FERGUS DEVELOPMENT INC.

FERGUS GOLF CLUB REDEVELOPMENT WATER SERVICING STUDY

APRIL 2023

REPORT PREPARED FOR

883890 Ontario Limited c/o Fergus Development Inc. 3190 Steeles Avenue East, Suit 300 Markham, ON I3R 1G9

REPORT PREPARED BY

T.Y. LIN INTERNATIONAL CANADA LTD. 8800 DUFFERIN STREET, SUITE 200, VAUGHAN, ON L4K 0C5 (905) 738-5700

TYLIN PROJECT NUMBER 10402

CONTENTS

1	INTRO	ODUCTION	3		
	1.1	Introduction	3		
	1.2	Purpose	3		
2	WATE	ER TREATMENT PLANT	4		
	2.1	Projected Treated Water Demand	4		
	2.2	Water Supply	4		
	2.3	Water Quality	5		
	2.4	Water Treatment Requirements	5		
3	PREL	IMINARY SITE FOOTPRINT	5		
	3.1	Water Treatment Facility	5		
4	WATE	ER DISTRIBUTION SYSTEM	6		
	4.1	Design Criteria	6		
	4.2	Level of Service	7		
	4.3	Watermain Network	7		
	4.4	Modelling Scenarios and Results	8		
5	SEWA	AGE PUMPING STATION	9		
	5.1	Design Flows	9		
	5.2	SPS Design Guidelines9			
	5.3	Forcemain			
		5.3.1 Sizing	10		
		5.3.2 Horizontal Alignment	10		
		5.3.3 Vertical Alignment	12		
6	REFE	RENCES	13		

FIGURES

Figure 1 – Development Concept Plan	4
Figure 2 - Preliminary Water Treatment Plant Site Footprint	6
Figure 3 - Skeleton Watermain Network	8
Figure 4 - Fergus Development Forcemain Alternatives	11
Figure 5 – Proposed Forcemain Vertical Alignment (Google	
Earth)	12

TABLES

Table 1 - Projected Water Demands at Development Build-Out	4
Table 2 - Design Criteria	7
Table 3: Modelling Analysis	9

APPENDICES

Appendix A – Pressure Maps Appendix B – Water Quality Results

1 INTRODUCTION

1.1 Introduction

T.Y. Lin International Canada Ltd. (TYLIN) has been retained by 883890 Ontario Limited c/o Fergus Development Inc. to prepare a servicing study technical memorandum (TM) draft plan of subdivision filed for a redevelopment located in Township of Centre-Wellington, County of Wellington, Ontario. This document will identify the required water infrastructure and/or upgrades that would be needed to facilitate the new proposed redevelopment for Fergus Development Inc.

The existing golf course (the "Site"), shown on Figure 1, consists of two parcels; the northwest parcel, which is 42.35 ha, situated on the north side of Wellington Road 19, and the southeast parcel, which is 39.85 ha, situated on the south side of Wellington Road 19. The proposed residential redevelopment with 118 lots is located on the southeast parcel (the "SE Site") and the communal water and wastewater services are integrated into the existing Golf Course, which will remain, on the northwest parcel (the "NW Site"). The construction of the Water Treatment Plan (WTP) on the NW Site will serve the proposed 118 units, totaling a population of 365 people (at 3.094 people per unit). The new units will receive their drinking water via new wells and reservoir associated with the WTP. Average daily flow for this study has been assumed to be 350 Litres per Capita per Day (LPCD) as per the Township of Centre Wellington Engineering Guidelines.

1.2 Purpose

This Technical Memorandum focuses on the water servicing plan and has identified options for water servicing concepts for the Fergus golf course redevelopment. RJ Burnside and TYLIN have been retained to identify preliminary servicing concepts for this development, based on the draft plan of the subdivision prepared by GSP (January 2022) which cover the lands under control by 883890 Ontario Limited.

Figure 1 – Development Concept Plan

2 WATER TREATMENT PLANT

2.1 Projected Treated Water Demand

Projected maximum daily water demand that must be met by the new WTP at development buildout conditions is 5.03 L/s, as summarized in Table 1.

	Total Units Population ¹	Avg Water Demand		Max	Max Day	Peak	Peak	Peak	Peak	
		ropulation	m³/day	L/s	Factor	Flow, L/s	Factor	L/s	Factor	L/s
Residential	118	365	128	1.48	3.40	5.03	5.00	7.39	7.5	11.09
1										

Based on average of 3.094 people per unit.

²Based on average per capita demand of 350 L/day.

Table 1 - Projected Water Demands at Development Build-Out

The average daily flow is calculated using the Township guideline of 350 L/day per person, and a density of 3.094 persons per dwelling unit. In addition, the maximum day, peak hour and peak instantaneous demands have been calculated using peaking factors specifically recommended by the Drinking Water System Design Guidelines (2008) for water systems serving fewer than 500 people.

2.2 Water Supply

The raw water supply required by the new water system will be derived from two wells located in the development area. Well supply systems must be designed to provide a firm capacity (largest well out of service) which is capable of meeting projected maximum day demand for communal

systems with storage. The Water Supply Investigation conducted by Golder Associates in January 2022 concluded the well pumping rate to be 8.8 L/s, and as such confirmed the ability of wells to sustain the required flows.

2.3 Water Quality

Review of recent water quality data for observation wells and test wells at various locations near the site of the proposed new well supply, and for existing wells supplying the community suggests that the new source water will comply with all current Ontario Drinking Water Quality Standards. The hardness levels were found to be in exceedance of the operational guidelines (80 - 100 mg/L). The water test results conducted by Golder Associates can be found in Appendix B. Based on the initial water quality data the wells are assumed to be non-GUDI.

2.4 Water Treatment Requirements

The well water data indicates that only primary and secondary disinfection will be required at the water treatment plant.

The design of the WTP to serve the redevelopment is therefore based on the following assumptions:

- The proposed wells are strictly groundwater, with no direct surface water influence.
- Provisions for disinfection to achieve a minimum 2-log (99 percent) inactivation of viruses will be included, in accordance with the requirements of Ontario Regulation 170/03 (rev . June 2006).
- Provisions for inline water softeners will be implemented to achieve a reduction in water hardness levels.
 - Typically, the system recovery ranges between 70% 75%. An increased well pumping capacity above MDD is required to compensate for the system recovery. This results in a required well pumping capacity between 6.71 L/s to 7.19 L/s. The well capacity will be further reviewed during the design phase.
- Primary disinfection will be provided by UV with secondary disinfection by sodium hypochlorite. (Chlorine will be injected prior to the clearwells with top-up prior to discharge to the distribution system)
- Cartridge filters (rated a 5 microns nominal) will be placed in front of the UV system to reduce any potential particulates from entering the UV and reducing its effectiveness.

3 PRELIMINARY SITE FOOTPRINT

3.1 Water Treatment Facility

Based on projected maximum daily system demands at development build-out, required treatment plant production capacity is approximately 5.03 L/s. Well pumps will be designed with hydraulic head capabilities sufficient to convey the water from the wells to the WTP.

Filtered water would discharge to a 591 m³ below-grade finished water reservoir. The reservoir will be two cells with storage volumes for; Fire Flow (360 m³ – 50 L/s for 2 hours), Equalization (108.6 m³) and Emergency Storage (117.15 m³). The water entering the reservoir will be dosed with sodium hypochlorite to provide secondary chlorination. A chlorine residual analyser will monitor the dosage entering the clearwells. Four high-service pumps (three duty, one standby) would convey the finished water from the reservoir to the distribution system. Fire

protection will include two fire flow pumps (one duty and one standby). The fire pumps will incorporate a constant backpressure value to meter the pumps flow to the distribution system at a constant pressure regardless of fire flow demand.

The underground reservoir will be approximately 16 m by 13 m. Treatment, MCC, HVAC, chemical storage and pumping facilities would be housed within a 208 m² pre-engineered steel building. Control of the two well pumps and monitoring of flow rates from each well would be linked to the WTP control room. Influent flow rates at the WTP will be measured by an inline electromagnetic flow meter. Discharge to the distribution system will be monitored by a magnetic flow meter, chlorine residual analyzer and pressure sensor. A 250-kW standby generator would be provided to ensure continued service in the event of an interruption in the electrical feed to the plant. The generator will be located outside the WTP building inside a sound attenuating enclosure. A site plan illustrating the location of the water treatment plant is shown on Figure 2.

A 2-year monitoring program will be implemented to include weekly sampling for E.coli, on-line turbidity and UVT monitoring.

