

Functional Servicing and Stormwater Management Report, Storybrook Subdivision

Township of Centre Wellington, North West Fergus Secondary Planning Area

R.J. Burnside & Associates Limited 6990 Creditview Road, Unit 2 Mississauga ON L5N 8R9 CANADA

December 2016 - Revised February 2018 300031145.5389

Distribution List

No. of Hard Copies	PDF	Email	Organization Name
-	Yes	Yes	Ms. Catherine Pan, Sorbara Development Group

Record of Revisions


Revision	Date	Description
0	December 2016	Initial Submission for Draft Plan Application
1	February 2018	Second Submission for Draft Plan Application

R.J. Burnside & Associates Limited

Report Prepared By:

Julie Scott, E.I.T. **Engineering Assistant** JS:lam

Report Reviewed By:

Table of Contents

1.0	Intro	oduction	
	1.1	General	
	1.2	Study Area	
	1.3	Land Uses	
	1.4	Scope of Work	2
2.0	Bac	kground	4
	2.1	Planning Context	
	2.2	Population Data and Projections	
	2.3	Previous Studies, Reports and Planning Documents	5
3.0	Exis	sting Site Conditions	9
	3.1	Soil Conditions	9
	3.2	Groundwater Conditions	9
	3.3	Environmental Features	10
4.0	San	itary Servicing	13
	4.1	Sanitary Design Criteria	
	4.2	External Sanitary Services	
	4.3	Planned Sanitary Services	
		4.3.1 Treatment Plant Capacity	
	4.4	Internal Sanitary Services	
		4.4.1 Preliminary Sewer Design	
		4.4.2 Sanitary Forcemain Connection Point	
		4.4.3 Phasing Implications	18
5.0		er Servicing	
	5.1	Water Design Criteria	
	5.2	External Water Services	
	5.3	Planned Water Infrastructure	
	5.4	Internal Water Services	
		5.4.1 Phasing Implications	
6.0		ding and Storm Drainage	
	6.1	Site Grading	
	6.2		
	6.3	Proposed Storm Drainage	
		6.3.1 Minor Storm Conveyance	
		6.3.2 Major Storm Conveyance	
		6.3.3 External Drainage Conveyance	
		6.3.4 Foundation Drain Collector System	
7.0		rmwater Management	
	7.1	Background	
	7.2	Existing Hydrologic Conditions	
		7.2.1 South Catchment	36

		7.2.2 North Catchment	
	7.3	Proposed Hydrologic Conditions	
		7.3.1 North Catchment	
		7.3.2 South Catchment	
	7.4	Proposed Stormwater Management Ponds	40
		7.4.1 Quantity Control	40
		7.4.2 Quality Control	40
		7.4.3 Pond Locations	41
		7.4.4 North Pond Design	41
		7.4.5 South Pond Design	45
		7.4.6 Total Post-Development Flows	
	7.5	Water Balance / Infiltration	49
	7.6	Low Impact Development	49
	7.7	Nichol Drain Corridor	49
	7.8	Implementation of the Terracing of the Nichol Drain	50
8.0	Eros	sion and Sediment Control	51
9.0	Effe	ctiveness Monitoring	52
10.0		clusions and Recommendations	
11.0		erences	

Tables

Table 1:	Residential Unit Densities	4
Table 2:	Preliminary Sanitary Flow Calculations	17
Table 3:	Preliminary Storm Sewer Flow Calculations	32
Table 4:	Tile Drain Outlet Conveyance System	34
Table 5:	Pre-Development Peak Flow Rates	40
Table 6:	Summary Table for North Pond	42
Table 7:	Summary Table for South Pond	45
Table 8:	Flow Rate Summary	48
Table 9:	Commercial/Mixed Use Block Flow Summary	48

Figures

Figure 1:	Site Location Plan	3
Figure 2:	Approved Secondary Plan	6
Figure 3:	Proposed Phase 1 Draft Plan	7
Figure 4:	Proposed Phase 2/3 Draft Plan	8
Figure 5:	Existing Site Conditions	12
Figure 6:	Proposed Sanitary Connection	15
Figure 7:	Proposed Internal Watermain Layout	22
Figure 8:	Proposed Road Grading Plan	25
Figure 9:	Existing Drainage Boundaries	28
Figure 10	: Existing External Drainage Area	29

Township of Centre Wellington, North West Fergus Secondary Planning Area

Functional Servicing and Stormwater Management Report, Storybrook Subdivision December 2016 - Revised February 2018

Figure 11:	Proposed Drainage Boundaries	30
Figure 12:	North SWM Pond Configuration	43
Figure 13:	North SWM Pond Sections	44
Figure 14:	South SWM Pond Configuration	46
Figure 15:	South SWM Pond Section	47

Drawing List

SAN-1 Preliminary Sanitary Sewer System STM-1 Preliminary Grading and Drainage Plan FDC-1 Preliminary Foundation Drain Collection System

Appendices

Appendix A Geotechnical Investigation

Appendix B Sanitary Documents and Calculations

Appendix C Storm Sewer Sizing

Appendix D Stormwater Management Pond Calculations and Modelling

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third-party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1.0 Introduction

1.1 General

R. J. Burnside & Associates Limited (Burnside) has been retained by Nigus Fergus Joint Venture Inc. (Nigus) to prepare the Functional Servicing Report (FSR) in support of the Draft Plan of Subdivision Application for the Storybrook West Development which includes the remainder of the North West Fergus Secondary Plan Area (NWFSPA), outside the Storybrook Subdivision Phase 1 limits. The NWFSPA is located in the Community of Fergus, Township of Centre Wellington.

1.2 Study Area

The North West Fergus Secondary Plan Area encompasses approximately 99 ha within the Township of Centre Wellington. The legal description is part of Lots 18, 19 and 20, Concession 14 in the former Nichol Township, and includes Parts 1 and 2 of Plan 61R-11272. The location of the subject lands is illustrated on Figure 1.

The Secondary Planning Area is bounded by Colborne Street to the south and west, Beatty Line to the east and an abandoned railway line to the north and east, with open space areas to the west marked by lot lines.

Agricultural and rural residential estate properties surround the subject property. A subdivision development within the Fergus Urban Centre encompasses some of the lands to the east of Beatty Line. The Keating Church property, approved for residential development, is located on the other side of the former rail corridor along the north-east boundary of the site. To the south of the subject property is a Wellington County Planning Policy Area (Wellington Place) that includes the existing Wellington County Museum and Archives and the site for the Groves Memorial Hospital. The Phase 1 Draft Plan encompassed 28.6 ha of the Secondary Planning Area, largely located in the north-east quadrant. The Storybrook West Development includes 70.64 ha area covering the entire southern portion of the lands and the remaining northwest quadrant of the Secondary Planning Area.

1.3 Land Uses

The Secondary Plan for the subject property was presented to Council on April 21, 2015 with recommendation for approval of the Secondary Plan. The Phase 1 Draft Plan was presented to Council on July 25, 2015 and is currently in the detailed design process. The proposed Storybrook West Development consists primarily of agricultural lands. One (1) residence and several farm related buildings and barns are located near the center of the Plan Area. Nichol Drain No. 1 runs westward through the center of the Secondary Plan Area. A smaller intermittent unnamed drain flows from the northern boundary of the Secondary Plan Area southward and converges with the Nichol Drain

No. 1 in the central western portion of the subject lands. The Nichol Drain No. 1 was included as part of the Phase 1 Draft Plan area, the unnamed watercourse, and adjacent woodlot/open space are included within the Storybrook West Draft Plan Area.

1.4 Scope of Work

The purpose of this report is to provide servicing information in support of the Draft Plan of Subdivision application by Nigus Fergus Joint Venture with specific focus on the Storybrook West Develoment currently under application. It will demonstrate how the subject lands can be serviced in accordance with Township of Centre Wellington standards and is an extension of the information provided as part of the Secondary Plan Application. The review includes a more detailed assessment of water, sanitary and storm servicing, including stormwater management implementation. Preliminary sizing and identification of drainage corridors through the site (major and trunk minor system), is also included as applicable.

3:56

2.0 Background

2.1 Planning Context

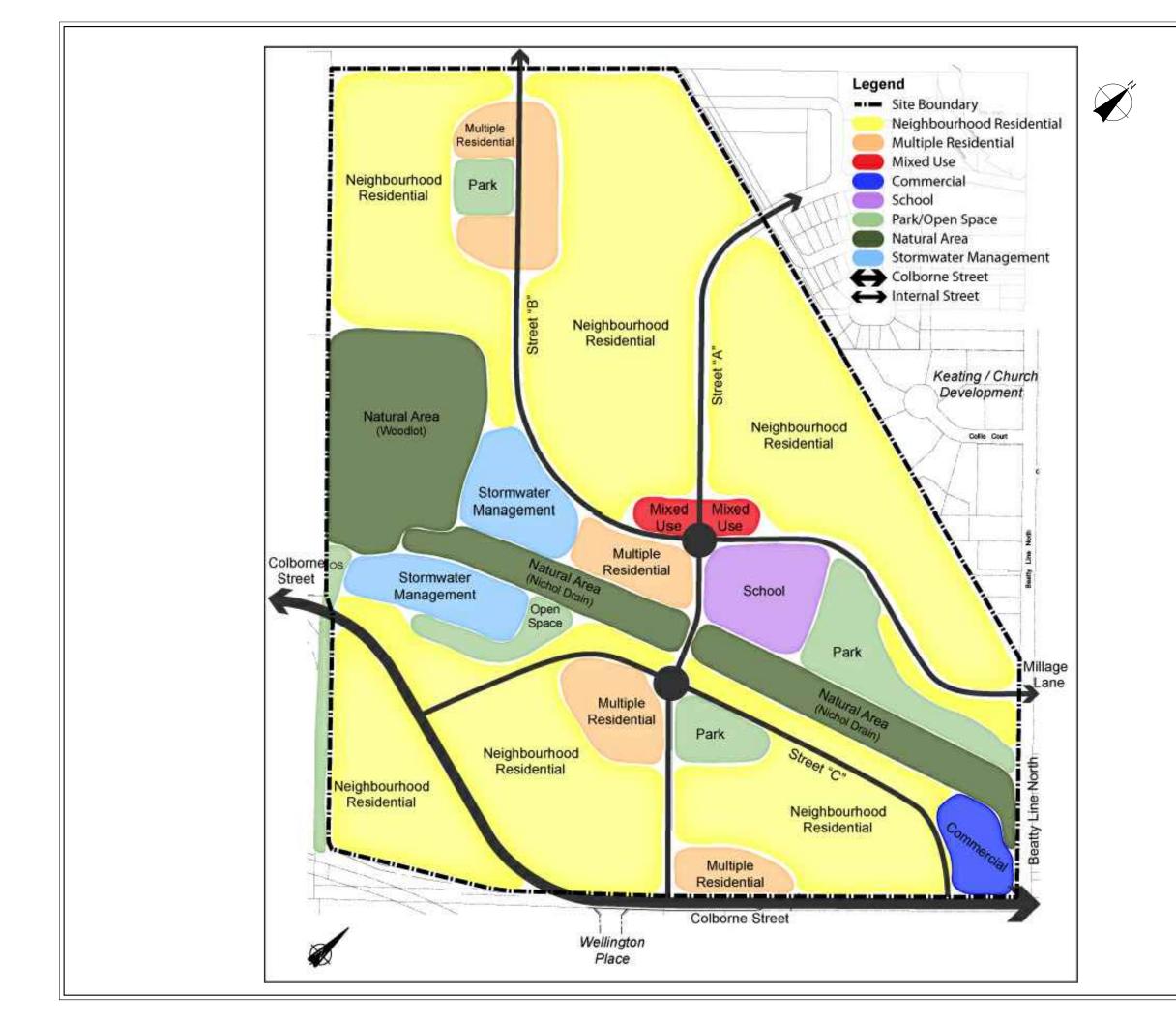
The proposed North West Fergus Secondary Plan was approved with a mix of residential, parks and green space areas. The North West Fergus Secondary Plan, prepared by The Planning Partnership is shown on Figure 2. The Draft Plan of Subdivision is an extension of the land use approved for the Secondary Plan. The proposed Phase 1 Draft Plan is included as Figure 3 and the proposed Storybrook West Development Draft Plan is included as Figure 4.

