office				
II. Domestic Flow Calculations - Office GFA = Average Day Demand =	2616 75 L/day/9.3m2		*From Sanitary Design Sheet	
= =	0.73 L/s 12 US GPM			
Max. Daily Demand Peaking Factor = Max. Daily Demand =	1.1 0.80 L/s]
=	13 US GPM			
or Max. Hourly Demand Peaking Factor =	3.0]
Max. Hourly Demand = =	2.19 L/s 35 US GPM			-
Office Domestic Flow =	2.19 L/s	35	US GPM	
III. Domestic Flow Calculations - Industrial				
	Q / unit Quantity (L/day)	O (I /dav)	*From Sanitary Design Sheet	
per wash bay	1 400	400		
per water closet	2 950	<u>1,900</u> 2,300	_	
		2,300		
Average Day Demand =	0.08 L/s 1 US GPM			
=	T US GFM			
Max. Daily Demand Peaking Factor =	1.1		*From City of Toronto municipal standards]
Max. Daily Demand = =	0.09 L/s 1 US GPM			
or				
Max. Hourly Demand Peaking Factor =	3.0		*From Region of Waterloo standards]
Max. Hourly Demand =	0.24 L/s 4 US GPM			
Industrial Domestic Flow =	0.24 L/s	4	US GPM	
III. Flow Calculations - Greenhouse				
Average Day Demand Greenhouse (4) =	6949 L/day		From Past Project Experience	
=	0.08 L/s 1.28 US GPM			
Maximum Day Demand Peaking Factor=	1.33		From Past Project Experience	1
Max Daily Domand -			·····	4

Max. Daily Demand =	0.11 L/S			
=	1.70 US GPM			
or				
Peak Rate =	-		From Past Project E	Experience
Max. Hourly Demand =	1.75 L/s			
=	27.74 US GPM			
Greenhouse Irrigation Flow =	1.75 L/s	63	US GPM	
Total Domestic Flow =	4.18 L/s			
Fire Flow =	133.33 L/s			
Peak Domestic + Fire Demand =	137.51 L/s			
	8250.80 L/min			

Appendix B

Sanitary Calculations

				CAL	CULATION SHE
BURNSIDE					
				Droporod by	
ect: Centre Wellington Operations Centre				Prepared by: Checked by:	
Fergus, Ontario				Project No:	300055234.0
Sanitary Servicing Calculations				Date:	April 14, 2
ting Site Flows				$P \times O \times M$	
ang she riows			Q=	= <u>P x Q x M</u> 86400 +	(A x I)
Residential Flow					
Building Address Units	Building Area	a GFA (ha)	P/m ²	P/unit	Population
965 Gartshore Street 1	(m ²) 127	· · · ·		3	3
	121			0	0
					0
Total Q=	2	50 L/cap/day			3
Q=	5	50 L/Cap/Uay			
M=		1+ <u>14</u> 4+(P/1000) ^{1/2}			
M=	4.4	45			
Q _(residential) =	0.05	L/s			
Site Area=	7.97	ha			
Infiltration Allowance=	12960	L/day/ha	*From Centre Wellingto	on Design Guidelines	
=	0.15	L/s/ha			
Q _{infiltration} =	1.20	L/s			
Q Existing Total=	1.25	L/s			

BURNS	SIDE				CAL	CULATION SHEET
oject: Centre Wellington Operations Centre Fergus, Ontario Sanitary Servicing Calculations					Prepared by: Checked by: Project No: Date:	JF FG 300055234.0000 April 14, 2023
roposed Site Flows						
Office						
GFA Office =	2616	m2				
	Quantity	Q / unit (L/day)	Q (L/day)			
per employee per 8hr shift, or per each 9.3m2 of floor space	281.3	75	21,101 21,101	*From OBC		
Q _(Office) = Max. Hourly Demand Peaking Factor =	0.73 3.0	L/s				
	Q _(Office) =	2.19	L/s			
<u>Industrial (Warehouse)</u> GFA =	3548 Washes / Day	m2 L / per	Q (L/day)			
Per Wash Bay	1	400	400			
Per Water Closet Q _(Industrial) = Max. Hourly Demand Peaking Factor =	2 0.08 N/A	950 L/s	<u>1,900</u> 2,300			
	Q _(Industrial) =	0.08	L/s	7		
Greenhouse Activities				_		
	Q _(Peak) =	1.75	L/s	*From Water Demand		
	Q _(Greenhouses) =	1.75	L/s			
Infiltratio	on Allowance= = A=	0.15	L/day/ha L/s/ha ha			
	Q _{infiltration} =	1.20	L/s			
	Q _{proposed total} = Q _{increase total} =	5.27 4.02	L/s L/s]		
		Service Conr				
<u> </u>				<u> </u>		