Figure 2 - Preliminary Water Treatment Plant Site Footprint

4 WATER DISTRIBUTION SYSTEM

4.1 Design Criteria

The design criteria utilized in the water model were obtained from RJ Burnside, Ministry of Environment, Conservation and Parks (MECP) and the Township of Centre Wellington. At this time, the elevations used in the model are as per the topographical survey (R - PE Surveying, 2021). The design criteria are shown in Table 2 below.

Criterion	Design Criteria	Source
People per unit	3.094	Assumed
Average Day Demand	350 Lpcd	Township
Maximum Day Factor	3.4	MECP
Peak Hour Day Factor	5.0	MECP
Fire Flow	Follow Fire Underwriter Survey	Township

Table 2 - Design Criteria

The fire flow demand for this area was calculated using Fire Underwriter Survey. The "short version" calculation provided a required fire flow of 50 L/s.

4.2 Level of Service

The water system evaluation involves assessing the system performance under various demand scenarios. The water distribution system is required to operate within pressures of 345 kPa (50 psi) to 552 kPa (80 psi) under normal operating conditions (average day and maximum day), and a slightly expanded pressure range (275 kPa (40 psi) to 700 kPa (100 psi) under peak hour conditions. A minimum of 140 kPa (20 psi) is required under the maximum day plus fire flow (MDD + FF) condition.

4.3 Watermain Network

The skeleton water network used in the water model was developed by TYLIN using the hydraulic software InfoWater. Demands were assigned to five nodes in the system to force water through multiple watermains. The design hydraulic grade line for the water distribution system was set at 475.00 m.

The modelling concluded in the requirement of a 200 mm watermain to provide MDD + FF with the levels of service identified in accordance with the MECP design guidelines. To provide circulation and reduce water quality issues at the southernmost end of the development, a recirculation line (\sim 100 mm) could be considered based on hydraulic modelling during the detailed design phase.

The skeleton water model network is illustrated in Figure 3 below.

TYLin

FERGUS GOLF COURSE DEVELOPMENT WATERMAIN NETWORK

PN: 10402 Date:February 2022

Figure 3 - Skeleton Watermain Network

<u>Note</u> - The water model displayed in this report does not exactly match the layout of the current redevelopment plan. However, the differences between the previous iteration and the current plan are extremely minor (reconfiguration of the park block). As the number of units and primary street network have not changed, the functional servicing requirements - namely water demand and hydraulic grade line – will not change. The modelling results presented in this report will ultimately reflect the functional needs of the revised plan. The water modelling will be updated at a later stage in this process once all other elements have been finalized.

4.4 Modelling Scenarios and Results

Four modelling scenarios were analyzed as part of this analysis to assess the system performance and conformance with the pressure level of service. These included - Average day demand, Maximum day demand, Peak hour demand and Maximum day demand plus fire flow.

The findings of the analysis are summarized in Table 3 below.

	Average Day		Maximum Day		Maximum I	Day Plus FF	Peak Hour	
Node ID	Deman	Pressure	Demand	Pressure	Demand	Pressure	Demand	Pressure
	d (L/s)	(psi)	(L/s)	(psi)	(L/s)	(psi)	(L/s)	(psi)
J14	0.30	67.17	1.01	67.15	1.01	65.94	1.48	67.13
J18	0.30	66.10	1.01	66.08	1.01	64.92	1.48	66.07
J22	0.30	68.59	1.01	68.57	1.01	65.58	1.48	68.55
J42	0.30	67.17	1.01	67.17	1.01	66.77	1.48	67.16
J50	0.30	68.23	1.01	68.21	51.01	59.02	1.48	68.19
Lowest	-	54.73	-	54.72	-	51.87	-	54.7
Pressure								
Highest	-	68.59	-	68.57	-	66.77	-	68.55
Pressure								

Table 3: Modelling Analysis

As shown above, the level of service has reached under average day, maximum day, maximum day plus fire flow and peak hour. Under maximum day demand, all nodes in the system can satisfy the fire flow requirement of 50 L/s and still maintain a minimum of 20 psi. With a hydraulic grade line of 475 m at the reservoir site, the proposed Fergus Golf Course redevelopment can be serviced. For further reference, pressure maps for all scenarios are included in Appendix A.

5 SEWAGE PUMPING STATION

5.1 Design Flows

The pump station design flows are noted in Table 4 and will be used to size the pumps and forcemain for the new redevelopment. This table will require updating pending any changes made by RJ Burnside when the sanitary design sheet is available. In the absence of this information, TYLIN has prepared preliminary design flow calculations for the proposed Fergus SPS.

Criteria	Value	Unit					
Average Daily Flow	128	m³/d					
Harmon Peaking Factor	4.04	-					
Peak Day Dry Weather Flow	518	m³/d					
Infiltration Flowrate ¹	516	m³/d					
Peak Hour Wet Weather Flow	1,034	m³/d					
Peak Instantaneous Flow ²	1,292	m³/d					
Peak Instantaneous Flow ² 15 L/s							
¹ Infiltration factor of 0.15 L/s/ha (Township Development Manual)							
² Peak Instantaneous Flow is the criteria used to size pump station requirements.							
³ Design flows calculated assuming 118 units and service	ced by the SPS						

Table 4 - SPS Design Flows

5.2 SPS Design Guidelines

The design features for the pump station are typically identified within the respective Townships design guidelines. Currently, these guidelines are not available within the Townships Development Manual and therefore the design features will need to be revisited with the Township once further project progress is made or confirmed with the Townships engineering department.

For the purpose of this servicing study, the SPS design features will be designed in accordance with MECP design guidelines.

As such, the following design features are proposed:

- A subgrade concrete wet well that will house a trash screen, pump, controls (floats/level transmitter) and discharge piping.
- A separate subgrade valve chamber that will house all the valving and instrumentation.
- An outdoor electrical panel that will house the electrical equipment and controls (i.e., motor control centers, automatic transfer switch, PLC, etc.)
- An outdoor emergency standby generator (fuel type to be confirmed based on availability).
- An odour control unit (OCU).

Other considerations that will require further discussion with the Township of Centre Wellington is the need for an emergency storage chamber.

5.3 Forcemain

5.3.1 Sizing

The forcemain (FM) pipe size in Table 5 is acceptable to comply with MECP design guidelines which recommends a flow velocity within a forcemain to range between 0.6 L/s to 2.0 L/s. The flow velocities are calculated using the peak instantaneous flow the corresponding pipe diameter.

Forcemain ID (mm)	Flow Velocity (m/s)
150	0.85

Table 5 - Calculated flow velocities

5.3.2 Horizontal Alignment

Figure 4 illustrates the proposed horizontal alignment to service the Fergus redevelopment.

 The proposed alignment will generally follow the right of way proposed by the GSP Site Plan from the SPS to the Fergus Golf Course WWTF with the exception of a small section which will follow the proposed trail alignment. The FM alignment has an estimated length of 730 m.

FERGUS DEVELOPMENT INC. FERGUS GOLF CLUB REDEVELOPMENT WATER SERVICING STUDY APRIL 2023

Figure 4 - Fergus Development Forcemain Alternatives

5.3.3 Vertical Alignment

The current forcemain alignment and general profile based on topographic information extracted from Google Earth has been identified in Figure 5.

The forcemain vertical alignment shall be designed to remain full during pump cycling. Keeping the forcemain full will reduce the impacts of hydraulic transients from occurring within the system.

Figure 5 – Proposed Forcemain Vertical Alignment (Google Earth)

6 REFERENCES

Golder Associates Ltd. (2022). Water Quality Test Results
Golder Associates Ltd. (2022). Desktop Water Supply Investigation Report
Golder Associates Ltd. (2022). Preliminary Geotechnical Investigation
Golder Associates Ltd. (2022). Stage 1 Archaeological Assessment
GSP. (2022). Draft Subdivision Plan for Fergus Golf Course Development
Ontario Ministry of the Environment. (2008). Design Guidelines for Drinking Water Systems
Ontario Ministry of the Environment. (2008). Design Guidelines for Sewage Works
Stantec. (2016). Township of Centre Wellington Growth Management Plan
R-PE Surveying. (2021). Topographical Survey

FERGUS DEVELOPMENT INC. FERGUS GOLF CLUB REDEVELOPMENT WATER SERVICING STUDY APRIL 2023

APPENDIX A

Pressure Maps

TYLin

FERGUS GOLF COURSE DEVELOPMENT AVERAGE DAY DEMAND

TYLin

FERGUS GOLF COURSE DEVELOPMENT MAXIMUM DAY DEMAND

TYLin

FERGUS GOLF COURSE DEVELOPMENT PEAK HOUR DEMAND

FERGUS DEVELOPMENT INC. FERGUS GOLF CLUB REDEVELOPMENT WATER SERVICING STUDY APRIL 2023

TYLin FERGUS GE MAXIMUM D

FERGUS GOLF COURSE DEVELOPMENT MAXIMUM DAY DEMAND PLUS FIRE FLOW

TYLin

FERGUS GOLF COURSE REDEVELOPMENT MAXIMUM DAY DEMAND AVAILABLE FIRE FLOW AT EACH NODE PN: 10402 DATE: JANUARY 2022

FERGUS DEVELOPMENT INC. FERGUS GOLF CLUB REDEVELOPMENT WATER SERVICING STUDY APRIL 2023

APPENDIX B

Water Quality Test Results

Your Project #: 21456909 Your C.O.C. #: 842984-01-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