2.2 Population Data and Projections

The Draft Plan of Subdivision, prepared by GSP Group, includes identification of the specific unit breakdown for Phase 1 of the proposed site as this is currently in detailed design. The remainder of the plan includes a potential range of units, in keeping with the population projections established as part of the Secondary Plan. The population projections have been developed based on the proposed unit count and the following unit densities taken from the *Township of Centre Wellington – 2009 Development Charge Background Study* completed for the Township of Centre Wellington by Watson and Associates Economists Ltd. in November 2009.

	No. of	Units	Density*	Population		
	(Scenario A)	(Scenario B)	(ppu)	(Scenario A)	(Scenario B)	
Phase 1 Low Density	176		3.08	543		
Storybrook West Low Density	674	772	5.00	2076	2378	
Phase 1 Med. Density	4	40		2.47		
Storybrook West Med. Density	162		2.47	4(00	
Storybrook West Mixed Use	40		2.47	9	9	
Total	1092	1190		3217	3519	

Table 1: Residential Unit Densities


Municipal services for the subject property will be designed to comply with the latest standards and criteria prepared by the Township of Centre Wellington and Wellington County including road, grading, storm, sanitary and watermain design. Calculations relating to servicing requirements will be based on the calculated population of 3,519 to ensure sufficient capacity within the servicing components.

2.3 Previous Studies, Reports and Planning Documents

The development concepts contained in this report are a reflection of, and in accordance with, the information and findings contained in the following reports:

- Nichol Drain No. 1 Subwatershed Study Phase 1 Existing Conditions, Aquafor Beech Limited, October 2008.
- Hydrogeological Study Proposed Residential Subdivision Nigus Property, Terraprobe Limited, January 2009.
- Traffic Impact Study North West Fergus Secondary Plan Area, R.J. Burnside & Associated Limited, July 2014.
- Environmental Implementation Report, North West Fergus Secondary Plan Area, R.J. Burnside & Associates Limited, June 2014.
- Functional Servicing Report, North West Fergus Secondary Plan Area, R.J. Burnside & Associates Limited, July 2014.
- NW Fergus Secondary Plan Area Scoped Environmental Impact Study, R.J. Burnside & Associates Limited, June 2014.
- Geotechnical Investigation Storybrook Subdivision, V.A. Wood (Guelph) Incorporated, May 2016.
- NW Fergus Secondary Plan Area Scoped Environmental Impact Study, Phase 2, R.J. Burnside & Associates Limited, ongoing.
- Traffic Impact Study Draft Plans North West Fergus Secondary Plan Area, Phase 2, ongoing.
- Hydrogeological Assessment in Support of Draft Plan, November 2016.

These studies have provided input into the recommended servicing and stormwater management scheme for the proposed site. The studies noted above as "ongoing" are part of the studies associated with the Storybrook West Draft Plan Application currently underway. These reports are being completed concurrently with the Functional Servicing and Stormwater Management Report contained herein.

BURNSIDE

Client

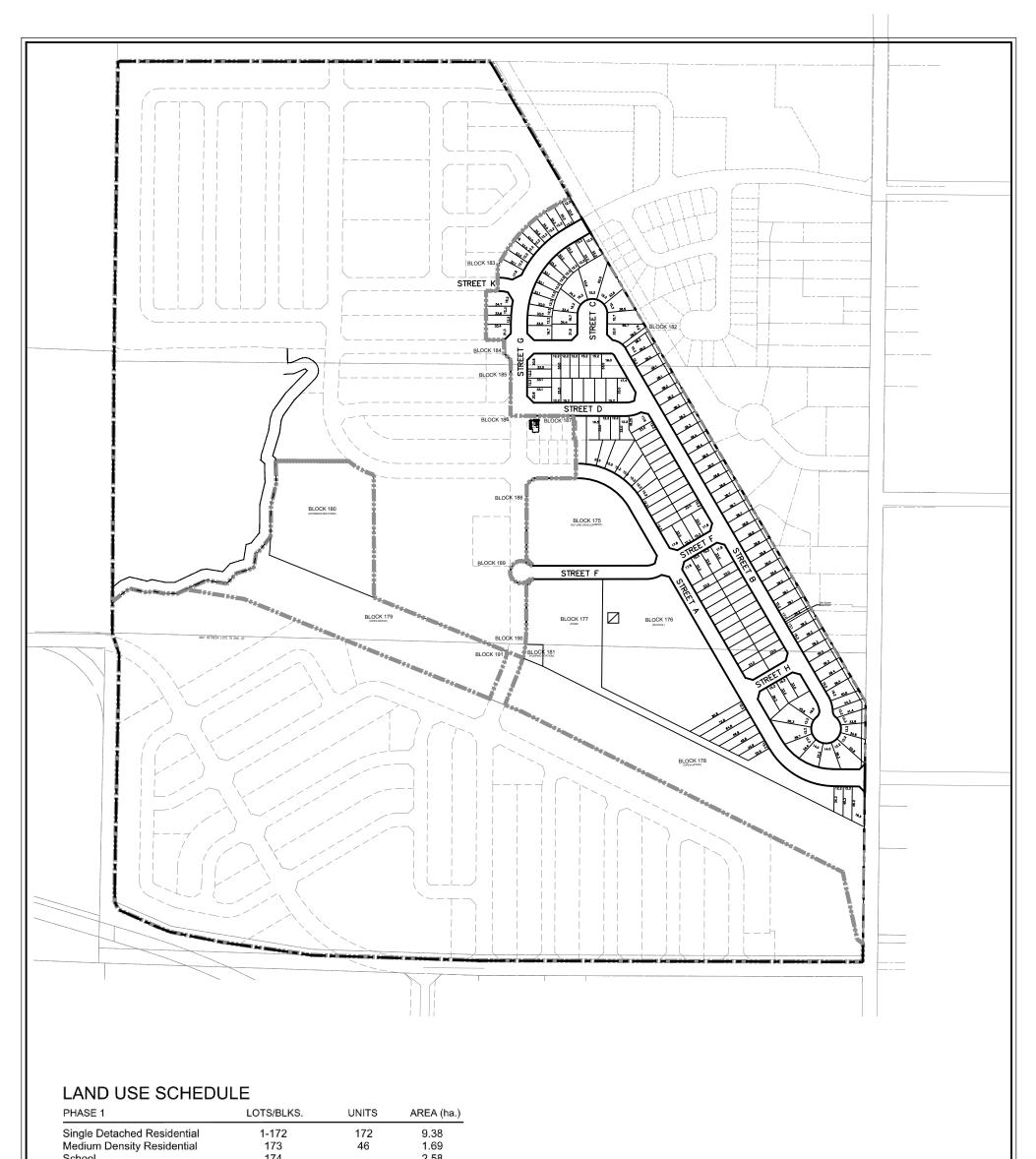
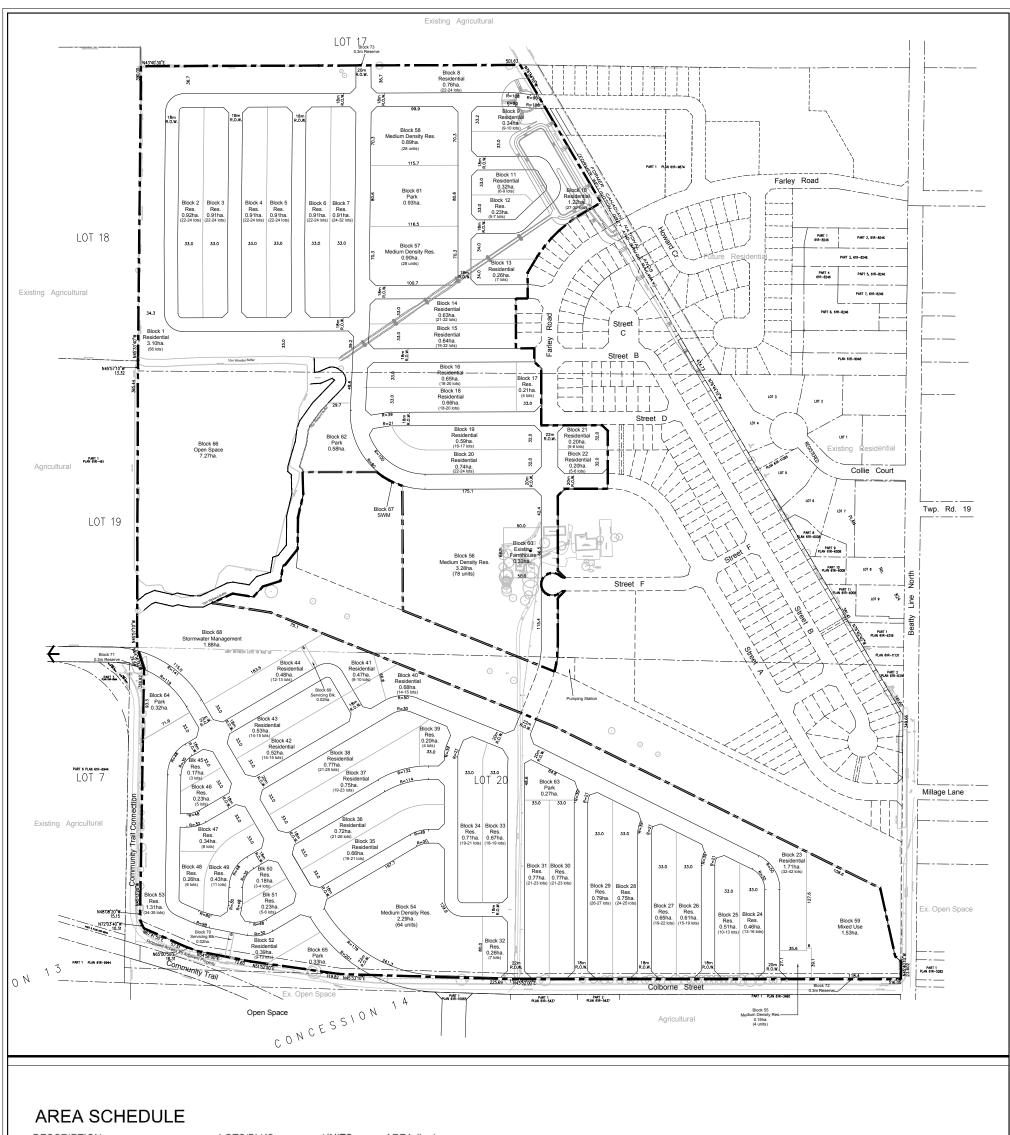