		Service Connect	lon		
Diameter (mm)	Slope (%)	Full Flow Velocity (m/s)	Capacity (L/s)	Spare Capacity (L/s)	Percent Full (%)
200	1.00	1.04	32.80	28.78	16.07%

Appendix C

Storm Sewer Design Sheet

STORM SEWER DESIGN SHEET: (5 Year Storm)

965 Gartshore street

[THE DIFFERENCE IS OUR PEOPLE]

			Rainfall Intensity =Min. Diameter =300 $\overline{(Tc+B)^{Ac}}$ where Tc is in hoursMannings 'n'=0.013A =30.7Starting Tc =10minB =0Factor of Safety =10%C =0.699														I	NOMINAL PIPE SIZE USED		
DESCRIPTION	FROM MH	то мн	AREA (ha)	RUNOFF COEFFICIENT "R"	'AR'	ACCUM. 'AR'	RAINFALL INTENSITY (mm/hr)	FLOW (m3/s)	CONSTANT FLOW (m3/s)	ACCUM. CONSTANT FLOW (m3/s)	TOTAL FLOW (m3/s)	LENGTH (m)	SLOPE (%)	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (m3/s)	FULL FLOW VELOCITY (m/s)	INITIAL Tc (min)	TIME OF CONCENTRATION (min)	ACC. TIME OF CONCENTRATION (min)	PERCENT FULL (%)
South Line	MH06	MH05	0.79	0.72	0.57	0.57	107.4	0.169	1	1	0.169	41.5	0.50	450	0.202	1.27	10.00	0.55	10.55	84%
oodan Eine	MH05	MH04	0.44	0.90	0.40	0.96	107.4	0.103			0.277	90.0	0.50	600	0.434	1.54	10.55	0.98	11.52	64%
	MH04	MH03	0.28	0.90	0.25	1.22	97.3	0.329			0.329	62.8	0.50	600	0.434	1.54	11.52	0.68	12.20	76%
Branch 'A'	MH08	MH07	0.56	0.75	0.42	0.42	107.4	0.126			0.126	90.0	1.00	375	0.175	1.59	10.00	0.94	10.94	72%
	MH07	MH03	0.56	0.90	0.50	0.93	100.8	0.259			0.259	34.0	0.50	525	0.304	1.40	10.94	0.40	11.35	85%
	MH03	MH02	0.50	0.90	0.45	2.59	93.5	0.673			0.673	90.0	0.50	750	0.787	1.78	12.20	0.84	13.05	85%
	MH02	MH01	0.69	0.90	0.62	3.21	89.2	0.796			0.796	20.6	0.50	825	1.015	1.90	13.05	0.18	13.23	78%
North Line	MH11	MH10	0.28	0.63	0.18	0.18	107.4	0.052			0.052	90.0	1.00	300	0.097	1.37	10.00	1.10	11.10	54%
North Ellic	MH10	MH09	0.58	0.90	0.52	0.70	99.9	0.193			0.193	90.0	0.50	525	0.304	1.40	11.10	1.07	12.16	64%
	MH09	MH01	1.25	0.63	0.79	1.48	93.7	0.386			0.386	90.0	0.50	600	0.434	1.54	12.16	0.98	13.14	89%
Outlet	MH01	SWMF1		0.90		4.70	88.3	1.153			1.153	8.4	0.50	900	1.280	2.01	13.23	0.07	13.30	90%

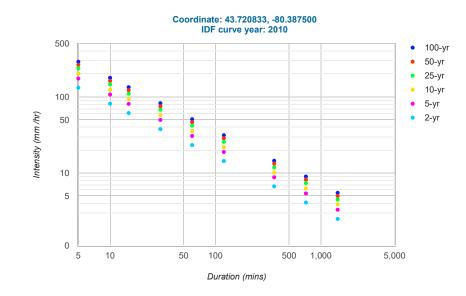
Appendix D

Modified Rational Method Calculations

♂Ontario IDF CURVE LOOKUP

Active coordinate

43° 43' 15" N, 80° 23' 15" W (43.720833,-80.387500) Retrieved: Mon, 06 Feb 2023 13:29:20 GMT


Location summary

These are the locations in the selection.