Report Date: 2021/09/22 Report #: R6822678 Version: 2 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BV LABS JOB #: C1P4129 Received: 2021/09/03, 13:54

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2021/09/07	CAM SOP-00448	SM 23 2320 B m
Chloride by Automated Colourimetry	1	N/A	2021/09/07	CAM SOP-00463	SM 23 4500-Cl E m
Colour	1	N/A	2021/09/09	CAM SOP-00412	SM 23 2120C m
Free (WAD) Cyanide	1	N/A	2021/09/10	CAM SOP-00457	OMOE E3015 m
Diuron, Guthion, Temephos	1	2021/09/10	2021/09/10	CAM SOP-00306	EPA 532 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/09/08	CAM SOP-00446	SM 23 5310 B m
Diquat / Paraquat	1	2021/09/07	2021/09/09	CAM SOP-00327	EPA 549.2 m
Fluoride	1	2021/09/04	2021/09/07	CAM SOP-00449	SM 23 4500-F C m
Glyphosate	1	2021/09/09	2021/09/09	CAM SOP-00305	HPLC in-house method
Hardness (calculated as CaCO3)	1	N/A	2021/09/08	CAM SOP	SM 2340 B
				00102/00408/00447	
Mercury in Water by CVAA	1	2021/09/07	2021/09/07	CAM SOP-00453	EPA 7470A m
Metals Analysis by ICPMS (as received) (2)	1	N/A	2021/09/07	CAM SOP-00447	EPA 6020B m
Total Coliforms/ E. coli, CFU/100mL	1	N/A	2021/09/03	CAM SOP-00551	MOE E3407
Dissolved Methane in Water	1	N/A	2021/09/08	CAM SOP-00219 Modified	RSKSOP-175 m
				Combustible Gas Indicator	•
				Method	
Heterotrophic plate count, (CFU/mL)	1	N/A	2021/09/03	CAM SOP-00512	SM 9215B
Microcystin	1	N/A	2021/09/08	CAM SOP-00476	OMECC-LSB E3469
NDMA in Drinking Water (MSABN-3291Amod)	1	2021/09/09	2021/09/14	BRL SOP-00012	MOE Method E3388
Total Ammonia-N	1	N/A	2021/09/09	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (3)	1	N/A	2021/09/07	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Nitrilotriacetic Acid (NTA) (4)	1	2021/09/07	2021/09/07	CAM SOP-00411	EPA 430.1 m
OC Pesticides (Selected) & PCB (5)	1	2021/09/08	2021/09/10	CAM SOP-00307	EPA 8081A/ 8082B m
OC Pesticides Summed Parameters	1	N/A	2021/09/04	CAM SOP-00307	EPA 8081A/8082B m
ODWS - Semi-Volatiles	1	2021/09/09	2021/09/10	CAM SOP-00301	EPA 8270 m
Organic Nitrogen	1	N/A	2021/09/10	Auto Calc.	
рН	1	2021/09/04	2021/09/07	CAM SOP-00413	SM 4500H+ B m
Sulphate by Automated Colourimetry	1	N/A	2021/09/07	CAM SOP-00464	EPA 375.4 m
Sulphide	1	N/A	2021/09/07	CAM SOP-00455	SM 23 4500-S G m
Total Dissolved Solids (TDS calc)	1	N/A	2021/09/08		Auto Calc

Page 1 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21456909 Your C.O.C. #: 842984-01-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/09/22 Report #: R6822678 Version: 2 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BV LABS JOB #: C1P4129 Received: 2021/09/03, 13:54

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Kjeldahl Nitrogen in Water	1	2021/09/07	2021/09/09	CAM SOP-00938	OMOE E3516 m
Turbidity	1	N/A	2021/09/07	CAM SOP-00417	SM 23 2130 B m
VOCs (Drinking Water)	1	N/A	2021/09/07	CAM SOP-00226	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Metals analysis was performed on the sample 'as received'.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(4) Bureau Veritas Laboratories attempt to commence NTA analysis as soon as possible in accordance with the reference method. However, rapid analysis may not be practically achievable, particularly for samples from remote locations. Extended delay in analysis times may increase the uncertainty of the test results, but does not necessarily imply that the results are compromised.

(5) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Page 2 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Ø

#

3

Your Project #: 21456909 Your C.O.C. #: 842984-01-01

Attention: Gregory Padusenko

Golder Associates Ltd 210 Sheldon Drive Cambridge, ON CANADA N1T 1A8

> Report Date: 2021/09/22 Report #: R6822678 Version: 2 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BV LABS JOB #: C1P4129 Received: 2021/09/03, 13:54

Encryption Key

Ema bete

Ema Gitej Senior Project Manager 22 Sep 2021 18:22:54

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ema Gitej, Senior Project Manager

Email: emese.gitej@bureauveritas.com

Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 3 Page 3 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

			QOI268						
			2021/09/03 10:00						
			842984-01-01						
UNITS	MAC	A/O	PW21-1	RDL	QC Batch				
mg/L	-	500	550	1.0	7559099				
mg/L	-	80:100	380	1.0	7558603				
mg/L	-	0.15	<0.10	0.10	7560118				
				•	P				
mg/L	-	-	0.21	0.050	7564744				
TCU	-	5	<2	2	7563603				
mg/L	1.5	-	0.62	0.10	7560960				
mg/L	-	-	0.23	0.10	7563005				
ug/L	-	-	<0.10	0.10	7564587				
mg/L	-	5	0.48	0.40	7562606				
рН	-	6.5:8.5	8.02		7560966				
mg/L	-	500	270	1.0	7560983				
mg/L	-	0.05	<0.020	0.020	7562455				
NTU	-	5	0.7	0.1	7560716				
mg/L	0.2	-	<0.0010	0.0010	7567661				
mg/L	-	30:500	180	1.0	7560961				
mg/L	-	250	9.6	1.0	7560985				
mg/L	1	-	<0.010	0.010	7560968				
mg/L	10	-	<0.10	0.10	7560968				
mg/L	10	-	<0.10	0.10	7560968				
Miscellaneous Parameters									
mg/L	0.4	-	<0.050	0.050	7561547				
RDL = Reportable Detection Limit									
tch									
ater Star	ndards	- Maxim	um Acceptable	Concent	ration				
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Imag/L - mg/L 0.2 mg/L 0.2 mg/L 10 mg/L 10 mg/L 10 mg/L 0.4 mit - cch -	Image Image Image UNITS MAC A/O Image - 500 mg/L - 80:100 mg/L - 80:100 mg/L - 0.15 mg/L - 5 mg/L - - TCU - 5 mg/L - - ug/L - - ug/L - - mg/L - 5 mg/L - 500 mg/L - 500 mg/L - 500 mg/L - 500 mg/L - 30:500 mg/L 0.2 - mg/L 0.2 - mg/L 0.2 - mg/L 10 - mg/L 10 - mg/L 10 - mg/L 0.4 -	QOI268 MRC A/O PW21-1 mg/L - 500 380 mg/L - 0.15 <0.10 mg/L - 500 223 ug/L - 500 270 mg/L 0.2 -	QQ1268 QQ1268 2021/09/03 10:00 2021/09/03 10:00 UNITS MAC A/O PW21-1 RDL mg/L - 500 550 1.0 mg/L - 80:100 380 1.0 mg/L - 0.15 <0.10				

[MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively (Made under the Ontario Safe Drinking Water Act, 2002)

LILE

PERMANENT GASES (WATER)

BV Labs ID			QOI268					
Sampling Date			2021/09/03 10:00					
COC Number			842984-01-01					
	UNITS	A/O	PW21-1	RDL	QC Batch			
Fixed Gases								
Methane	L/m3	3	0.019	0.005	7565203			
RDL = Reportable Detection L	imit							
QC Batch = Quality Control Ba	atch							
A/O: Ontario Drinking Water Standards - Maximum Acceptable								
Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not								
Health Related, respectively								
(Made under the Ontario Safe	e Drinkir	ng Wa	ter Act <i>,</i> 2002)					

Page 5 of 22 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

()