NIGUS FERGUS JOINT VENTURE INC.

Figure Title


NW FERGUS SECONDARY PLANNING AREA DRAFT PLAN APPLICATION

APPROVED SECONDARY PLAN

Drawn	Checked	Date	Figure No.
PAG	LN	2016-11-30	
Scale		Project No.	FIG2
1:5000		300031145	

School174Park175Nichol Drain (open space)176,177Stormwater Management178Pumping Station179Walkway / Emergency Access1800.3m Reserve181-192Roads181	2.58 1.82 6.29 2.09 0.06 0.02 0.02 4.76	
Total Phase 1	218 28.56	Prepared By:
Total Subdivision	99.50	GSP group
LEGEND NORTH WEST FERGUS SECONDAR PLANNING AREA BOUNDARY	Y	PLANNING I URBAN DESIGN I LANDSCAPE ARCHITECTU gspgroup.ca
PROPOSED PHASING LIMITS	BURNSIDE	- Figure Title NW FERGUS SECONDARY PLANNING ARE DRAFT PLAN APPLICATION PHASE 1 DRAFT PLAN
200 400 600 80	⁰ NIGUS FERGUS JOINT VENTURE II	Drawn Checked Date Figure No. RS LN 2016-11-30 FIG 3 Scale Project No. 1:5000 300031145

DESCRIPTION LOTS/BLKS. UNITS

AREA (ha.)

Single Detached Residential Medium Density Residential Mixed Use	1-58 59-63 64	845-927 202 40	34.64 7.50 1.52					
Existing Farmhouse	65		0.33					
Park	66,67		11.83					
Open Space	68-70		7.48					
Stormwater Management 0.3m Reserve	71		1.91 0.00				Prepared By:	
Roads	72,73		15.24				rioparoa by:	
Total		1087-1169	70.64					
LEGEND							PLANNING I UR	RBAN DESIGN 1 LANDSCAPE ARCHITEC
STORYBRO							PLANNING I UR	
				BURNSIDE	Figure Title	DRAFT		RBAN DESIGN I LANDSCAPE ARCHITEC gspgroup.ca PLANNING ARI
STORYBRO		Client		BURNSIDE	ũ	DRAFT	CONDARY P PLAN APPLI	RBAN DESIGN I LANDSCAPE ARCHITEC gspgroup.ca PLANNING ARI
STORYBRO		800			NW FE	DRAFT STORYBF	CONDARY P PLAN APPLI ROOK WEST DF	RBAN DESIGN I LANDSCAPE ARCHITEC gspgroup.ca PLANNING ARI ICATION RAFT PLAN Figure No.
STORYBRO DEVELOPM	ENT	800		BURNSIDE GUS JOINT VENTURE INC.	NW FE	DRAFT STORYBF Checked	CONDARY P PLAN APPLI ROOK WEST DF	RBAN DESIGN I LANDSCAPE ARCHITEC gspgroup.ca PLANNING ARI ICATION RAFT PLAN

3.0 Existing Site Conditions

The study area is comprised largely of agricultural lands. Nichol Drain No. 1 runs westward through the center of the Secondary Plan Area. A smaller, intermittent unnamed drain flows from the northern boundary of the site and converges with the Nichol Drain. The site slopes gently towards both the Nichol and unnamed drain with an average slope of 3% in the areas draining directly to Nichol Drain and a shallower sloping of approximately 1.5% towards the unnamed drain. There is an existing dwelling located centrally on the site with access off Colborne Street from the south. There is an existing woodlot, bounded by both the Nichol and the unnamed drain, located on the western boundary of the subject lands. The remainder of the site is open field. Refer to Figure 5 for existing site conditions and contours.

3.1 Soil Conditions

Based on the Ontario Soils Mapping database, the subject property is located within three (3) different soil formations. The Nichol Drain is located within the Parkhill Loam Formation. These soils are described as poor draining as they are generally wet throughout the year. North of the Nichol Drain, soils are located within the Listowel Loam Formation; these soils are established from a Loam Till and are considered imperfectly draining. South of the Nichol Drain the soils are located within the Harriston Loam Formation; these soils are considered well-draining.

An initial geotechnical investigation for the study area was completed by Terraprobe Limited in 2009 (see Appendix A). Based on the findings, the site is covered by a surficial layer of topsoil underlain by glacial till materials, comprising of a low permeability sandy silt to clayey silt. Layers of sand and gravel were encountered along the Nichol Drain and in the north-east corner of the site. The topsoil thickness generally ranges from about 200 mm to 300 mm in depth.

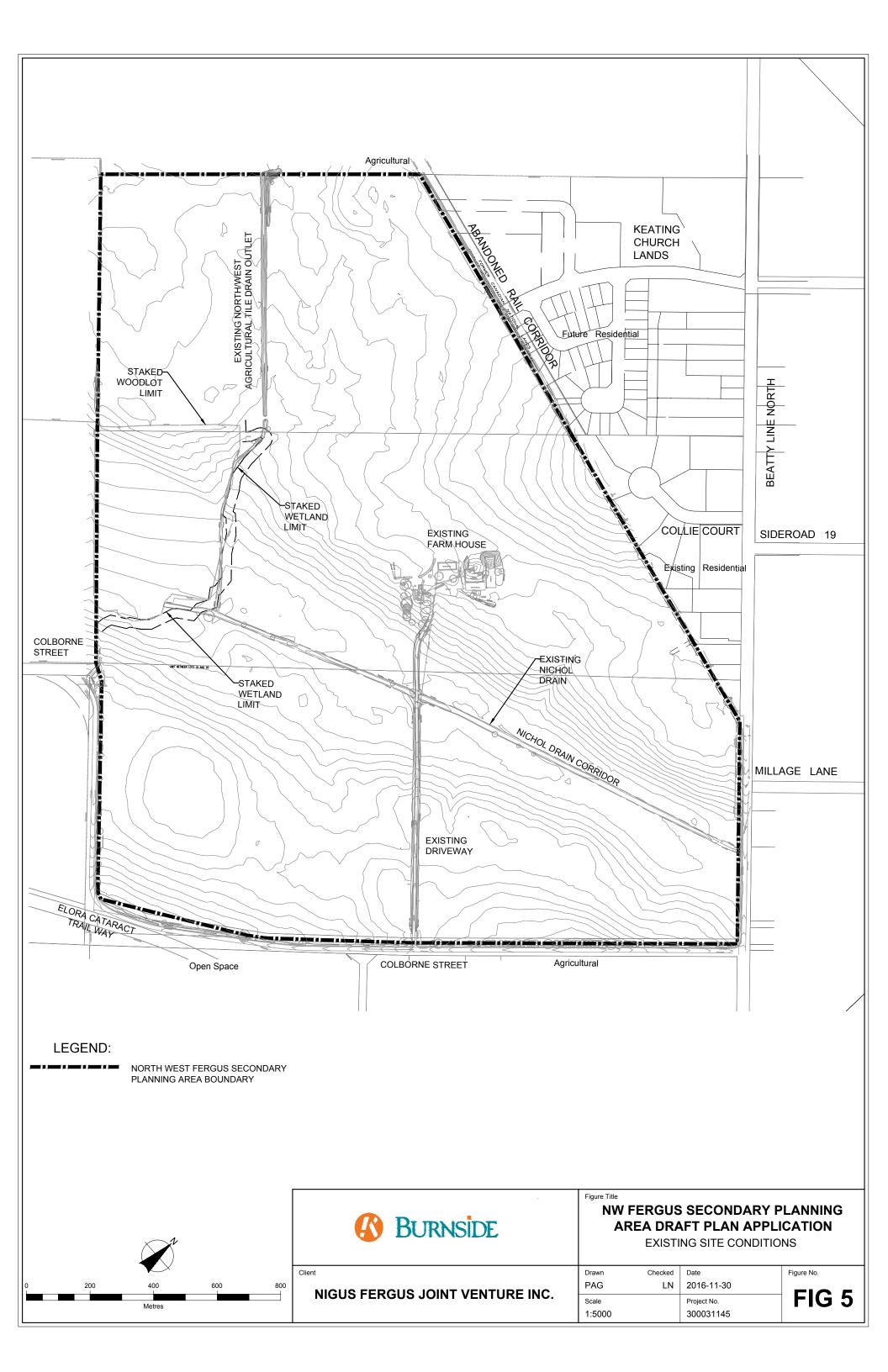
A detailed geotechnical investigation for the Phase 1 Storybrook Subdivision area was completed by V.A. Wood Incorporated (see Appendix A). Based on the findings of this report, the site is covered by a surficial layer of topsoil ranging in depths from 150 mm to 410 mm thick, underlain by loose to compact silty sand and/or sand underlain by loose to very dense clayey sandy silt till with seams of company sand and very stiff to hard silty clay.

3.2 Groundwater Conditions

As part of the initial geotechnical investigation conducted by Terraprobe, groundwater conditions were monitored using standpipe piezometers, which were installed at each borehole location. The water levels were recorded on three (3) separate occasions, at the time of the Geotechnical Report; these piezometers continue to be monitored by Burnside. As last recorded, groundwater was found in all 20 boreholes.