IDF Curve: 43° 43' 15" N, 80° 23' 15" W (43.720833,-80.387500)

Results

An IDF curve was found.

Coefficient summary

IDF Curve: 43° 43' 15" N, 80° 23' 15" W (43.720833,-80.387500)

Retrieved: Mon, 06 Feb 2023 13:29:20 GMT

Data year: 2010 IDF curve year: 2010

Return period	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Α	23.3	30.7	35.6	41.8	46.4	50.9
В	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

Statistics

Rainfall intensity (mm hr⁻¹)

Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	132.3	81.5	61.4	37.8	23.3	14.4	6.7	4.1	2.5
5-yr	174.4	107.4	80.9	49.8	30.7	18.9	8.8	5.4	3.3
10-yr	202.2	124.6	93.8	57.8	35.6	21.9	10.2	6.3	3.9
25-yr	237.4	146.3	110.2	67.9	41.8	25.7	11.9	7.4	4.5
50-yr	263.6	162.3	122.3	75.3	46.4	28.6	13.3	8.2	5.0
100-yr	289.1	178.1	134.1	82.6	50.9	31.4	14.5	9.0	5.5

Rainfall depth (mm)

Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	11.0	13.6	15.4	18.9	23.3	28.7	40.0	49.2	60.6
5-yr	14.5	17.9	20.2	24.9	30.7	37.8	52.6	64.9	79.9
10-yr	16.9	20.8	23.5	28.9	35.6	43.9	61.0	75.2	92.7
25-yr	19.8	24.4	27.5	33.9	41.8	51.5	71.7	88.3	108.8
50-yr	22.0	27.1	30.6	37.7	46.4	57.2	79.6	98.0	120.8
100-yr	24.1	29.7	33.5	41.3	50.9	62.7	87.3	107.5	132.5

Terms of Use

You agree to the Terms of Use of this site by reviewing, using, or interpreting these data.

Ontario Ministry of Transportation | Terms and Conditions | About Last Modified: September 2016

BURN					CALCUL	ATION SHEET		
Centre Wellington Opera	tions Cen	tre						
C101					ared by:	J. Rooke		
					cked by:	F.Goulding		
Existing/Allowable Flows	5			Pro	oject No:	300055234.0000		
					Date:	6-Feb-2023		
Runoff Equation	Q = 2	.78CIA (L/s)					
where,	C = rı	unoff coeffic	ient					
;			sity (mm/hr)					
		rea (ha)	/					
	2.78= c	onversion fa	actor					
Definition	Area		С					
sphalt/Concrete/Rooftops	0.17 h	а	0.90	*From Centre Wellington Design Standards				
Grass Short / Mowed	0.00				0	ign Standards		
Gravel	0.24 h		0.70	1 *From MTO Design Chart				
Agricultural	6.58 h		0.31					
Totals	7.97 h	а	0.34					
	=	AT ^B						
	I= R	ainfall Inter	isity (mm/hr)					
	T= T	ime of conc	entration (ho	ur)				
	(u	ise T=10 min o	or 0.1666667hr)					
Return Period	Α	в	т	I.	С	Q		
2 year	23.3	-0.699	0.167 hr	81.52 mm/hr	0.34	612.74 L		
5 year	30.7	-0.699	0.167 hr	107.42 mm/hr	0.34	807.35 L		
10 year	35.6	-0.699	0.167 hr	124.56 mm/hr	0.34	936.21 L		
25 year	41.8	-0.699	0.167 hr	146.25 mm/hr	0.34	1099.26 L		
50 year	46.4	-0.699	0.167 hr	162.35 mm/hr	0.34	1220.23 L		
100 year	50.9	-0.699	0.167 hr	178.09 mm/hr	0.34	1338.57 L		
Allo	wable relea	ase rate fro	m the site is	6 1338.57 L/s				