BV Labs ID				QOI268		
Sampling Data				2021/09/03		
				10:00		
COC Number				842984-01-01		
	UNITS	MAC	A/O	PW21-1	RDL	QC Batch
Metals						
Mercury (Hg)	mg/L	0.001	-	<0.00010	0.00010	7562014
Aluminum (Al)	ug/L	-	100	<4.9	4.9	7561948
Antimony (Sb)	ug/L	6	-	<0.50	0.50	7561948
Arsenic (As)	ug/L	10	-	1.5	1.0	7561948
Barium (Ba)	ug/L	1000	-	21	2.0	7561948
Boron (B)	ug/L	5000	-	74	10	7561948
Cadmium (Cd)	ug/L	5	-	<0.090	0.090	7561948
Calcium (Ca)	ug/L	-	-	93000	200	7561948
Chromium (Cr)	ug/L	50	-	<5.0	5.0	7561948
Copper (Cu)	ug/L	-	1000	<0.90	0.90	7561948
Iron (Fe)	ug/L	-	300	130	100	7561948
Lead (Pb)	ug/L	10	-	<0.50	0.50	7561948
Magnesium (Mg)	ug/L	-	-	36000	50	7561948
Manganese (Mn)	ug/L	-	50	20	2.0	7561948
Potassium (K)	ug/L	-	-	1100	200	7561948
Selenium (Se)	ug/L	50	-	<2.0	2.0	7561948
Sodium (Na)	ug/L	-	200000	28000	100	7561948
Uranium (U)	ug/L	20	-	0.16	0.10	7561948
Zinc (Zn)	ug/L	-	5000	<5.0	5.0	7561948

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively (Made under the Ontario Safe Drinking Water Act, 2002)

BV Labs - Partial/Rush Res

CI I t S

Page 6 of 22 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Ø

₩

ini.

Ø

Ø

10

Ō

100

H

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

BV Labs ID QOI268 2021/09/03 Sampling Date 10:00 **COC** Number 842984-01-01 UNITS MAC A/O PW21-1 RDL QC Batch Semivolatile Organics 2,3,4,6-Tetrachlorophenol < 0.50 7566501 ug/L 100 1 0.50 2,4,5-T <1.0 ug/L 280 1.0 7566501 2,4,6-Trichlorophenol <0.50 0.50 7566501 ug/L 5 2 2.4-D ug/L 100 <1.0 1.0 7566501 2,4-Dichlorophenol ug/L 900 0.3 < 0.25 0.25 7566501 Alachlor ug/L 5 < 0.50 0.50 7566501 Aldicarb <5.0 7566501 ug/L -5.0 Atrazine ug/L _ < 0.50 0.50 7566501 Des-ethyl atrazine ug/L <0.50 0.50 7566501 _ Atrazine + Desethyl-atrazine ug/L 5 <1.0 1.0 7566501 Bendiocarb <2.0 2.0 7566501 ug/L -Bromoxynil ug/L 5 <0.50 0.50 7566501 Carbaryl ug/L 90 <5.0 5.0 7566501 Carbofuran ug/L 90 <5.0 5.0 7566501 Chlorpyrifos (Dursban) 90 <1.0 1.0 7566501 ug/L Cyanazine (Bladex) _ <1.0 1.0 7566501 ug/L Diazinon ug/L 20 <1.0 1.0 7566501 Dicamba 120 <1.0 1.0 7566501 ug/L Diclofop-methyl 9 <0.90 0.90 7566501 ug/L Dimethoate ug/L 20 <2.5 2.5 7566501 Dinoseb 1.0 7566501 ug/L 10 <1.0 Malathion 190 <5.0 5.0 ug/L 7566501 Metolachlor < 0.50 0.50 7566501 ug/L 50 Metribuzin (Sencor) <5.0 5.0 ug/L 80 7566501 **Ethyl Parathion** ug/L 50 <1.0 1.0 7566501 Pentachlorophenol <0.50 0.50 ug/L 60 30 7566501 Phorate <0.50 0.50 ug/L 2 7566501 Picloram <5.0 5.0 ug/L 190 7566501 Prometryne 0.25 ug/L 1 <0.25 7566501 Simazine ug/L 10 <1.0 1.0 7566501 Terbufos ug/L 1 < 0.50 0.50 7566501

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively (Made under the Ontario Safe Drinking Water Act, 2002)

BV Labs ID				Q01268		
Sampling Date				2021/09/03		
				10:00		
COC Number				842984-01-01		
	UNITS	MAC	A/0	PW21-1	RDL	QC Batch
Triallate	ug/L	230	-	<1.0	1.0	7566501
Trifluralin	ug/L	45	-	<1.0	1.0	7566501
Benzo(a)pyrene	ug/L	0.01	-	<0.0050	0.0050	7566501
Methyl parathion	ug/L	-	-	<1.0	1.0	7566501
Surrogate Recovery (%)						
2,4,6-Tribromophenol	%	-	-	78		7566501
2,4-Dichlorophenyl Acetic Acid	%	-	-	79		7566501
2-Fluorobiphenyl	%	-	-	69		7566501
D14-Terphenyl (FS)	%	-	-	83		7566501
D5-Nitrobenzene	%	-	-	83		7566501
RDL = Reportable Detection Lim	it					
OC Patch - Quality Control Patch	h					

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively (Made under the Ontario Safe Drinking Water Act, 2002)

Page 8 of 22 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

0

Ø ¥ ini

Results

100

rtial/D

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

VOLATILE ORGANICS BY GC/MS (WATER)

BV Labs ID				QOI268				
Sampling Date				2021/09/03				
Samping Bate				10:00	<u> </u>			
COC Number				842984-01-01				
	UNITS	MAC	A/0	PW21-1	RDL	QC Batch		
Volatile Organics								
1,1-Dichloroethylene	ug/L	14	-	<0.10	0.10	7559332		
1,2-Dichlorobenzene	ug/L	200	3	<0.20	0.20	7559332		
1,2-Dichloroethane	ug/L	5		<0.20	0.20	7559332		
1,4-Dichlorobenzene	ug/L	5	1	<0.20	0.20	7559332		
Benzene	ug/L	1		<0.10	0.10	7559332		
Bromodichloromethane	ug/L	-		<0.10	0.10	7559332		
Bromoform	ug/L	-		<0.20	0.20	7559332		
Carbon Tetrachloride	ug/L	2		<0.10	0.10	7559332		
Chlorobenzene	ug/L	80	30	<0.10	0.10	7559332		
Chloroform	ug/L	-		<0.10	0.10	7559332		
Dibromochloromethane	ug/L	-		<0.20	0.20	7559332		
Methylene Chloride(Dichloromethane)	ug/L	50		<0.50	0.50	7559332		
Ethylbenzene	ug/L	140	1.6	<0.10	0.10	7559332		
Tetrachloroethylene	ug/L	10		<0.10	0.10	7559332		
Toluene	ug/L	60	24	<0.20	0.20	7559332		
Trichloroethylene	ug/L	5		<0.10	0.10	7559332		
Vinyl Chloride	ug/L	1		<0.20	0.20	7559332		
o-Xylene	ug/L	-		<0.10	0.10	7559332		
p+m-Xylene	ug/L	-		<0.10	0.10	7559332		
Total Xylenes	ug/L	90	20	<0.10	0.10	7559332		
Total Trihalomethanes	ug/L	-		<0.20	0.20	7559332		
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	-	-	96		7559332		
D4-1,2-Dichloroethane	%	-	-	96		7559332		
D8-Toluene	%	-	-	106		7559332		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively (Made under the Ontario Safe Drinking Water Act. 2002)								
-								

		2021/09/03 10:00					
		842984-01-01					
UNITS	MAC	PW21-1	RDL	QC Batch			
Pesticides & Herbicides							
ug/L	280	<10	10	7567026			
ug/L	70	<7.0	7.0	7561822			
ug/L	150	<10	10	7569961			
ug/L	20	<2.0	2.0	7569961			
ug/L	10	<1.0	1.0	7561822			
ug/L	-	<10	10	7569961			
	UNITS Ug/L ug/L ug/L ug/L ug/L	ug/L 280 ug/L 70 ug/L 150 ug/L 20 ug/L 10 ug/L -	10:00 10:00 842984-01-01 UNITS MAC PW21-1 ug/L 280 ug/L 70 ug/L 150 ug/L 20 ug/L 10 ug/L 20 ug/L 10 ug/L 10	10:00 10:00 842984-01-01 UNITS MAC PW21-1 RDL ug/L 280 <10 10 ug/L 70 <7.0 7.0 ug/L 150 <10 10 ug/L 20 <2.0 2.0 ug/L 10 <1.0 1.0 ug/L 10 <1.0 1.0			

PESTICIDES & HERBICIDES BY HPLC (WATER)