The groundwater levels were generally found to be within two (2) metres of the ground surface. The shallow ground water flow generally follows site topography and generally flows to the downstream portion of the Nichol Drain. The only exception is the northern portion, which generally flows to the north-west [ref. p. 8, Geotechnical Report, 2009].

As part of the geotechnical investigation conducted by VA Wood, groundwater conditions were monitored at each borehole location. The water levels were recorded using monitoring wells at five (5) of the boreholes. Based on the field work that was completed, the groundwater table is considered to be located at elevations ranging from 408.1 m to 415.3 m.


Further hydrogeological assessment and monitoring has been completed by Burnside as part of the Phase 1 Draft Plan Application, and the ongoing works supporting the current Storybrook West Draft Planning process. A more detailed assessment of seasonal high groundwater contours has been completed. It is noted that the groundwater elevations within the Phase 1 development area range from 410 m to 419 m. Where the foundation elevations of the dwellings are located within 0.60 m of the SHGW, a separate Foundation Drain Collector system will be required as part of the subdivision design.

3.3 Environmental Features

The subject property has been historically used for agricultural purposes. There is an existing woodlot and wetland located in the west central portion of the site. This woodlot / wetland feature was staked on site with GRCA in 2014. In accordance with the Phase 1 Subwatershed study, the woodlot buffer requirement is 15 m and the wetland buffer requirements is 30 m. As part of the Draft Plan studies, a scoped Environmental Impact Study (EIS) is being completed under separate cover, to establish reduced buffers on both the woodlot and wetland. The Draft Plan includes the application of a 15 m buffer on the wetland, specific to the areas adjacent to the stormwater management facilities, a 30 m wetland buffer adjacent to other land uses and a 10 m buffer on the woodlot. The buffer reduction was approved for the Phase 1 only area where the environmental feature abuts the North Stormwater Management Pond. The remainder of the buffer reduction remains under review. Consultation with GRCA indicates that minor encroachment within the 30 m wetland buffer may be permitted, subject to appropriate restoration and protection measures. The current Draft Plan includes a very minor encroachment within the buffer to allow for an efficient and safe alignment of proposed Street A.

The Nichol Drain bisects the property and flows in an east to west direction. The current floodplain extends well beyond the top of bank of the existing Nichol Drain. The approved Secondary Plan included the proposal for 'terracing' of the Nichol Drain, which results in channelizing the drain corridor and provide reconnection of the channel with its floodplain, as specified in the Phase 1 Subwatershed Study.

A 30 metre buffer on either side of the 7 m low flow channel of the Nichol Drain is provided, resulting in a 67 m wide channel corridor through the property. The proposed drain terracing was approved as part of the Phase 1 subdivision design.

4.0 Sanitary Servicing

4.1 Sanitary Design Criteria

The proposed sanitary sewers will be designed and constructed to current Township and MOE criteria and specifications.

The sanitary design criterions are as follows:

•	Residential Flow Rate Infiltration Inflow Peaking Factor Population Density Low Density Residential Medium Density Residential Institutional / Commercial / Industrial Loading	- - -	 250 litres per capita per day 0.15 litres per second per hectare 0.028 litres per second per m pipe Hammon Peaking Factor Form ula Varies: 3.08 ppu 2.47 ppu 28 m³/ha/day
•	Institutional / Commercial / Industrial Loading	_	28 m³/ha/day

4.2 External Sanitary Services

The subject property is located in the North West Trunk Sanitary drainage shed in Fergus, within the Township of Centre Wellington. The area ultimately drains to the Fergus Water Pollution Control Plant (WPCP).

As established as part of the Secondary Plan, the preferred alternative for providing sanitary servicing to the NWFSPA is through a combination of gravity and pumping station connection to the Beatty Line Sub-Trunk Sewer that connects to the Millage Lane Sewer. The sewer subsequently flows to the Black Street, Holman Crescent, Perry Street and Provost Lane sanitary sewers and ultimately discharges to the Fergus WPCP on Union Street south of the Grand River.

Due to grading constraints associated with the existing site topography and the Nichol Drain Corridor, a sewage pumping station within the subject property is proposed to reduce the fill and alleviate the outlet elevation constraints.

Phase 1 of the Draft Plan of Subdivision was established on the basis of the area of the site that can be serviced by gravity without significant fill. The location of the pumping station was identified within the Phase 1 Draft Plan, based on the anticipated future phasing of the property as well as minimizing the proposed infrastructure crossings of the Nichol Drain. As noted on Figure 6, the sanitary pump station site is to be located at the north-west intersection of Farley Road and the Nichol Drain Corridor, in the south- west corner of the Phase 1 park block.

As part of the Phase 1 design, the gravity system will be designed in accordance to Municipal standards, within the proposed ROW. Additionally, the Phase 1 work will include the extension of a forcemain along Street F to provide connection to the Storybrook West Draft Plan area. The proposed Phase 1 infrastructure is included for reference on Figure 6.

LEGEND:							
	NORTH WEST FERGUS SECONDARY PLANNING AREA BOUNDARY	EXISTIN	NG WOODLOT		PROPOSE	ED SWM FACILITY	
	PROPOSED PHASING LIMITS	PHASE	1 SANITARY SEWER				
	EXISTING SANITARY SEWER						
	Ĩ	BUT	RNSIDE	. Figure Title	RGUS SE DRAFT	CONDARY P PLAN APPLI D SANITARY CO	
200	400 600 800	Client	RNSIDE	Ű	RGUS SE DRAFT	PLAN APPLI	ICATION

4.3 Planned Sanitary Services

The Township of Centre Wellington has completed updates to the Water, Wastewater and Road sections of the Development Charges by-law. The Township, through its updates (2006 and 2008), has identified a strategy for the construction of new wastewater infrastructure within the current urban boundary based on projected growth rates and ultimate population estimates. The plan incorporates the expansion of the treatment capacity at the Fergus Waste Water Treatment Plan (WWTP).

4.3.1 Treatment Plant Capacity

The Fergus WPCP treats raw effluent from within the Fergus Urban Boundary and has a current design capacity of 8,000 m³/d. A further expansion of the WPCP is planned that will increase overall capacity of the WPCP to 12,000 m³/d. The current 10-year Capital Forecast includes a budget allowance for that work to be completed in 2019.

Based on recent capacity reports and committed allocation, the current WPCP can accommodate flows from the development. Currently, 2,023 units of uncommitted capacity representing a potential serviced population of approximately 6,300 people exist within the plant. The NWFSPA will require approximately 1,190 units of capacity at complete build-out based on the upper end of the planning range for the site. The Phase 1 requirement is 216 units including 176 low density units and 40 medium density units as identified on the proposed Draft Plan. Based on the available capacity and the proposed Phase 1 and Storybrook West development, the WPCP expansion will not be required to support the development.

4.4 Internal Sanitary Services

As identified above, the Beatty Line sewer has sufficient capacity to accept the sanitary flows from the development area. The existing Beatty Line sanitary sewer is a 375 mm diameter sewer having an invert elevation of 410.33 m at the proposed connection location, causing the requirement of a pumping station and forcemain in order to service the entire development area.

The initial phase of development includes the land which can drain by gravity to the Beatty Line Sewer. The Phase 1 area identified on the Draft Plan was established based on the preliminary sanitary sewer design for the gravity system. Drawing SAN1 depicts the sanitary sewer system design including; alignments of key sanitary infrastructure and elevation and cover information. The information is consistent with the Phase 1 detailed design currently in process with the Township. The gravity drainage area is calculated to be 18.25 hectares discharging to the sanitary sewer system.

The Storybrook West property, approximately 61.1 hectares will drain to a pumping station identified on the north side of the Nichol Drain.

The proposed siting of the pumping station results in only a single crossing of the Nichol Drain with sanitary infrastructure. The invert of the pumping station wet well will be set sufficiently deep to accommodate gravity sanitary drainage beneath the Nichol Drain. Preliminary elevation information is included on the drawing SAN1. A forcemain was included in the Phase 1 design, extending to the limits of Street F for future connection to the gravity drainage system.

As identified on the drawing, local trunk sewers servicing the NWFSPA will follow the alignment of roads within the NWFSPA. These local trunks will collect flows from local sewers extending through the Secondary Planning Area.

4.4.1 Preliminary Sewer Design

A preliminary sanitary sewer design sheet has been generated for the proposed Draft Planning Area to determine the calculated flow from the property for both the gravity drainage area and the sanitary pumping station. The design sheet also assists in establishing the potential capacity available within the system for accommodation of the lands located immediately north of the subject property.

The table below summarizes the preliminary flow calculations for the proposed Draft Plan Area. The design sheet is included in Appendix B. The design sheet is based on utilization of minimum pipe slopes of 0.30% within the entire area. At detailed design the sloping of the pipes will need to be refined to reflect the municipal standards associated with upstream legs of sewer and minimum velocity.

Drainage Area / Unit Count	Calc. Flow (L/s)	Req. Pipe Size (mm)	
176 units	8.60		
40 units	1.1		
2.70 ha	1.3		
Sub Total Phase 1			
772 units	35.0		
162 units	5.8		
1.53 ha	0.7		
Sub Total Storybrook West			
Sub Total Development Area			
Future External Flow 51.3 ha *		300	
Total to Ex. Connection			
	Unit Count176 units40 units2.70 haSub Total Phase 1772 units162 units1.53 haOtal Storybrook Westal Development Area51.3 ha *tal to Ex. Connection	Unit Count (L/s) 176 units 8.60 40 units 1.1 2.70 ha 1.3 Sub Total Phase 1 10.9 772 units 35.0 162 units 5.8 1.53 ha 0.7 otal Storybrook West 38.7 al Development Area 49.6 51.3 ha * 39.6	

Table 2: Preliminary Sanitary Flow Calculations

* Note: External drainage area is based on a blended density of 63 ppha

As noted in the above table, if the connection at Millage Lane is maximized to the existing pipe size, the internal system can be sized to accommodate approximately 54.3 ha of development north of the subject lands.

It should be noted that all of the above flows and pipes sizes are based on conservative values associated with per capita flow rate as well as estimate density. There is an additional 10% flow allowance within the system to account for inflow. As the site proceeds through detailed design and development additional refinements will be made the capacity calculations to assess the system and maximize the drainage area.

4.4.2 Sanitary Forcemain Connection Point

As identified on drawing SAN1, and established through the Phase 1 Draft Plan process, the proposed connection point for the sanitary forecemain is taken at the closest point of extension of the gravity sanitary drainage system situated at the Phase 1 construction limits of Street F.