Centre Wellington Operat	ione Contro	_					
Centre weinington Operat	ions centre				Prena	red by:	J. Rooke
C201						ked by:	F.Goulding
Post Development Contro	olled Flows					ect No:	300055234
						Date:	6-Feb-2023
Dupoff Equation	0 - 0	70014 (1 (a)					
Runoff Equation	Q = 2	.78CIA (L/s)					
where,		unoff coefficie					
		ainfall intensit	y (mm/hr)				
		rea (ha)	1				
	2.78= C	onversion fac	ctor				
	Definition	Area		С			
Asphalt/Concr		4.62		0.90	*From C	Centre Welli	ngton Design Standa
	hort / Mowed	1.69		0.35	*From C	Centre Welli	ngton Design Standa
	SWM Facility	0.64		1.00	I		
	Totals	6.95	ha	0.78			
	=	AT ^B					
		ainfall Intens					
		ime of conce		,			
	(u	ise T=10 min or	0.1666667hr)				
	Α	в	т		I.	С	Q
Return Period	23.3	-0.699	0.167 hr		81.52 mm/hr	0.78	1219.56 L
2 year		-0.699	0.167 hr		107.42 mm/hr	0.78	1606.88 L
2 year 5 year	30.7		0.167 hr		124.56 mm/hr	0.78	1863.36 L
2 year 5 year 10 year	35.6	-0.699			146.25 mm/hr	0.85	2406.66 L
2 year 5 year 10 year 25 year	35.6 41.8	-0.699	0.167 hr				
2 year 5 year 10 year	35.6				162.35 mm/hr 178.09 mm/hr	0.93 1.00	2914.37 L 3435.98 L

Centre Wellington Opera	tions Centre					
J				Prepa	red by:	J. Rooke
UNC1				Checl	ked by:	F.Goulding
Post Development Uncol	ntrolled Flows			Proj	ect No:	300055234
_					Date:	6-Feb-2023
Runoff Equation	Q = 2	2.78CIA (L/s)				
where,	C = r	unoff coefficient				
		ainfall intensity (m	m/hr)			
		area (ha)				
	2.78= 0	conversion factor				
	Definition	Area	С			
Asphalt/Conc	•	0.00 ha	0.90	*From C	Centre Welli	ngton Design Standard
Grass S	Short / Mowed	0.43 ha	0.35	*From C	Centre Welli	ngton Design Standar
F	SWM Facility	0.00 ha	1.00	_		
L	Totals	0.43 ha	0.35			
	=	AT ^B				
		Rainfall Intensity (r	,			
		Fime of concentration	· · ·			
	(use T=10 min or 0.166	6667 nr)			
Return Period	Α	в	т	I	С	Q
2 year	23.3	-0.70 ().167 hr	81.52 mm/hr	0.35	34.08 L/s
5 year	30.7).167 hr	107.42 mm/hr	0.35	44.91 L/s
10 year	35.6).167 hr	124.56 mm/hr	0.35	52.08 L/s
25 year	41.8).167 hr	146.25 mm/hr	0.39	67.26 L/s
50 year 100 year	46.4).167 hr	162.35 mm/hr	0.42	81.45 L/s
	50.9	-0.70 0).167 hr	178.09 mm/hr	0.44	93.07 L/s

Centre Wellington Opera	tions Centre					
J				Prepa	red by:	J. Rooke
UNC2					ked by:	F.Goulding
Post Development Unco	ntrolled Flows			Proj	ect No:	300055234
				,	Date:	6-Feb-2023
Runoff Equation	Q = 2	2.78CIA (L/s)				
where,	C = r	unoff coefficient				
	I = r	ainfall intensity (m	ım/hr)			
		area (ha)				
	2.78= 0	conversion factor				
	Definition	Area	С			
•	rete/Rooftops	0.00 ha	0.90			ngton Design Standar
Grass S	Short / Mowed	0.59 ha	0.35	*From C	Centre Welli	ngton Design Standar
Γ	SWM Facility	0.00 ha	1.00	-		
L	Totals	0.59 ha	0.35			
	=	AT ^B				
		Rainfall Intensity (r	,			
		Fime of concentration	()			
	(use T=10 min or 0.166	56667 hr)			
Return Period	Α	В	т	I	С	Q
2 year	23.3	-0.70 ().167 hr	81.52 mm/hr	0.35	46.77 L/s
5 year	30.7	-0.70 ().167 hr	107.42 mm/hr	0.35	61.62 L/s
10 year	35.6).167 hr	124.56 mm/hr	0.35	71.45 L/s
25 year	41.8).167 hr	146.25 mm/hr	0.39	92.29 L/s
	46.4).167 hr	162.35 mm/hr	0.42	111.76 L/s
50 year 100 year).167 hr	178.09 mm/hr	0.44	127.70 L/s