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC: Ontario Drinking Water Standards - Maximum Acceptable

Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Ø

BV Labs ID			Q01268							
Someling Data			2021/09/03							
Sampling Date			10:00							
COC Number			842984-01-01							
	UNITS	MAC	PW21-1	RDL	QC Batch					
Calculated Parameters										
Aldrin + Dieldrin	ug/L	0.7	<0.006	0.006	7558226					
Chlordane (Total)	ug/L	7	<0.006	0.006	7558226					
DDT+ Metabolites	ug/L	30	<0.006	0.006	7558226					
Heptachlor + Heptachlor epoxide	ug/L	3	<0.006	0.006	7558226					
Total PCB	ug/L	3	<0.05	0.05	7558226					
Pesticides & Herbicides	•	•	•							
Lindane	ug/L	4	<0.0060	0.0060	7565829					
Heptachlor	ug/L	-	<0.0060	0.0060	7565829					
Aldrin	ug/L	-	<0.0060	0.0060	7565829					
Heptachlor epoxide	ug/L	-	<0.0060	0.0060	7565829					
Oxychlordane	ug/L	-	<0.0060	0.0060	7565829					
g-Chlordane	ug/L	-	<0.0060	0.0060	7565829					
a-Chlordane	ug/L	-	<0.0060	0.0060	7565829					
Dieldrin	ug/L	-	<0.0060	0.0060	7565829					
o,p-DDE	ug/L	-	<0.0060	0.0060	7565829					
p,p-DDE	ug/L	-	<0.0060	0.0060	7565829					
o,p-DDD	ug/L	-	<0.0060	0.0060	7565829					
p,p-DDD	ug/L	-	<0.0060	0.0060	7565829					
o,p-DDT	ug/L	-	<0.0060	0.0060	7565829					
p,p-DDT	ug/L	-	<0.0060	0.0060	7565829					
Methoxychlor	ug/L	900	<0.024	0.024	7565829					
Aroclor 1016	ug/L	-	<0.050	0.050	7565829					
Aroclor 1221	ug/L	-	<0.050	0.050	7565829					
Aroclor 1232	ug/L	-	<0.050	0.050	7565829					
Aroclor 1242	ug/L	-	<0.050	0.050	7565829					
Aroclor 1248	ug/L	-	<0.050	0.050	7565829					
Aroclor 1254	ug/L	-	<0.050	0.050	7565829					
Aroclor 1260	ug/L	-	<0.050	0.050	7565829					
Surrogate Recovery (%)										
2,4,5,6-Tetrachloro-m-xylene	%	-	50		7565829					
Decachlorobiphenyl	%	-	104		7565829					
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
MAC: Ontario Drinking Water Stan	MAC: Ontario Drinking Water Standards - Maximum Acceptable Concentration									

ORGANOCHLORINATED PESTICIDES BY GC-ECD (WATER)

[MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

0

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

BV Labs ID			QOI268					
Sampling Date			2021/09/03 10:00					
COC Number			842984-01-01					
	UNITS	MAC	PW21-1	RDL	QC Batch			
Semivolatile Organics								
N-Nitrosodimethylamine	ug/L	0.009	<0.0009	0.0009	7566404			
Surrogate Recovery (%)								
D6-N-Nitrosodimethylamine	%	-	39		7566404			
RDL = Reportable Detection Li	mit		-					
QC Batch = Quality Control Ba	tch							
MAC: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively								
(Made under the Ontario Safe	Drinkin	g Wate	r Act, 2002)					

Page 12 of 22 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

10

MICROBIOLOGY (WATER)

BV Labs ID			QOI268							
Sampling Date			2021/09/03 10:00							
COC Number			842984-01-01							
	UNITS	MAC	PW21-1	QC Batch						
Microbiological										
Heterotrophic plate count	CFU/mL	-	0	7560282						
Background	CFU/100mL	-	0	7560239						
Total Coliforms	CFU/100mL	0	0	7560239						
Escherichia coli	CFU/100mL	0	0	7560239						
QC Batch = Quality Control Ba	QC Batch = Quality Control Batch									
MAC: Ontario Drinking Water	⁻ Standards - N	/laximu	um Acceptable							
Concentration [NAAC] O Table A Chaminal (Diversion) Objections [A/O] Net										

Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Page 13 of 22 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

0

TEST SUMMARY

Matrix:	Water					Received:	2021/09/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

Alkalinity	AT	7560961	N/A	2021/09/07	Yogesh Patel
Chloride by Automated Colourimetry	KONE	7560985	N/A	2021/09/07	Alina Dobreanu
Colour	SPEC	7563603	N/A	2021/09/09	Viorica Rotaru
Free (WAD) Cyanide	SKAL/CN	7567661	N/A	2021/09/10	Aditiben Patel
Diuron, Guthion, Temephos	LC/UV	7569961	2021/09/10	2021/09/10	Kimberley Linde
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7562606	N/A	2021/09/08	Julianna Castiglione
Diquat / Paraquat	LC/UV	7561822	2021/09/07	2021/09/09	James Lee
Fluoride	ISE	7560960	2021/09/04	2021/09/07	Yogesh Patel
Glyphosate	LC/FLU	7567026	2021/09/09	2021/09/09	Furneesh Kumar
Hardness (calculated as CaCO3)		7558603	N/A	2021/09/08	Automated Statchk
Mercury in Water by CVAA	CV/AA	7562014	2021/09/07	2021/09/07	Gagandeep Rai
Metals Analysis by ICPMS (as received)	ICP/MS	7561948	N/A	2021/09/07	Azita Fazaeli
Total Coliforms/ E. coli, CFU/100mL	PL	7560239	N/A	2021/09/03	Soham Patel
Dissolved Methane in Water	GC/FID	7565203	N/A	2021/09/08	Shilpa Kataria
Heterotrophic plate count, (CFU/mL)	PL	7560282	N/A	2021/09/03	Farhana Rahman
Microcystin	ELIS	7564587	N/A	2021/09/08	Chris Li
NDMA in Drinking Water (MSABN-3291Amod)	GCTQ/MS	7566404	2021/09/09	2021/09/14	Wenhui (Susie) Shi
Total Ammonia-N	LACH/NH4	7564744	N/A	2021/09/09	Viorica Rotaru
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7560968	N/A	2021/09/07	Chandra Nandlal
Nitrilotriacetic Acid (NTA)	SPEC	7561547	2021/09/07	2021/09/07	Viorica Rotaru
OC Pesticides (Selected) & PCB	GC/ECD	7565829	2021/09/08	2021/09/10	Joy Zhang
OC Pesticides Summed Parameters	CALC	7558226	N/A	2021/09/04	Automated Statchk
ODWS - Semi-Volatiles	GC/MS	7566501	2021/09/09	2021/09/10	Wendy Zhao
Organic Nitrogen	CALC	7560118	N/A	2021/09/10	Automated Statchk
рН	AT	7560966	2021/09/04	2021/09/07	Yogesh Patel
Sulphate by Automated Colourimetry	KONE	7560983	N/A	2021/09/07	Alina Dobreanu
Sulphide	ISE/S	7562455	N/A	2021/09/07	Neil Dassanayake
Total Dissolved Solids (TDS calc)	CALC	7559099	N/A	2021/09/08	Automated Statchk
Total Kjeldahl Nitrogen in Water	SKAL	7563005	2021/09/07	2021/09/09	Rajni Tyagi
Turbidity	AT	7560716	N/A	2021/09/07	Neil Dassanayake
VOCs (Drinking Water)	P&T/MS	7559332	N/A	2021/09/07	Dina Wang

BV Labs ID:	QOI268 Dup
Sample ID:	PW21-1
Matrix:	Water

Collected: 2021/09/03 Shipped: Received: 2021/09/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7560961	N/A	2021/09/07	Yogesh Patel
Diuron, Guthion, Temephos	LC/UV	7569961	2021/09/10	2021/09/10	Kimberley Linde
Fluoride	ISE	7560960	2021/09/04	2021/09/07	Yogesh Patel
Mercury in Water by CVAA	CV/AA	7562014	2021/09/07	2021/09/07	Gagandeep Rai
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7560968	N/A	2021/09/07	Chandra Nandlal
рН	AT	7560966	2021/09/04	2021/09/07	Yogesh Patel
VOCs (Drinking Water)	P&T/MS	7559332	N/A	2021/09/07	Dina Wang

Page 14 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Results relate only to the items tested.