This option was selected on the basis of keeping the forcemain infrastructure within the road right-of-way from the pumping station to the gravity connection.

4.4.3 Phasing Implications

The construction of the sanitary sewer network drives the initial phasing or staging of the development in that the lands which can be serviced without the need of the pumping station and forcemain will be constructed first. As these lands are adjacent to Beatty Line which provides access to the NWFSPA, the initial phase will be constructed without any need to cross the Nichol Drain.

All phases beyond the initial phase are dependent on the sanitary pumping station for service. As such, construction of the pumping station will occur within the initial Phase of the Storybrook West development. Beyond these initial phases, the development of the site may occur through the logical extension of the sanitary sewer network through the site. Other factors such as transportation and road network completion or the desire to complete specific community features may dictate phasing after the second phase of development.

The timing of the expansion of the Fergus WPCP has the potential to impact the schedule of the construction of the remainder of the development lands. The current uncommitted capacity in units exceeds those proposed within the Secondary Planning Area. The pace of buildout of the NWFSPA as well as that of other portion do the urban area will determine whether a future expansion of the plant is required prior to full buildout. The expansion of the Fergus WPCP is currently shown for 2018-2026 according to the current to the Development Charge By-Law with a budget for the works identified in the current 10-year Capital Forecast for 2019.

Current uncommitted reserve capacity within the existing treatment plan will need to be confirmed with the Township.

Township of Centre Wellington, North West Fergus Secondary Planning Area

Functional Servicing and Stormwater Management Report, Storybrook Subdivision December 2016 - Revised February 2018

The existing 375 mm trunk sewer at Beatty Line and Millage Lane has an allocated capacity for approximately 4,000 persons for the NWFSPA, as confirmed by the Township Engineer. The upper end of the projected population range for the NWFSPA is 3,519 persons. Given that the upper range is below the confirmed capacity allocation, the trunk sewer capacity will not impact the proposed phasing or timing of the development of the NWFSPA.

5.0 Water Servicing

5.1 Water Design Criteria

Water servicing for the subject lands will be designed in accordance with the latest Township standards and specifications to ensure that adequate pressures and flows are achieved. Watermain design flows will be based on the following criteria:

- Average Daily Demand
- Population Density
- Peaking Factor
- Design Flow

- 250 litres per capita per day
- per wastewater standards
- per MOE criteria (max. 4.0)
- greater of Max. Day plus Fire or Peak.

5.2 External Water Services

Water supply servicing is provided by the Township water system, a combined system serving the communities of Elora and Fergus and includes a series of wells and interconnecting feedermains. Storage for peak flow and fire flow is provided by elevated storage tanks in both Elora and Fergus. The topographic elevations of the NWFSPA are such that the entire site is within existing Zone 1 of the Township of Centre Wellington water system.

As identified in the Secondary Plan Servicing Study, the existing 300 mm diameter watermains along Beatty Line across the frontage of the subject lands as well as the 300 mm diameter watermain along a portion of Colborne Street provide a looped connection to the existing water system for the full development area. Additionally, the proposed residential development of the Beatty Hollow Subdivision includes a 200 mm diameter watermain within the extension of Farley Road, providing a looped supply system to Phase 1 development area.

The Fergus / Elora system currently has an uncommitted reserve capacity of 2,451 units (approximately 7,550 people) based on the most recent capacity reports prepared by the Township. The NWFSPA would require approximately 1,190 units of capacity based on the upper end of the planning range for the site. As such, sufficient uncommitted capacity exists to service the entire NWFSPA area. As the community expands, additional wells and storage facilities will be brought online as necessary. The need for additional wells and/or storage necessary to service the NWFSPA will be dependent on the phasing of the NWFSPA as well as growth in the balance of the urban area in Centre Wellington.

It was confirmed as part of the Secondary Planning Process that the existing watermains along Colborne Street and Beatty Line have sufficient pressure and capacity to accommodate the full development of the NWFSPA.

5.3 Planned Water Infrastructure

A review of the 2008 Background Study for the Development Charge By-Law for the Township of Centre Wellington identified the construction of an Elevated Water Tower and new Municipal Wells between 2008 and 2028. This indicates that the Township acknowledges that as development continues within the Township, the water supply and distribution will need to be expanded to meet the requirements of the new developments. Currently, there is excess supply capacity and some storage is available within the current system. The watermains adjacent to the development are able to provide the service required for the NWFSPA development and no new watermain infrastructure will be required to provide service to the area.

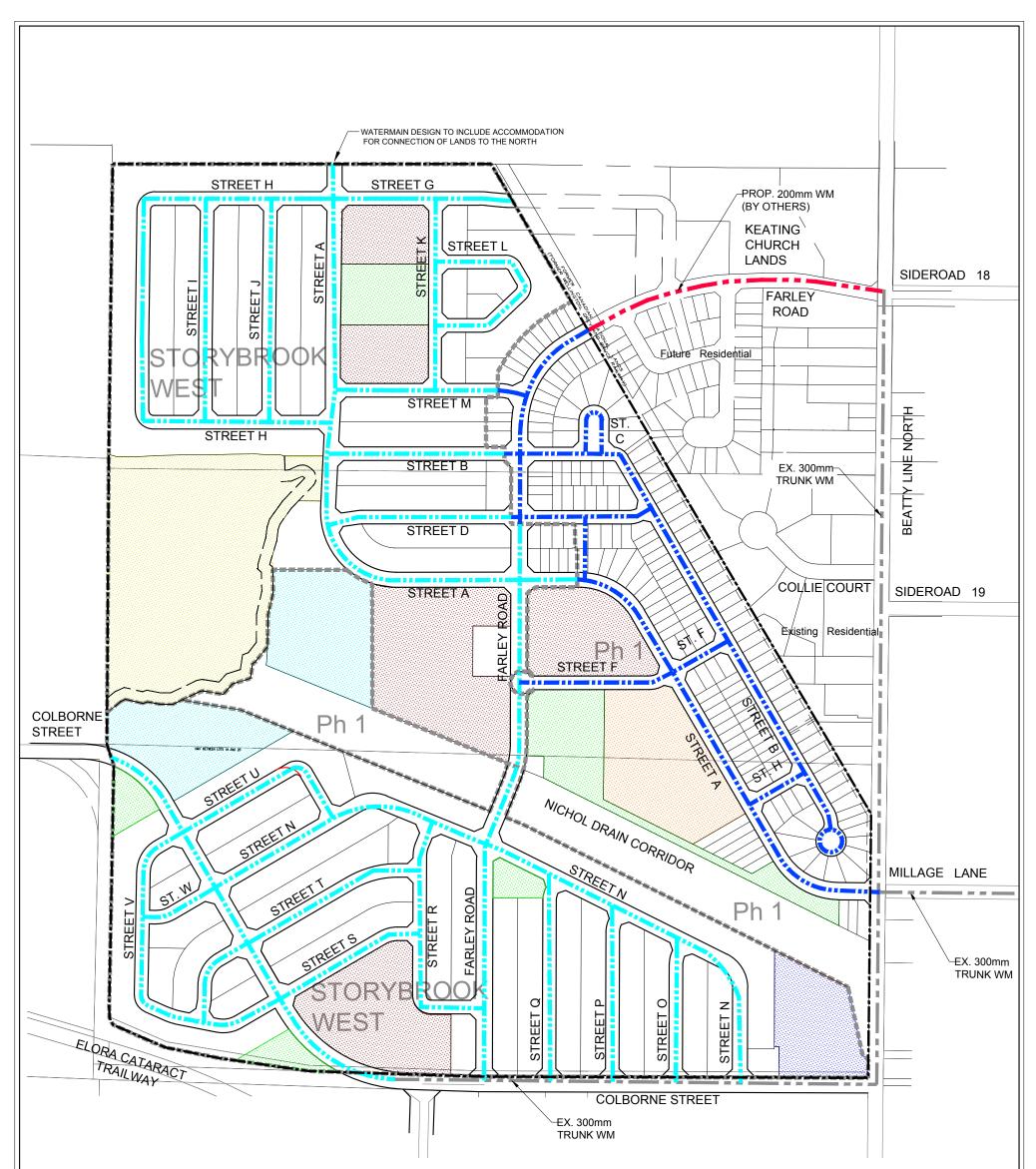

5.4 Internal Water Services

Figure 7 depicts the proposed water servicing distribution network for the Draft Plan Area. As part of the Phase 1 design, the internal watermain distribution will be designed in accordance to Municipal standards, within the proposed ROW. The Phase 1 work includes both the connection to Beatty Line as well as the connection to the Beatty Hollow Subdivision at Farley Road. The proposed Phase 1 infrastructure is included for reference on Figure 7. The Storybrook West area will be serviced through additional connections to the existing main on Colborne Street.

A network of feedermains is proposed to follow the alignment of the internal road system. Based on the Draft Plan configuration, the preliminary design results in five (5) connections to the existing watermain on Colborne Street and includes the extension of the existing main along the realignment of Colborne Street.

5.4.1 Phasing Implications

Lands within the NWFSPA are able to be immediately serviced by the existing watermain infrastructure adjacent to the development. No further upgrades to the existing distribution network serving the NWFSPA are required. Sufficient supply capacity currently exists to meet the needs of the entire NWFSPA. As additional population growth occurs throughout the Fergus and Elora urban boundary, additional supply and elevated storage infrastructure may be required and is planned as described in the Development Charges By-Law Background Study Update (2008). The need for additional water infrastructure to service the NWFSPA will be determined by the rate of build-out of the Secondary Plan Area, as well as that of other urban areas within the community.

LEGEND:	NORTH WEST FERGUS SECONDARY PLANNING AREA BOUNDARY PROPOSED PHASING LIMITS		PROPOSED PARK BLOCK PROPOSED MEDIUM DENSITY BLOCK		Pi	ROPOSED SCHOOL BLO ROPOSED COMMERCIA LOCK	
	EXISTING WATERMAIN		EXISTING WOODLOT		PI	ROPOSED SWM FACILI	ſY
	PROPOSED BEATTY HOLLOW SUBDIVISION WATERMAIN						
	PROPOSED WATERMAIN LAYOUT STORYBROOK WEST PROPOSED WATERMAIN LAYOUT STORYBROOK PHASE 1		BURNSIDE	1	DRAFT	CONDARY PLA PLAN APPLICA TERNAL WATERMA	TION
0 200	400 600 800 Metres	Client	GUS JOINT VENTURE INC.	Drawn PAG Scale 1:5000	Checked LN	Date 2016-11-30 Project No. 300031145	Figure No. FIG 7

6.0 Grading and Storm Drainage

6.1 Site Grading

The site grading design will take into consideration the following requirements and constraints:

- Conform to the Township's grading criteria.
- Match existing boundary grading conditions.
- Match proposed grading along interface of Beatty Hollow subdivision.
- Minimize required earthworks.
- Provide minimum cover on proposed servicing.
- Provide overland flow conveyance for major storm conditions.