Rainfall IDF Co			-year			
	A =	50.4		A =		
	C =	-0.699		B =		
Dational Mathe	d Calculation			C =		
Rational Metho Area =	o Calculation	6.95	ha			
Runoff Coeffici	ent C -	0.95 1.00	ha			
$C^*A =$	ient, C –	6.95				
Time of Conce	ntration, t _a =	10.0	min			
Storm Duration	-	5.0	min			
Target Release		1339	L/s			
Constant Inflov		0	L/s			
Uncontrolled O	outflow =	221	L/s	Max. Allowa	able Outflow (L/s) =	1339
Outflow =		1044	L/s	*From SWM D	esign Sheet Total Orfic	e Flow
Storm Duration (min)	Rainfall Intensity (mm/hr)	Max. Runoff Flow (L/s)	Runoff Volume (m ³)	Released Volume (m ³)	Storage Volume (m ³)	Max. Storage Volume Required (m ³)
10.0	176.34	3401.95	2041	626	1415	()
15.0	132.82	2562.36	2306	783	1523	
20.0	108.63	2095.60	2515	940	1575	
25.0	92.94	1792.95	2689	1096	1593	2748
30.0	81.82	1578.41	2841	1253	1588	
35.0	73.46	1417.18	2976	1409	1567	
40.0	66.91	1290.89	3098	1566	1532	
45.0	61.63	1188.86	3210	1723	1487	
50.0	57.25	1104.45	3313	1879	1434	
55.0	53.56	1033.27	3410	2036	1374	
60.0	50.40	972.30	3500	2192	1308	
65.0	47.66	919.39	3586	2349	1237	
70.0	45.25	872.98	3667	2506	1161	
75.0	43.12	831.88	3743	2662	1081	
80.0	41.22	795.18	3817	2819	998	
85.0	39.51	762.19	3887	2975	912	

Rainfall IDF Co			-year			
	A =	46.4		A =		
	C =	-0.699		B =		
Detion of Method	d O a lavela ti a m			C =		
Rational Metho	d Calculation	0.05	I			
Area =	ant C -	6.95 0.93	ha			
Runoff Coefficient, C = C*A =		0.93 6.46				
Time of Conce	ntration t -	10.0	min			
Storm Duration	-	5.0	min			
Target Release		1220	L/s			
Constant Inflov		0	L/S L/S			
Uncontrolled O		193	L/s	Max. Allow	able Outflow (L/s) =	1220
Outflow =		643	L/s		Design Sheet Total Orfice	
Otoma	Deinfell	Mary Dumoff	Runoff	Released	Storago	Max Starage
Storm Duration	Rainfall Intensity	Max. Runoff Flow	Volume	Volume	Storage Volume	Max. Storage Volume Required
(min)	(mm/hr)	(L/s)	(m ³)	(m ³)	(m ³)	(m ³)
(11111)	((((((((((((((((((((((((((((((((((((((((Ľ/3)	(111)	(111)	(111)	(111)
10.0	162.35	2914.14	1748	386	1363	
15.0	122.28	2194.94	1975	482	1493	
20.0	100.01	1795.11	2154	579	1575	
25.0	85.56	1535.85	2304	675	1629	
30.0	75.32	1352.08	2434	772	1662	
35.0	67.63	1213.97	2549	868	1681	
40.0	61.60	1105.78	2654	965	1689	1689
45.0	56.73	1018.39	2750	1061	1689	
50.0	52.71	946.08	2838	1157	1681	
55.0	49.31	885.11	2921	1254	1667	
60.0	46.40	832.88	2998	1350	1648	
65.0	43.88	787.56	3071	1447	1625	
70.0	41.66	747.80	3141	1543	1598	
75.0	39.70	712.59	3207	1640	1567	
80.0	37.95	681.16	3270	1736	1533	
85.0	36.37	652.90	3330	1833	1497	

Rainfall IDF Co			-year			
	A =	-		A =		
	C =	-0.699		B =		
Detional Mathe	d Calavlatian			C =		
Rational Metho	d Calculation	0.05	l			
Area = Runoff Coeffici	iont C -	6.95 0.85	ha			
C*A =	ent, C –	5.92				
Time of Conce	ntration t =	10.0	min			
Storm Duration	-	15.0	min			
Target Release		1099	L/s			
Constant Inflow		0	L/s			
Uncontrolled O		160	L/s	Max. Allowa	able Outflow (L/s) =	1099
Outflow =		498	L/s) Design Sheet Total Orfice	e Flow
Storm	Rainfall	Max. Runoff	Runoff	Released	Storage	Max. Storage
Duration	Intensity	Flow	Volume	Volume	Volume	Volume Required
(min)	(mm/hr)	(L/s)	(m^3)	(m ³)	(m ³)	(m ³)
, , ,	· · · · ·	. ,	()	()	· · ·	(111)
10.0	146.25	2406.47	1444	299	1145	
25.0	77.08	1268.29	1902	523	1380	
40.0	55.50	913.15	2192	747	1445	1445
55.0	44.42	730.91	2412	971	1441	
70.0	37.53	617.53	2594	1195	1398	
85.0	32.77	539.16	2750	1419	1330	
100.0	29.25	481.26	2888	1643	1244	
115.0	26.53	436.47	3012	1868	1144	
130.0	24.35	400.62	3125	2092	1033	
145.0	22.56	371.18	3229	2316	914	
160.0	21.06	346.50	3326	2540	787	
175.0	19.78	325.46	3417	2764	653	
190.0	18.67	307.28	3503	2988	515	
205.0	17.71	291.38	3584	3212	372	
220.0	16.86	277.35	3661	3436	225	
235.0	16.10	264.85	3734	3660	74	