Page 15 of 22 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

0

QUALITY ASSURANCE REPORT

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

		Matrix	Spike	SPIKED BLANK		Method Blank		RPD		QC Standard			
Į.	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
	7559332	4-Bromofluorobenzene	2021/09/07	98	70 - 130	97	70 - 130	94	%				
2	7559332	D4-1,2-Dichloroethane	2021/09/07	91	70 - 130	95	70 - 130	98	%				
10	7559332	D8-Toluene	2021/09/07	105	70 - 130	103	70 - 130	105	%				
	7565829	2,4,5,6-Tetrachloro-m-xylene	2021/09/09	58	30 - 130	57	30 - 130	58	%				
	7565829	Decachlorobiphenyl	2021/09/09	108	30 - 130	95	30 - 130	98	%				
ſť.	7566404	D6-N-Nitrosodimethylamine	2021/09/14			39	10 - 85	40	%				
1	7566501	2,4,6-Tribromophenol	2021/09/09	77	30 - 130	76	30 - 130	82	%				
	7566501	2,4-Dichlorophenyl Acetic Acid	2021/09/09	75	30 - 130	71	30 - 130	77	%				
1	7566501	2-Fluorobiphenyl	2021/09/09	63	30 - 130	65	30 - 130	67	%				
1	7566501	D14-Terphenyl (FS)	2021/09/09	81	30 - 130	81	30 - 130	87	%				
#	7566501	D5-Nitrobenzene	2021/09/09	75	30 - 130	77	30 - 130	85	%				
1	7559332	1,1-Dichloroethylene	2021/09/07	93	70 - 130	92	70 - 130	<0.10	ug/L	NC	30		
đ	7559332	1,2-Dichlorobenzene	2021/09/07	88	70 - 130	90	70 - 130	<0.20	ug/L	NC	30		
A	7559332	1,2-Dichloroethane	2021/09/07	78	70 - 130	83	70 - 130	<0.20	ug/L	NC	30		
300	7559332	1,4-Dichlorobenzene	2021/09/07	105	70 - 130	105	70 - 130	<0.20	ug/L	NC	30		
	7559332	Benzene	2021/09/07	81	70 - 130	84	70 - 130	<0.10	ug/L	NC	30		
1	7559332	Bromodichloromethane	2021/09/07	NC	70 - 130	88	70 - 130	<0.10	ug/L	NC	30		
10	7559332	Bromoform	2021/09/07	82	70 - 130	87	70 - 130	<0.20	ug/L	NC	30		
ő	7559332	Carbon Tetrachloride	2021/09/07	88	70 - 130	88	70 - 130	<0.10	ug/L	NC	30		
15	7559332	Chlorobenzene	2021/09/07	90	70 - 130	90	70 - 130	<0.10	ug/L	NC	30		
<u> </u>	7559332	Chloroform	2021/09/07	NC	70 - 130	89	70 - 130	<0.10	ug/L	NC	30		
1	7559332	Dibromochloromethane	2021/09/07	82	70 - 130	87	70 - 130	<0.20	ug/L	NC	30		
2	7559332	Ethylbenzene	2021/09/07	88	70 - 130	86	70 - 130	<0.10	ug/L	NC	30		
m	7559332	Methylene Chloride(Dichloromethane)	2021/09/07	85	70 - 130	86	70 - 130	<0.50	ug/L	NC	30		
	7559332	o-Xylene	2021/09/07	87	70 - 130	86	70 - 130	<0.10	ug/L	NC	30		
	7559332	p+m-Xylene	2021/09/07	95	70 - 130	90	70 - 130	<0.10	ug/L	NC	30		
	7559332	Tetrachloroethylene	2021/09/07	85	70 - 130	83	70 - 130	<0.10	ug/L	NC	30		
	7559332	Toluene	2021/09/07	88	70 - 130	88	70 - 130	<0.20	ug/L	NC	30		
	7559332	Total Trihalomethanes	2021/09/07					<0.20	ug/L	NC	30		
	7559332	Total Xylenes	2021/09/07					<0.10	ug/L	NC	30		
	7559332	Trichloroethylene	2021/09/07	92	70 - 130	91	70 - 130	<0.10	ug/L	NC	30		

Page 16 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

0

QUALITY ASSURANCE REPORT(CONT'D)

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

				Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Sta	ndard
ſ	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
.[7559332	Vinyl Chloride	2021/09/07	92	70 - 130	88	70 - 130	<0.20	ug/L	NC	30		
2	7560716	Turbidity	2021/09/07			99	85 - 115	<0.1	NTU	5.2	20		
10	7560960	Fluoride (F-)	2021/09/07	101	80 - 120	96	80 - 120	<0.10	mg/L	1.4	20		
-	7560961	Alkalinity (Total as CaCO3)	2021/09/07			96	85 - 115	<1.0	mg/L	0.48	20		
	7560966	рН	2021/09/07			101	98 - 103			0.36	N/A		
M	7560968	Nitrate (N)	2021/09/07	99	80 - 120	101	80 - 120	<0.10	mg/L	NC	20		
1	7560968	Nitrite (N)	2021/09/07	104	80 - 120	103	80 - 120	<0.010	mg/L	NC	20		
	7560983	Dissolved Sulphate (SO4)	2021/09/07	NC	75 - 125	103	80 - 120	<1.0	mg/L	0.25	20		
1	7560985	Dissolved Chloride (Cl-)	2021/09/07	NC	80 - 120	104	80 - 120	<1.0	mg/L	1.3	20		
1	7561547	NTA	2021/09/07	83	80 - 120	93	80 - 120	<0.050	mg/L	NC	20		
¥	7561822	Diquat	2021/09/09	83	50 - 130	95	50 - 130	<7.0	ug/L	4.2	40		
1	7561822	Paraquat	2021/09/09	62	50 - 130	101	50 - 130	<1.0	ug/L	7.7	40		
Ē.	7561948	Aluminum (Al)	2021/09/07	101	80 - 120	101	80 - 120	<4.9	ug/L	NC	20		
ň.	7561948	Antimony (Sb)	2021/09/07	103	80 - 120	99	80 - 120	<0.50	ug/L	NC	20		
100	7561948	Arsenic (As)	2021/09/07	100	80 - 120	97	80 - 120	<1.0	ug/L	0.41	20		
	7561948	Barium (Ba)	2021/09/07	97	80 - 120	98	80 - 120	<2.0	ug/L	1.4	20		
U [7561948	Boron (B)	2021/09/07	97	80 - 120	97	80 - 120	<10	ug/L	2.0	20		
10	7561948	Cadmium (Cd)	2021/09/07	100	80 - 120	100	80 - 120	<0.090	ug/L	NC	20		
ő	7561948	Calcium (Ca)	2021/09/07	NC	80 - 120	99	80 - 120	<200	ug/L	2.1	20		
65	7561948	Chromium (Cr)	2021/09/07	100	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		
1	7561948	Copper (Cu)	2021/09/07	98	80 - 120	98	80 - 120	<0.90	ug/L	11	20		
	7561948	Iron (Fe)	2021/09/07	98	80 - 120	97	80 - 120	<100	ug/L	1.1	20		
2	7561948	Lead (Pb)	2021/09/07	96	80 - 120	98	80 - 120	<0.50	ug/L	NC	20		
m	7561948	Magnesium (Mg)	2021/09/07	NC	80 - 120	97	80 - 120	<50	ug/L	1.4	20		
	7561948	Manganese (Mn)	2021/09/07	98	80 - 120	99	80 - 120	<2.0	ug/L	1.0	20		
	7561948	Potassium (K)	2021/09/07	98	80 - 120	96	80 - 120	<200	ug/L	1.9	20		
	7561948	Selenium (Se)	2021/09/07	103	80 - 120	102	80 - 120	<2.0	ug/L	NC	20		
	7561948	Sodium (Na)	2021/09/07	97	80 - 120	98	80 - 120	<100	ug/L	1.2	20		
ſ	7561948	Uranium (U)	2021/09/07	100	80 - 120	104	80 - 120	<0.10	ug/L	3.0	20		
Ī	7561948	Zinc (Zn)	2021/09/07	98	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
	7562014	Mercury (Hg)	2021/09/07	95	75 - 125	97	80 - 120	< 0.00010	mg/L	NC	20		

Page 17 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

m.