Proposed road grades will meet the Township of Centre Wellington's minimum of 0.5% and will not exceed 8.0%. Proposed preliminary road centreline grades and overland flow routes are shown on Figure 8.

The site has been designed to match the existing topography where possible, while ensuring positive drainage towards the two (2) proposed stormwater management facilities. As identified on the figure, sawtooth grading is currently proposed along portions of the Street A and portions of Streets N, R and Farley Road, along the drain corridor. The implementation of sawtooth grading helps to minimize the earthworks and to tie into grading constraints surrounding the site.

Road grades are proposed such that the right-of-ways can be utilized as overland flow routes to direct the major storm events to the proposed stormwater management facilities. Sawtooth road grading conforms to the Town's minimum 0.50% road grade; however, the net grade over an extended length of road is reduced by introducing sections of road reverse graded at 0.50%. The net slope is typically 0.3% and will not be less than 0.20% in this scenario and will provide a positive outlet / flow route to accommodate major system flow conveyance. During detailed design, flow capacity calculations will be completed to ensure the overland flow route is sufficiently sized to accommodate the flow.

A portion of the south drainage area will drain to the stormwater management facility via a proposed easement that will accommodate the overland flow from Street U for conveyance to the pond. Additionally, a portion of the overland flow drainage from Street V will be directed to the proposed outlet via an easement graded to accommodate the overland flow route.

The proposed Beatty Hollow Subdivision to the northeast of the property currently has a detailed subdivision design in process with the Township.

Township of Centre Wellington, North West Fergus Secondary Planning Area

Functional Servicing and Stormwater Management Report, Storybrook Subdivision December 2016 - Revised February 2018

The proposed grading design for the site involves the drainage of storm flows from a significant portion of the development through the subject lands. The proposed grading of the Beatty Hollow Subdivision is incorporated in the preliminary design for the Draft Plan.

LEGEND:

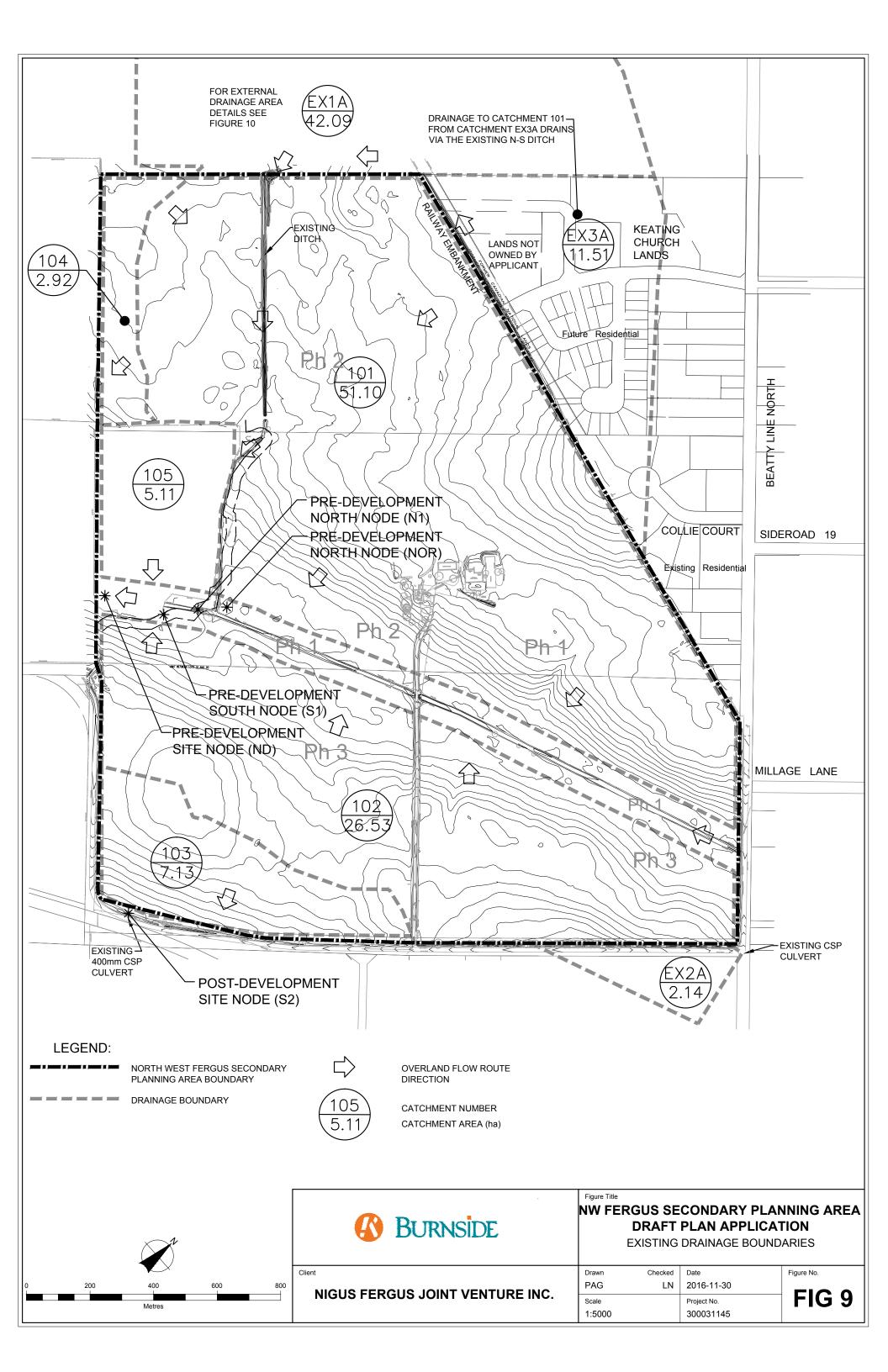
	NORTH WEST FERGUS SECONDARY PLANNING AREA BOUNDARY	Р	PROPOSED PARK BLOCK		PROPOSED SCHOOL	BLOCK
	PROPOSED PHASING LIMITS		PROPOSED MEDIUM DENSITY BLOCK		PROPOSED COMMER BLOCK	CIAL
412.67	EXISTING GRADE	E	EXISTING WOODLOT		PROPOSED SWM FAC	CILITY
0.5%	PROPOSED ROAD SLOPE					
× 412.260	PROPOSED GRADE	() E	BURNSIDE	DRA	SECONDARY PI FT PLAN APPLIC OSED ROAD GRAD	-
0 200	400 600 800 	Client NIGUS FERGU	S JOINT VENTURE INC.	Drawn Cheo EDT Scale 1:5000	ked Date LN 2016-11-30 Project No. 300031145	Figure No. FIG 8

6.2 Existing Storm Drainage

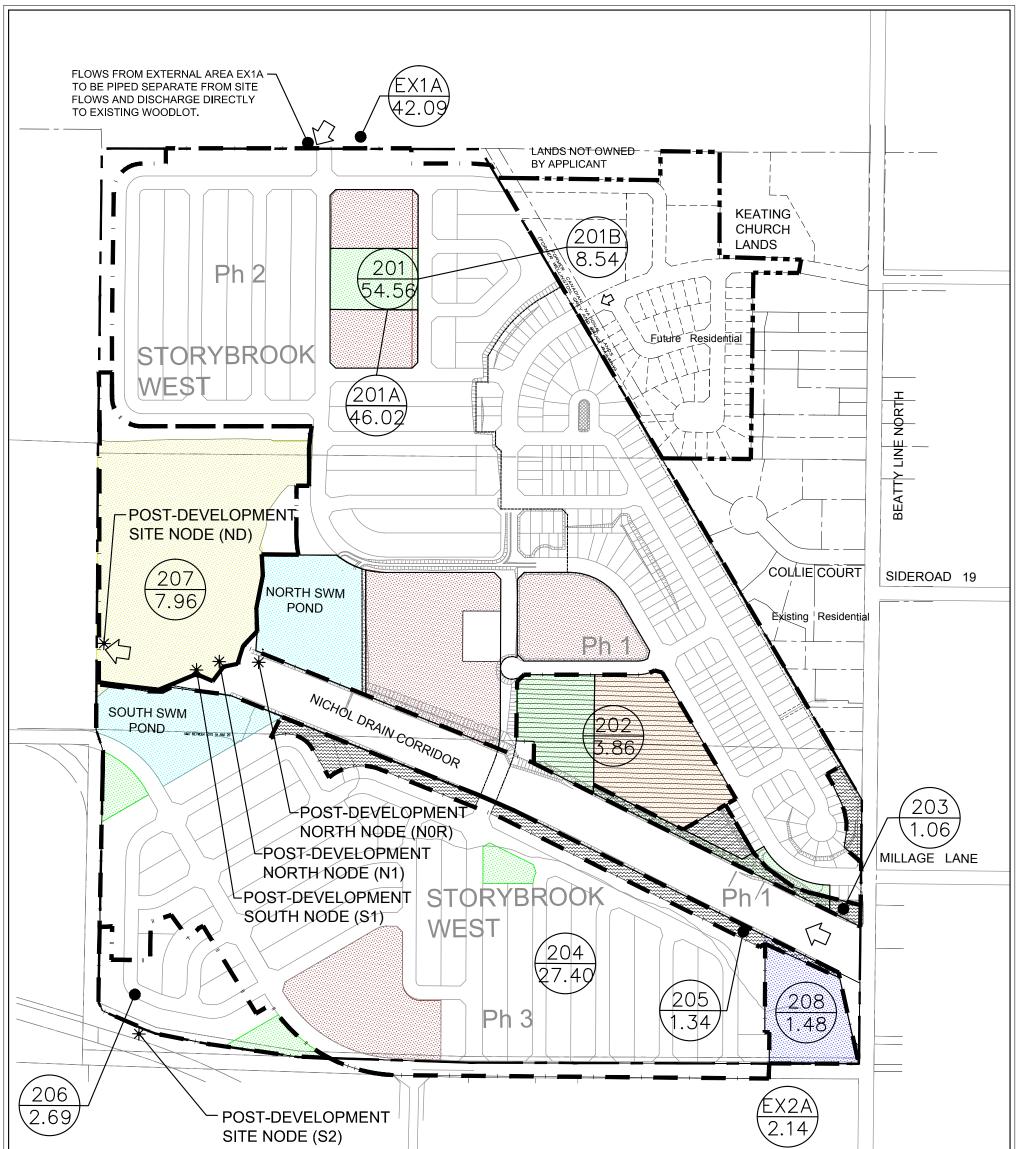
The existing site topography slopes gently towards both the Nichol and unnamed drain with an average slope of 3% in the areas draining directly to the Nichol Drain and a shallower sloping of approximately 1.5% towards the unnamed drain. The unnamed drain collects drainage from a large external catchment area and conveys it through the property to the Nichol Drain. This catchment area totals approximately 42.09 ha and is largely agricultural land.