Rainfall IDF Co	pefficients		-year			
	A =	35.6		A =		
	C =	-0.699		B =		
Rational Metho	d Calculation			C =		
Area =		6.95	ha			
Runoff Coeffici	ent C =	0.95	lla			
C*A =	ent, 0 -	5.39				
Time of Conce	ntration. t _c =	10.0	min			
Storm Duration	-	5.0	min			
Target Release		936	L/s			
Constant Inflov		0	L/s			
Uncontrolled O	utflow =	124	L/s	Max. Allow	vable Outflow (L/s) =	936
Outflow =		321	L/s	*From SWM D	esign Sheet Total Orfice	Flow
Storm	Rainfall	Max. Runoff	Runoff	Released	Storage	Max. Storage
Duration	Intensity	Flow	Volume	Volume	Volume	Volume Required
(min)	(mm/hr)	(L/s)	(m ³)	(m ³)	(m ³)	(m ³)
, , , , , , , , , , , , , , , , , , ,	· · · ·		. ,	. ,	()	()
10.0	124.56	1863.21	1118	193	925	
15.0	93.82	1403.37	1263	241	1022	
20.0	76.73	1147.73	1377	289	1088	
25.0	65.65	981.98	1473	337	1136	
30.0	57.79	864.48	1556	385	1171	
35.0	51.89	776.17	1630	433	1197	
40.0	47.26	707.00	1697	482	1215	
45.0	43.53	651.13	1758	530	1228	
50.0	40.44	604.90	1815	578	1237	
55.0	37.83	565.91	1868	626	1242	
60.0	35.60	532.52	1917	674	1243	1243
65.0	33.66	503.54	1964	722	1242	
70.0	31.96	478.12	2008	770	1238	
75.0	30.46	455.61	2050	819	1232	
80.0	29.12	435.51	2090	867	1224	
85.0	27.91	417.44	2129	915	1214	

Rainfall IDF Co	pefficients		-year			
	A =	30.7		A =		
	C =	-0.699		B =		
				C =		
Rational Metho	d Calculation	0.05				
Area =	iant C -	6.95 0.78	ha			
Runoff Coefficient, C = C*A =		5.39				
Time of Conce	ntration t -	10.0	min			
Storm Duration		10.0	min			
Target Release		807	L/s			
Constant Inflow		0	L/s			
Uncontrolled C		107	L/s	Max. Allow	able Outflow (L/s) =	807
Outflow =		230	L/s		Design Sheet Total Orfice	
R					-	
Storm	Rainfall	Max. Runoff	Runoff	Released	Storage	Max. Storage
Duration	Intensity	Flow	Volume	Volume	Volume	Volume Required
(min)	(mm/hr)	(L/s)	(m ³)	(m ³)	(m ³)	(m ³)
. ,	· · ·		. ,		· · ·	(111)
10.0	107.42	1606.75	964	138	826	
20.0	66.17	989.76	1188	207	981	
30.0	49.84	745.49	1342	276	1066	
40.0	40.76	609.69	1463	345	1118	
50.0	34.87	521.64	1565	414	1151	
60.0	30.70	459.22	1653	483	1170	
70.0	27.56	412.31	1732	552	1180	
80.0	25.11	375.57	1803	621	1182	1182
90.0	23.12	345.89	1868	690	1178	
100.0	21.48	321.33	1928	759	1169	
110.0	20.10	300.62	1984	828	1156	
120.0	18.91	282.88	2037	897	1140	
130.0	17.88	267.49	2086	966	1120	
140.0	16.98	253.98	2133	1035	1098	
150.0	16.18	242.03	2178	1104	1074	
160.0	15.47	231.35	2221	1173	1048	