QUALITY ASSURANCE REPORT(CONT'D)

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

Ľ.				Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
Į.	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
	7562455	Sulphide	2021/09/07	103	80 - 120	103	80 - 120	<0.020	mg/L	NC	20		
2	7562606	Dissolved Organic Carbon	2021/09/08	80	80 - 120	96	80 - 120	<0.40	mg/L	0.84	20		
in.	7563005	Total Kjeldahl Nitrogen (TKN)	2021/09/09	NC	80 - 120	95	80 - 120	<0.10	mg/L			96	80 - 120
10	7563603	Colour	2021/09/09			99	80 - 120	<2	TCU	NC	25		
	7564587	Microcystin	2021/09/08	96	60 - 140	94	60 - 140	<0.10	ug/L	NC	20		
Ĩ.	7564744	Total Ammonia-N	2021/09/09	100	75 - 125	97	80 - 120	<0.050	mg/L	2.8	20		
2	7565203	Methane	2021/09/09					<0.005	L/m3	6.1	20		
	7565829	a-Chlordane	2021/09/09	89	30 - 130	85	30 - 130	<0.0060	ug/L	6.5	40		
Ē.	7565829	Aldrin	2021/09/09	78	30 - 130	71	30 - 130	<0.0060	ug/L	5.0	40		
1	7565829	Aroclor 1016	2021/09/09					<0.050	ug/L				
₩.	7565829	Aroclor 1221	2021/09/09					<0.050	ug/L				
h.	7565829	Aroclor 1232	2021/09/09					<0.050	ug/L				
đ	7565829	Aroclor 1242	2021/09/09					<0.050	ug/L				
A.	7565829	Aroclor 1248	2021/09/09					<0.050	ug/L				
1	7565829	Aroclor 1254	2021/09/09					<0.050	ug/L				
	7565829	Aroclor 1260	2021/09/09					<0.050	ug/L				
85	7565829	Dieldrin	2021/09/09	105	30 - 130	99	30 - 130	<0.0060	ug/L	5.2	40		
10	7565829	g-Chlordane	2021/09/09	94	30 - 130	85	30 - 130	<0.0060	ug/L	5.6	40		
ő	7565829	Heptachlor epoxide	2021/09/09	100	30 - 130	89	30 - 130	<0.0060	ug/L	3.4	40		
15	7565829	Heptachlor	2021/09/09	83	30 - 130	75	30 - 130	<0.0060	ug/L	6.1	40		
1	7565829	Lindane	2021/09/09	97	30 - 130	88	30 - 130	<0.0060	ug/L	3.7	40		
1	7565829	Methoxychlor	2021/09/09	110	30 - 130	100	30 - 130	<0.024	ug/L	6.6	40		
2	7565829	o,p-DDD	2021/09/09	105	30 - 130	102	30 - 130	<0.0060	ug/L	6.0	40		
m	7565829	o,p-DDE	2021/09/09	114	30 - 130	94	30 - 130	<0.0060	ug/L	4.5	40		
	7565829	o,p-DDT	2021/09/09	104	30 - 130	90	30 - 130	<0.0060	ug/L	7.6	40		
	7565829	Oxychlordane	2021/09/09	91	30 - 130	84	30 - 130	<0.0060	ug/L	5.0	40		
	7565829	p,p-DDD	2021/09/09	101	30 - 130	93	30 - 130	<0.0060	ug/L	6.0	40		
	7565829	p,p-DDE	2021/09/09	82	30 - 130	74	30 - 130	<0.0060	ug/L	6.8	40		
	7565829	p,p-DDT	2021/09/09	107	30 - 130	91	30 - 130	<0.0060	ug/L	9.9	40		
	7566404	N-Nitrosodimethylamine	2021/09/14			102	65 - 135	<0.0009	ug/L	1.5	25		
	7566501	2,3,4,6-Tetrachlorophenol	2021/09/09	83	30 - 130	82	30 - 130	<0.50	ug/L	1.7	40		

Page 18 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

10

QUALITY ASSURANCE REPORT(CONT'D)

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

2				Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Sta	andard
Ľ.	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
	7566501	2,4,5-T	2021/09/09	82	30 - 130	80	30 - 130	<1.0	ug/L	4.9	40		
2	7566501	2,4,6-Trichlorophenol	2021/09/09	77	30 - 130	78	30 - 130	<0.50	ug/L	2.4	40		
iñ.	7566501	2,4-D	2021/09/09	74	30 - 130	70	30 - 130	<1.0	ug/L	3.3	40		
	7566501	2,4-Dichlorophenol	2021/09/09	68	30 - 130	69	30 - 130	<0.25	ug/L	0.99	40		
	7566501	Alachlor	2021/09/09	108	40 - 130	108	40 - 130	<0.50	ug/L	2.0	40		
ſ,	7566501	Aldicarb	2021/09/09	89	70 - 130	90	70 - 130	<5.0	ug/L	3.4	40		
	7566501	Atrazine + Desethyl-atrazine	2021/09/09	64	30 - 130	62	30 - 130	<1.0	ug/L	0.36	40		
	7566501	Atrazine	2021/09/09	86	30 - 130	84	30 - 130	<0.50	ug/L	0.95	40		
1	7566501	Bendiocarb	2021/09/09	89	40 - 130	90	40 - 130	<2.0	ug/L	2.4	40		
	7566501	Benzo(a)pyrene	2021/09/09	101	30 - 130	96	30 - 130	<0.0050	ug/L	3.3	40		
¥	7566501	Bromoxynil	2021/09/09	87	40 - 130	85	40 - 130	<0.50	ug/L	1.3	40		
1	7566501	Carbaryl	2021/09/09	91	40 - 130	91	40 - 130	<5.0	ug/L	0.80	40		
Ē.	7566501	Carbofuran	2021/09/09	92	40 - 130	90	40 - 130	<5.0	ug/L	0.47	40		
ň.	7566501	Chlorpyrifos (Dursban)	2021/09/09	86	40 - 130	86	40 - 130	<1.0	ug/L	3.0	40		
100	7566501	Cyanazine (Bladex)	2021/09/09	80	40 - 130	76	40 - 130	<1.0	ug/L	1.9	40		
	7566501	Des-ethyl atrazine	2021/09/09	42	30 - 130	40	30 - 130	<0.50	ug/L	3.1	40		
	7566501	Diazinon	2021/09/09	77	40 - 130	78	40 - 130	<1.0	ug/L	2.4	40		
10	7566501	Dicamba	2021/09/09	75	30 - 130	73	30 - 130	<1.0	ug/L	2.8	40		
ő	7566501	Diclofop-methyl	2021/09/09	89	40 - 130	87	40 - 130	<0.90	ug/L	1.2	40		
65	7566501	Dimethoate	2021/09/09	76	40 - 130	74	40 - 130	<2.5	ug/L	1.9	40		
3	7566501	Dinoseb	2021/09/09	84	40 - 130	82	40 - 130	<1.0	ug/L	1.3	40		
	7566501	Ethyl Parathion	2021/09/09	80	40 - 130	78	40 - 130	<1.0	ug/L	0.67	40		
2	7566501	Malathion	2021/09/09	86	40 - 130	85	40 - 130	<5.0	ug/L	0.19	40		
m	7566501	Methyl parathion	2021/09/09	81	30 - 130	79	30 - 130	<1.0	ug/L	0.14	40		
	7566501	Metolachlor	2021/09/09	77	40 - 130	77	40 - 130	<0.50	ug/L	0.72	40		
	7566501	Metribuzin (Sencor)	2021/09/09	107	40 - 130	105	40 - 130	<5.0	ug/L	0.63	40		
	7566501	Pentachlorophenol	2021/09/09	80	25 - 130	79	25 - 130	<0.50	ug/L	0.13	40		
	7566501	Phorate	2021/09/09	74	40 - 130	74	40 - 130	<0.50	ug/L	2.5	40		
Γ	7566501	Picloram	2021/09/09	41	10 - 130	38	10 - 130	<5.0	ug/L	13	40		
Ī	7566501	Prometryne	2021/09/09	85	30 - 130	81	30 - 130	<0.25	ug/L	4.9	40		
	7566501	Simazine	2021/09/09	80	40 - 130	78	40 - 130	<1.0	ug/L	0.038	40		

Page 19 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

Golder Associates Ltd Client Project #: 21456909 Sampler Initials: PM

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7566501	Terbufos	2021/09/09	79	40 - 130	79	40 - 130	<0.50	ug/L	1.3	40		
7566501	Triallate	2021/09/09	84	40 - 130	83	40 - 130	<1.0	ug/L	1.2	40		
7566501	Trifluralin	2021/09/09	94	40 - 130	91	40 - 130	<1.0	ug/L	3.6	40		
7567026	Glyphosate	2021/09/09	106	50 - 130	108	50 - 130	<10	ug/L	NC	40		
7567661	WAD Cyanide (Free)	2021/09/10	97	80 - 120	98	80 - 120	<0.0010	mg/L	NC	20		
7569961	Diuron	2021/09/10	88	40 - 130	85	40 - 130	<10	ug/L	NC	40		
7569961	Guthion (Azinphos-methyl)	2021/09/10	102	40 - 130	98	40 - 130	<2.0	ug/L	NC	40		
7569961	Temephos	2021/09/10	70	40 - 130	65	40 - 130	<10	ug/L	NC	40		
			•		•				•			