There are pockets of land in the south and north-west corners of the study area that drain directly off site. Approximately 7.13 ha of land in the south-west corner of the site drains to the existing Colborne Street ditch and ultimately to the woodlot south of the subject lands. In the north-west portion of the property approximately 2.92 ha of the subject lands drain towards the western limits of the woodlot.

A small external area, totaling 2.14 ha, located south of the existing Colborne Street drains directly onto the south-east corner of the property via an existing culvert. The existing drainage areas are highlighted on Figures 9 and 10.


6.3 Proposed Storm Drainage

The post-development drainage scheme generally follows the existing drainage patterns. As identified in the Secondary Planning Process, two (2) stormwater management facilities are proposed for the site. The facilities are sited on the north and south limits of the Nichol Drain at the eastern limits of the proposed development. Both of the facilities, detailed in the sections following, will discharge to the Nichol Drain.


The proposed tile drain outlet will be enclosed, as part of the development of the land, from the northern limit of the Draft Plan to the north-east corner of the buffers established for the existing wetland / woodlot area. The flow from the area tributary to the drain will be conveyed within a separate pipe system which will be located within the proposed rights-of-way in the future phase. The preliminary alignment of the cleanwater system is depicted along Street A to the proposed discharge point. The elevations of the infrastructure have been reviewed to confirm that there will be no crossing conflict.

As much as possible, minor system post-development flows for the site will be directed to the stormwater management facilities via a local storm sewer network. Major system flows will be routed to the stormwater management facilities via roads and overland flow routes as required. There is a small portion of the south-west corner of the property which will drain directly to the existing Colborne Street ditch. Draining this area to the SWM pond causes significant grading challenges. Additionally, it is proposed that the multi-use block will be serviced through an on-site system with direct discharge to the Nichol Drain. The proposed stormwater treatment details for each of these areas are included in the sections following.

The storm drainage infrastructure for the development is highlighted on Drawing STM1, the proposed general drainage areas are highlighted on Figure 11.

LEGEND:		
	202 CATCHMENT NUMBER	PROPOSED PARK BLOCK
PROPOSED PHASING LIMITS	24.01 CATCHMENT AREA (ha)	PROPOSED MEDIUM DENSITY BLOCK
EXTERNAL AREA BYPASS STORM SEWER	PROPOSED SCHOOL BLOCK	EXISTING WOODLOT
OVERLAND FLOW ROUTE	PROPOSED SWM FACILITY	PROPOSED COMMERCIAL
MINOR FLOW CONTROLLED, MAJOR FLOW UNCONTROLLED		BLOCK
MINOR FLOW UNCONTROLLED, MAJOR FLOW UNCONTROLLED	BURNSIDE	Figure Title STORYBROOK SUBDIVISION PHASE 1 PROPOSED DRAINAGE BOUNDARIES
0 200 400 600 80	Client	Drawn Checked Date Figure No. PAG LN 2016-11-30
Metres	NIGUS FERGUS JOINT VENTURE INC.	Scale Project No. FIG 11 H 1:5000 300031145 FIG 11

6.3.1 Minor Storm Conveyance

The minor storm system will be a series of storm sewers sized to convey the 5-year return period storm as per the Township of Centre Wellington standard. The storm sewers will follow the right-of-ways and easements within the proposed development and ultimately outlet to the stormwater management ponds or proposed discharge points. There will be two (2) stormwater management facilities as noted above. The preliminary sizing of the storm sewers is included in Appendix C.

Phase 1 of the proposed development does not include the extension of the public road to the stormwater management facility. As part of this phase of Draft Plan development, a series of stormwater conveyance easements / blocks will be required in order to connect the development to the storm pond. At final build-out of the Draft Plan, the minor storm conveyance system will follow the right-of-way or permanent easement / block as identified below.

The storm sewer network is designed to convey storm flows for the proposed secondary planning area as well as the adjacent Beatty Hollow subdivision as noted above. The storm sewers are not designed to accommodate the development of the lands to the north of the property. Based on current grading conditions, it is anticipated that this area will be developed with standalone stormwater conveyance and management. The northern area drains entirely to the existing tile drain outlet, as further outlined below the proposed enclosure of the drain will be sufficiently designed to accommodate the existing 100-year flows from the upstream drainage area. The proposed design will allow for the future development of this area to connect to the drain enclosure with post to pre stormwater management controls.

The proposed northern stormwater management pond and drainage system has been designed to accommodate multiple storm sewer sub-trunks and pond inlets. As identified on Drawing STM1, there are two (2) pipes proposed to inlet to the stormwater management facility from Street A. The two (2) pipes will be accommodated with a single headwall into the forebay of the pond. This approach minimizes the inlet sewer sizing by dividing the flows within the northern catchment into two (2) individual systems. The result of the multiple pipes is a significant reduction in the earthworks required to provide sufficient cover over the proposed storm sewers.

An additional inlet is proposed into the northern stormwater management facility to be located along the north limits of the Nichol Drain. This storm sewer is required in order to drain the southern length of Street B, the eastern limits of Street A and Street H. Due to the existing elevations at the connection with Millage Lane, there would be inadequate cover on a storm sewer located entirely within the right-of-way. The proposed storm sewer will be located within the block, coincident with the proposed trail connection to the park. The park block pipe has also been sized sufficiently to convey the flows from the existing Collie Court subdivision, if required.

Through the Colborne Street EA and Secondary Planning process, landowners on Collie Court and Beatty Line have identified concern with the existing drainage at the rear of their properties, which back onto the rail corridor abutting the Nigus lands. Discussions with the Township Engineers have led to the identification of the rear of these lots as being subject to a drainage / stormwater management control easement. The initial conclusion is that the facility is functioning as designed. Preliminary discussions have taken place with the Municipality to review options with respect to the Collie Court Drainage and a proposed approach has not yet been determined. Given that this matter is currently under review, the preliminary sizing of the minor flow conveyance system includes an allowance for the input of the 100-year flows from the existing facility. Further discussion and agreements between the Municipality, the Collie Court Residents and Nigus will be required with respect to construction and cost sharing if this solution is carried forward.

The proposed southern stormwater management pond and drainage system has been designed to accommodate multiple storm sewer sub-trunks and pond inlets. As identified on Drawing STM1, there are two (2) proposed forebays for the stormwater management facility. The inlet into the forebay within the southern portion of the pond conveys drainage from the southwestern part of the site to the pond with discharge into the pond at the Colborne Street / Street U intersection. The second inlet is proposed to be located at the north-east corner of the pond block, along the south limits of the Nichol Drain. The north forebay inlet will discharge to the pond block via an easement through the residential lots separating Street U and the pond block. The two (2) inlets are proposed in order to ensure the provision of sufficient cover on the proposed storm sewers and appropriate interface with existing grades around the perimeter of the proposed draft plan.

Within the southern catchment, a small drainage area is proposed to be conveyed to the existing Colborne Street ditch/culvert. The majority of this area is park and rear yards with a minor portion of proposed road and storm sewer that will also be directed to the outlet. This outlet will serve to maintain the conveyance of flow to the southern wetland per existing conditions. The table below identifies the proposed drainage areas, discharge points and associated flow and pipe size requirements.

Phase	Drainage Area (ha)	Calc. Flow (m ³ /s)	Req. Pipe Size (mm)
North of Nichol Drain			
External Keating Lands	8.54	1.025	
North East Catchment	12.90	1.050	
Sub Total North-East Inlet	21.46	2.075	1050
North West Catchment	22.35	1.911	

Table 3: Preliminary Storm Sewer Flow Calculations

300031145.5389

Sub Total North-West Inlet	22.35	1.911	1200
Collie Court	1.60	0.192	
Easement Catchment	11.93	1.028	
Sub Total South Inlet	13.23	1.028	1050
Total North Pond	57.04	5.194	
South of Nichol Drain			
South East Catchment	16.19	1.164	900x1800 Box
South West Catchment	9.66	0.986	975
Total South Pond	26.15	2.150	
Colborne St. Ex. Culvert	2.69	0.223	525
Total Colborne St. Ex. Culvert	2.69	0.145	525

6.3.2 Major Storm Conveyance

The major system flow route will follow a combination of proposed right-of-ways and overland flow blocks to convey overland flows from major storm events, up to and including the 100-year storm event. The major system flows will be directed to the proposed stormwater management facilities. The entire 100-year flow will be contained within the major system flow route. During detailed design, flow capacity calculations will be completed to ensure the overland flow route is sufficiently sized to accommodate the flow. As the grading becomes more refined during detailed design, if the major flow exceeds the capacity of the right-of-way, there may be some oversize piping required to ensure containment of the flow within the right-of-way limits. As noted previously, the overland flow route to the north inlet of the south stormwater management facility will be accommodated within the proposed easement connecting Street U and the pond block. In addition, the overland flow route to the south culvert will be accommodated within the easement connecting the existing ditch to Street V.

As part of the Phase 1 development, multiple overland flow routes will be required and designed specifically to convey both the overland and minor system flows from the developed roads to the proposed facility. For the most part, the overland flow routes will be located adjacent to the ultimate location of the right-of-way to be developed in future phases. This approach will limit constraints during installation of future services within the right-of-way.

6.3.3 External Drainage Conveyance

As noted previously, the majority of the adjacent Keating subdivision will drain through the site and be accommodated within the north stormwater management facility.

Under existing conditions, the tile drain outlet conveys flows from an upstream drainage area of approximately 42.09 ha to the Nichol Drain. As identified on Drawing STM1,

300031145.5389

under post-development conditions it is proposed that this drainage will be accommodated and conveyed within a dedicated pipe to the northern limits of the existing woodlot / wetland feature. The proposed pipe is sized to accommodate the existing 100-year storm flow from the drainage area as identified in the table below (Appendix C). During detailed design, or at future Draft Plan stages, the proposed conveyance of the upstream flow can be reviewed and further refined as more detailed grading and servicing information is available.