Rainfall IDF Co			-year			
	A =	23.3		A =		
	C =	-0.699		B =		
Detional Mathe	d Calaviation			C =		
Rational Metho	d Calculation	0.05	h -			
Area = Runoff Coeffici	iont C -	6.95 0.78	ha			
C*A =	ient, C –	5.39				
Time of Conce	ntration t =	10.0	min			
Storm Duration	-	10.0	min			
Target Release		613	L/s			
Constant Inflow		0	L/s			
Uncontrolled C		81	L/s	Max. Allow	able Outflow (L/s) =	613
Outflow =		163	L/s		Design Sheet Total Orfice	e Flow
Storm	Rainfall	Max. Runoff	Runoff	Released	Storage	Max. Storage
Duration	Intensity	Flow	Volume	Volume	Volume	Volume Required
(min)	(mm/hr)	(L/s)	(m ³)	(m ³)	(m ³)	(m ³)
(''''')	,	(2/0)	(111)	(111.)	(111.)	(111.)
10.0	81.52	1219.46	732	98	634	
20.0	50.22	751.18	901	147	755	
30.0	37.82	565.79	1018	196	823	
40.0	30.93	462.73	1111	245	866	
50.0	26.47	395.90	1188	293	894	
60.0	23.30	348.53	1255	342	912	
70.0	20.92	312.93	1314	391	923	
80.0	19.06	285.04	1368	440	928	
90.0	17.55	262.51	1418	489	929	929
100.0	16.30	243.87	1463	538	925	
110.0	15.25	228.16	1506	587	919	
120.0	14.35	214.69	1546	636	910	
130.0	13.57	203.01	1583	685	899	
140.0	12.89	192.76	1619	734	886	
150.0	12.28	183.69	1653	782	871	
160.0	11.74	175.58	1686	831	854	

Appendix E

SWM Pond Calculations

EXTENDED DETENTION CALCULATIONS

Project:Centre Wellington Operations CentreFile:300055234Designed by:J. RookeChecked by:F. GouldingDate:6-Feb-23

Extended Detention Storage Required

Requirements as per MOE	
Storage =	25 mm / impervious ha
TIMP =	65.0 %
Area to Pond =	6.95 ha
Impervious Area =	4.5 ha
Storage Required = Drawdown Required	1123 cu.m 24 hrs

Orifice Sizing per MOE 2003 SWM Manual - Falling Head Equation

$t = 2*Ap*(h^0.5)/(C*Ao*(g*2)^0.5)$

t = Ao = h = C =	drawdown time cross sectional are maximum water el discharge coefficie	evation above orifice (de	pth of ED)	86400 seconds sq.m 0.41 m 0.62	*to be calculate *depth of ED	ed	
Ap =	0	rage pond surface area for extended detention 4118 sq.m				*based on pond design	
	Ao = Actual Diameter Actual Drawdown	0.0222 sq.m Time	d = d =	168 mm 160 mm 26.5 hrs	Ao =	0.020	

SEDIMENT FOREBAY SIZING

Г

Project:Centre Wellington Operations CentreFile:300055234Designed by:J. RookeChecked by:F. GouldingDate:6-Feb-23

	F	orebay Ler	ngth: Two Calcula	tions (p	er MOE S	SWMP N	lanual, 2003)	
· •	Calculations on 4.5, MOE 2003)		QRT(r*Qp/Vs)	2)	Dispersic (Equatio	on Lengtl n 4.6,MO		Dist = (8 * Q) / (d *	Vf)
where:	Qp = Peak during	ay length (m) h to width ratio flowrate from t g quality design ng velocity (m/	the pond n storm (cms)		where: given:	Q = d = Vf =	Forebay length inlet flowrate (cr depth of permai desired forebay	ns) nent pool in forebay (m)
given:	Qp = 0.023	<mark>3.5</mark> 351 cms 003 m/s	*see below		therefore:	d = Vf =	1 m 0.5 m/s 20.5 metres		
therefore:	Width=	6.6 metres 4.7 metres			Min Botton Pond Side Calc. Top	Width= n Width= e Slopes: p Width=	10.2 metres 2.6 metres 4 10.56 metres	s *MOE equa	ation 4.6
	flowrate (Qp) from tended detention m				Calc. Top	Length=	36.96 meters	3	
Extended I		6.5 hrs	tended det. volume)				ated based on \$ hod sewer calc	STORM SEWER DES ulation.	iign