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Page 20 of 22

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

VALIDATION SIGNATURE PAGE

Ø

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Ralman Farhana

Farhana Rahman, Senior Analyst

M Di Grazia

Melissa DiGrazia, Operations Manager, HRMS Department

Scham N Potet

Soham Patel, Analyst 2

Tom Mitchell, B.Sc, Supervisor, Compressed Gases

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Image:			Bureau Veritas Laborato 6740 Campobello Road	ones I, Mississauga, Onta I,	irio Canada L5N .	🕰 2L8 Tel (905) 817-5	700 Toll-free:800	[]] -563-6266 Fax	(905) 817-5	i777 www.bvla	os.com		34.)			CH	AIN OF CUS	STODY RECORD	Page (of)
Most Number of State State State State State State State State State State State State St	HALINARIES	11	NVOICE TO:				REPO	ORT TO:					PROJ	ECT INFORMAT	ION:		~	Laboratory Lise (Joly:
Nome Accounts Payable Nervice Original Status Nervice Payable Status Nervice Nervice </td <td>mpany Name:</td> <td>#21375 Golder</td> <td>Associates Ltd</td> <td></td> <td>Compar</td> <td>v Name</td> <td></td> <td></td> <td></td> <td></td> <td>Quota</td> <td>tion #</td> <td>B80</td> <td>683</td> <td>1</td> <td>8 4</td> <td>1-21</td> <td>BV Labs Job #:</td> <td>Bottle Order #:</td>	mpany Name:	#21375 Golder	Associates Ltd		Compar	v Name					Quota	tion #	B80	683	1	8 4	1-21	BV Labs Job #:	Bottle Order #:
Answer	ention.	Accounts Payab	le		Attentio	n: Grego	y Padusenko	-		- X	P.O. #		1	4		100			
	dress:	210 Sheldon Dri	Ve		Address						Projec	t	214	56909					842984
		(519) 620-8182	NTT TAO		-	(519) 6	20-8182 Evt	6509	(510)	620 0979	Projec	t Name:	. P	C.L.C.	-	10		COC #:	Project Manager:
	ail:	CanadaAccounts	sPayableInvoices@g	golder.com	Email:	Gregor	y Padusenko	@golder.co	 om	020-9070	Site #	ad Du	P	AN	() ·	01			Ema Gitej
	MOE REG	ULATED DRINKIN	G WATER OR WATER	R INTENDED F	OR HUMAN C	ONSUMPTION	MUST BE		1		ANALYSIS	REQUESTE	DIPLEASE	E BE SPECIFIC)			_	C#842984-01-01 Turnaround Time (TAT) Pa	aquirad
	Regulational Regulational Regulational Regulational Regulation Reg	SUBMITTED on 153 (2011) Res/Park Mediur Ind/Comm Coarse Agri/Other For RS		Cither Regulations Sanitary Sewer (Storm Sewer By)	R CHAIN OF	Special Ir	structions	please circle): g / Cr VI	1, 2 and 4							8	Regular ((will be appl Standard Ti Please note	Please provide advance notice to Standard) TAT: led if Rush TAT is not specified). AT = 5-7 Working days for most tests. Standard TAT for certain tests such as BC	r rush projects
	ible	Include Criteria	PWQO Other	Reg 406 Table	·			id Filtered (Metals / H	2SOG Tables								Job Speci Date Requir Rush Confir	et your Project Manager for details fic Rush TAT (if applies to entire subm ed:Tim mation Number;	ission) e Required:
PW 21-1 2/37/03 10:00 GW A A Control Control Image: Second Control of Second Control o	Sample	Barcode Label.	Sample (Location) Ide	Ientification	Date Samoled	Time Sampled	Matrix	- Ĕ	DWG								# of Bottles	(ca	ll lab for #)
			PW21-1	2	1/09/03	10:00	EW		X								27	dis regard date	an label
RECID IN WATERLOO RECID IN WATERLOO RECID IN WATERLOO OBJECTION WATERLOO RECID IN WATERLOO RECIDENT WATERLOO RECI	· · · ·																		
RECID IN WATERLOO Image: Instrument in the second of th		14																	
													. •	6					
Image: Source of Dial North Submitted Dial Custod Scale for Viewing Ar WWW BULABS. CONTERMS AND CONTINUES. SIGNING OF THIS CHAIN OF CUSTOD DOCUMENT IS					14											2		REC'D IN WA	TERLOO
Construction of the second secon																		03-Sep-21	3:54
* RELINQUISHED BY: (SignatureiPrint) Date: (YY/MM/DD) Time # jars used and nor submitted C1P4129 * RELINQUISHED BY: (SignatureiPrint) Date: (YY/MM/DD) Time # jars used and nor submitted Laboratory Use Only * RELINQUISHED BY: (SignatureiPrint) Date: (YY/MM/DD) Time # jars used and nor submitted Laboratory Use Only So THERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BY LABS' STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS # jars used and nor submitted Time Sensitive Time Sensitive Time Sensitive Yes No. SS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BY LABS' STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS Signature (C) on Recent Prints Yes No. WILED SMUST BE KEPT COOL (< SIGN TERMS AND CONDITIONS.			3															Ema Gitej	1 1 1
* RELINQUISHED BY: (Signature:Print) Date: (YY/IM/DD) Time RECEIVED BY: (Signature:Print) Date: (YY/IM/DD) Time # jars used and nor submitted ////////////////////////////////////	×	a										0						C1P4129	
RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time Received		-																On The Pa	70 chs
L // WL / Paris // Cr. Co. J. 21/09/03 3:55 Custody Seal Yes No SS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BU LABS' STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS WILLEGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BULABS. STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS SAMPLES MUST BE KEPT COOL (< 10 CUERON TIME OF SAMPLING White: BV Labs Yellow: Clie	* RI	ELINQUISHED BY: (Sig	gnature/Print)	Date: (YY/MM	(DD) Tir	ne	RECEIVED B	Y: (Signature/I	Print	Date	(YYIMMIDD)	T	Time	# jars used	and		Labora	atory Use Only	\cap
ESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BY LABS'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS DWILEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BYLABS.COM/TERMS-AND.COM/T	d m	WL / Parl	MC. Kiell	21/09/	03 13:	5 ja	FRAIM	fau	1th	\$ 20	0 20 10	3 13:1	57			Time Sensitiv	e Temperat	ure (°C) on Reca 12 15 15 15 15 Intact	Yes No
UNTIL DELIVERY TO BY LABS	ISS OTHERW OWLEDGMEN THE RESPON	ISE AGREED TO IN WRI NT AND ACCEPTANCE C ISIBILITY OF THE RELIN	ITING, WORK SUBMITTED O DF OUR TERMS WHICH ARE NQUISHER TO ENSURE THE	ON THIS CHAIN OF E AVAILABLE FOR V E ACCURACY OF TH	CUSTODY IS SUE VIEWING AT WWW HE CHAIN OF CU	BJECT TO BV LAES	STANDARD TERI MS-AND-CONDIT N INCOMPLETE C	MS AND CONDI IONS. HAIN OF CUSTI	TIONS. SIGN	NING OF THIS	CHAIN OF CUS	TODY DOCU	IMENT IS	SAI	WPLES MI	JST BE KEPT UNTIL	COOL (< 10° C) DELIVERY TO BY	White: BV FROM TIME OF SAMPLING / LABS	/ Labs Yellow: Clie

- I t 0

0 L

H C C C L

the set

Ű

abs

-

'n

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Bureau Veritas Canada - Mississauga

Attn : Subcontract Coordinator

6740 Campobello Road Mississauga, ON L5N 2L8, Canada

Phone: 905-817-5798 Fax: Works #: 210000568-NR

22-September-2021

Date Rec. :07 September 2021LR Report:CA15208-SEP21Reference:Job#: C1P4129

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Sample ID	Sample Date & Time	Temperature Upon Receipt °C	Bromate mg/L
1: Analysis Start Date			16-Sep-21
2: Analysis Start Time			13:01
3: Analysis Completed Date			22-Sep-21
4: Analysis Completed Time			11:40
5: MAC			0.01
6: MDL			0.005
7: QC - Blank			< 0.005
8: QC - STD % Recovery			98%
9: QC - DUP % RPD			ND
10: NR PW21-1	03-Sep-21 10:00	14.0	< 0.005

MAC - Maximum Acceptable Concentration

MDL - SGS Method Detection Limit

NR - Not regulated / reportable under applicable Provincial drinking water regulations as per client.

ND - Not Detected

Parameter	Description	SGS Method Code
Bromate	Bromate by Ion Chromatograph	ME-CA-[ENV]IC-LAK-AN-006

desur

Kimberley Didsbury Project Specialist, Environment, Health & Safety

OnLine LIMS

0002649470

Page 1 of 1

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or