Minimum Forebay Dimension:		Actual Forebay Design:						
Length= 37.0 meters		Length= 56.0 meters						
Width=	10.6 meters	Width= 16.0 meters						
		Check Average velocity in forebay <= 0.15 m/s						
		Pond Side Slopes: 4 H : 1 V						
		Q = V x A Q = 1.28 A = 12 sq.metres						
		therefore: V = 0.1067 m/s						
		Design: OK						

STAGE STORAGE DISCHARGE CURVE CALCULATIONS

 Project:
 Centre Wellington Operations Centre

 File:
 300055234

 Designed by:
 J. Rooke

 Checked by:
 F. Goulding

 Date:
 2/6/2023

Storage - Outflow Relationship for SWM Pond

Permanent Pool Elevation:	424.45 m
Extended Detention Elevation:	424.86 m
Extended Detention Orifice Size:	160 mm
Orifice Area	0.02 m2
Computational Increment	0.05 m

Storm outflow controlled by a single outlet pipe Extended detention outflow controlled by a reverse sloped pipe

Orifice Outlets:

ernice editere:		
	Orifice #1	_
Flood Control Orifice Diameter	 0.825	m
Flood Control Inlet	 0.00	m above pp (ED Elev)
Flood Control Orifice Area	 0.53	m2
Flood Control Inlet Elevation	 424.45	
Flood Control Orifice Elevation	 424.45	m
Flood Control Orifice Coeff	 0.62	

Weir Outlets:

Well Outlets.		
	Weir #1	
Flood Control Weir Width	 15	m
Flood Control Weir Coeff	 1.7	LSRCA Guidelines
Flood Control Weir Rectangular	 n	(Y or N)
Flood Control Weir Crest Height	 0.3	m
Flood Control Weir Crest EL	 425.85	m
Flood Control Weir Side Slope X:1	 4	(X:1, USE 0:1 FOR RECTANGULAR)

	Water Surface Elevation m	Depth above PP m	Depth of ED Orifice m	Depth of Flood Orifice m	Pond Storage Volume cum	ED Orifice Outflow cms	Flood Control Orifice #1 cms	Total Orifice Flow cms	Flood Control Weir #1 cms	Total Weir Flow cms	Total Pond Outflow cms	Pond Storage Volume ha m
NWL	424.45	0.00	0.00	0.00	0	0.0000		0.000		0.000	0.000	0.000
	424.50	0.05	0.05	0.05	132.0	0.0021	0.000	0.002		0.000	0.002	0.013
	424.55	0.10	0.10	0.10	263.0	0.0175	0.000	0.017		0.000	0.017	0.026
	424.60	0.15	0.15	0.15	402.0	0.0214	0.000	0.021		0.000	0.021	0.040
	424.65	0.20	0.20	0.20	540.0	0.0247	0.000	0.025		0.000	0.025	0.054
	424.70	0.25	0.25	0.25	685.0	0.0276	0.000	0.028		0.000	0.028	0.069
	424.75	0.30	0.30	0.30	829.0	0.0302	0.000	0.030		0.000	0.030	0.083
	424.80	0.35	0.35	0.35	992.0	0.0327	0.000	0.033		0.000	0.033	0.099
ED	424.86	0.41	0.41	0.41	1155.0	0.0354	0.000	0.035		0.000	0.035	0.116
2- year	424.87	0.42	0.42	0.42	929.0	0.0358	0.127	0.163		0.000	0.163	0.093
5- year	424.88	0.43	0.43	0.43	1182.0	0.0362	0.194	0.230		0.000	0.230	0.118
10-year	424.90	0.45	0.45	0.45	1243.0	0.0370	0.284	0.321		0.000	0.321	0.124
25- year	424.96	0.51	0.51	0.51	1445.0	0.0394	0.458	0.498		0.000	0.498	0.145
50- year	425.03	0.58	0.58	0.58	1689.0	0.0421	0.601	0.643		0.000	0.643	0.169
	425.05	0.60	0.60	0.60	1776.0	0.0428	0.636	0.678		0.000	0.678	0.178
	425.10	0.65	0.65	0.65	1950.0	0.0445	0.715	0.760		0.000	0.760	0.195
	425.15	0.70	0.70	0.70	2124.0	0.0462	0.787	0.833		0.000	0.833	0.212
	425.25	0.80	0.80	0.80	2484.0	0.0494	0.914	0.963		0.000	0.963	0.248
100- year	425.32	0.87	0.87	0.87	2736.0	0.0515	0.993	1.044		0.000	1.044	0.274
	425.35	0.90	0.90	0.90	2855.0	0.0524	1.025	1.077		0.000	1.077	0.286