Drainage Area (ha)	Calculated 100-Year Flow (m ³ /s)	Pine Size		
42.09	2.546	900 mm x 1800 mm box culvert	0.30%	

Table 4: Tile Drain Outlet Conveyance System

The sizing noted above will allow for the future development of the northern catchment through provision of a discharge system.

The development of the northern property will require the implementation of stand-alone treatment for both stormwater quality and quantity control including post- to pre- quantity for the 100-year storm event.

The preliminary alignment of the tile drain outlet conveyance system is depicted along Streets A and N to the proposed discharge point to avoid crossing conflict with the proposed storm sewer system. During detailed design the final profile and alignment of the proposed conveyance system will be established. The preliminary design, including inverts and sizing, is identified on Drawing STM1.

6.3.4 Foundation Drain Collector System

A foundation drain collector (FDC) system is required for portions of the Phase 1 and Storybrook West development areas where the foundations will be sited within 0.6 m of the Seasonal High Groundwater Elevation. Based on the previous hydrogeological studies and the ongoing works being completed by Burnside, a contour plan of the SHGW elevations has been established and was used to determine the anticipated location of the required FDC system.

Within the Phase 1 area, the FDC is located largely in the south-east portion of the development and is routed with direct discharge to the Nichol Drain. Within the Storybrook West development area, the portion of the property north of the Nichol Drain requiring an FDC is in close proximity to the Phase 1 area and entirely east of the extension of Street A. The north portion of the Storybrook West Development will be serviced by a separate FDC system than Phase 1. The Storybrook West FDC will be routed through the Municipal ROW and along the North Pond limit, with direct discharge to Nicol Drain, via the stormwater management block.

Within the south portion of the Storybrook West Development Area, three (3) separate FDC systems are proposed. For the area east of, and including Farley Street, and portion of Streets R, S and T, the FDC will be routed for discharge to Nichol Drain in proximity to the proposed road crossing. For the remainder of Streets S and T as well as Streets V, the FDC will discharge directly to the Colborne Street ditch, along with the proposed storm sewer. A third FDC system will be routed along the eastern limit of the south SWM Pond to service Streets U, W and portions of N and will discharge into the Nichol Drain. Based on the preliminary grading plan for this area, the majority of the units will be sited within the SHGW elevation and will be below the 100-year flood elevation within the drain at the discharge location. For this specific area it is proposed that the units will be fitted with both a gravity connection with back flow preventer draining to the FDC, with discharge to the Nichol Drain, as well as a back-up sump pump system that will pump to grade. The sump pump would only be operating during conditions where the Nichol Drain floodline elevation is at, or above the elevation of the gravity connection to the FDC. This condition will only occur during period of less frequent flow within the Nichol Drain at or exceeding, at minimum, the 5-year floodline event. The preliminary design, including inverts, drainage areas and sizing, is identified on Drawing FDC1.

7.0 Stormwater Management

7.1 Background

The guidelines and criteria for stormwater management within the study area are set out in the Nichol Drain No. 1 Subwatershed Study, completed in 2008 by Aquafor Beech Limited and were confirmed as part of the Secondary Planning process. The stormwater management for the proposed Draft Plan will be achieved through the use of two (2) off-line stormwater management wet ponds, located on either side of the Nichol Drain. The design of these stormwater management facilities will be based on Township of Centre Wellington, MOE and Grand River Conservation Authority design criteria.

7.2 Existing Hydrologic Conditions

The computer model SWMHYMO was used to simulate peak flow rates for different design storms based on the existing conditions of the site. The Chicago 4-hour rainfall distribution from the Fergus Shand Dam IDF values was used to generate each storm event. As the Nichol Drain bisects the property, the simulation is split into two (2) catchments, the North and South catchments. These catchments are further divided into a number of sub-catchments based on the localized drainage. The existing drainage areas and flow directions are outlined on Figures 9 and 10.

7.2.1 South Catchment

The south catchment area covers approximately 33.66 ha of the SPA located south of the Nichol Drain. Approximately 26.53 ha, of this area drains via sheet flow directly to the Nichol Drain while the remaining 7.13 ha drains via sheet flow to a wetland complex located south of Colborne Street via a 400 mm diameter CSP culvert. There is an external area of approximately 2.14 ha which flows into the site in the south-west corner via an existing CSP culvert under Colborne Street. This area drains via the Beatty Line roadside ditch and drains directly to the Nichol Drain.

7.2.2 North Catchment

The catchment area within the SPA to the north of the Nichol Drain totals approximately 59.13 ha. The area is comprised of 51.10 ha which drains into the Nichol Drain either directly or via the unnamed tile drain outlet (TDO) and 8.03 ha, located along the west boundary of the site, which contributes directly to the Nichol Drain via the woodlot / wetland area.

A total of approximately 53.60 ha of external drainage are directed through the subject property via the tile drain outlet. Approximately 42.09 ha of the external area comes from the agricultural fields to the north of the subject site with an additional 11.51 ha of area contributing from the adjacent Beatty Hollow Subdivision, to the north-east of the

SPA. The Beatty Hollow Subdivision enter the system via a DICB which outlets to the TDO.

7.3 Proposed Hydrologic Conditions

Based on the location of the Nichol Drain, the proposed Draft Plan area is divided into two (2) distinct catchments, each requiring a separate stormwater management facility.

A hydrologic model has been created to simulate the anticipated post-development peak stormwater runoff rates for all design storm events. This model takes into account development type for each sub-catchment. The assumed impervious values are shown below:

- School 65%
- Low Density Residential Area 55%
- Medium Density Residential Area 65%
- Parks 10%
- Pond Block 50%
- Commercial 90%
- Beatty Hollow Subdivision 47%

A composite percent impervious for both catchments was calculated at 53.5% for the north catchment and 54.5% for the south catchment area draining to the pond. Post-development sub-catchment areas and corresponding drainage areas are shown on Figure 11.

7.3.1 North Catchment

The north catchment includes all development land located on the north side of the Nichol Drain. The function of the existing TDO that conveys the runoff from the external area (sub-catchment EX1A) north of the Secondary Planning Area to the Nichol Drain must be maintained. It is proposed to maintain the function of the TDO drain via by-pass piping which will follow the North-South Collector Road and outlet directly into the existing TDO at the northeast corner of the woodlot. This allows the external area(s) to by-pass the proposed stormwater management facility and also allows for the area west of the existing alignment of the TDO to be conveyed to the proposed stormwater management facility.

An agreement is in place between Nigus Fergus Joint Venture Inc. and the adjacent property owner (Keating) that the majority of the drainage from the Beatty Hollow Subdivision will be conveyed through the subject property to the proposed north stormwater management facility. Based on the current design prepared by GM Blue Plan for the subdivision, the drainage area from the Beatty Hollow Subdivision lands that will be directed to the north SWM facility totals 8.54 ha (sub-catchment 201B).

7.3.2 South Catchment

The south catchment includes the majority of the development located on the south side of the Nichol Drain with the exception of the park block, and a small portion of residential development in the south west corner of the site as well as the Mixed Use/Commercial Block in the north-east corner of the south catchment. Sub-catchment 204, which represents the majority of the south catchment, is approximately 27.40 ha in area. This is generally the area which currently drains to the Nichol Drain and the overall grading pattern will be maintained under post-development conditions with all stormwater runoff being directed to the SWM facility.

Sub-catchment 206 is approximately 2.69 ha. This area falls within the catchment that currently drains in a southerly direction, away from the Nichol Drain and off the Secondary Planning Area property to a wetland complex on the south side of Colborne Street. Under post-development conditions the flow from catchment 206 will continue to be conveyed toward the wetland complex on the south side of the existing Colborne Street alignment. Given that the proposed land use includes portions of residential development, alternate stormwater management quality control will be required prior to discharge to the wetland. There is no required quantity treatment for the runoff from this catchment because the post-development flows to the existing wetland are maintained below the pre-development levels for all storm events.

Sub-catchment 207 is approximately 1.48 ha in size. This area currently drains to the Nichol Drain under existing conditions. Due to the grading and servicing limitations of the site, it is proposed that this development area will provide on-site controls to achieve

both quantity and quality treatment for the post-development runoff, with proposed direct discharge to the Nichol Drain.

7.4 Proposed Stormwater Management Ponds

As noted, the stormwater management approach for the SPA requires two (2) stormwater management wet ponds to ensure adequate quality and quantity control of the post-development runoff. Criteria for the stormwater management pond design were established as part of the Secondary Planning Process with the Township and GRCA and are consistent with MOE requirements. The following criteria are required:

- Quality Control: Level 1 (Enhanced).
- Erosion Control: 24-hour retention of 25 mm runoff event.
- Quantity Control: Post- to Pre-Control for 2- through 100-year storm events.
- Thermal Mitigation measures associated with cold water receiver for discharge to the Nichol Drain.

7.4.1 Quantity Control

The pre-development peak flow rates for the 2- through 100-year events are summarized in Table 5 below. The flow rates have been calculated at specific nodes for comparison purposes under post-development conditions. The nodes, as identified on Figure 11, represent the flows entering the Nichol Drain from the North Catchment (Node N1) and the South Catchment (Node S1). The total site contributions to the Nichol Drain, including the external flows within the TDO are reflected by Node ND. Flows leaving the site under Colborne Street via the South Culvert are identified at Node S2. The hydrologic flow charts and SWMHYMO runs for all storms are included as Appendix D.

Storm Event	Pre-Development Peak Flows (cms)							
	Node N1	Node S1	Node S2	Node ND				
2-Year	1.083	0.283	0.138	1.443				
5-Year	2.282 0.58	0.586	0.277	3.030				
10-Year	3.246	0.828	0.387	4.307				
25-Year	4.631	1.174	0.543	6.142				
50-Year	5.777	1.461	0.671	7.663				
100-Year	6.985	1.762	0.804	9.265				

Table 5: Pre-Development Peak Flow Rates
--

7.4.2 Quality Control

The two (2) stormwater management facilities will be sized in accordance to the MOE requirements for the provision of Level 1 Quantity Control.

Extended Detention volume for each facility will be provided to meet the greater of the 40 m³/ha noted in the MOE manual or the equivalent runoff from the 25 mm storm event. The extended detention will be released over a minimum 24 hour period.

For the proposed catchments that are not being directed to the stormwater management facilities for quality control a combination of treatment measures will be incorporated to ensure the provision of the 80% TSS removal associated with Level 1 quality control.

The commercial/mixed use site will require a combination of an Oil Grit Separator (OGS) along with surface flow over vegetated area to ensure sufficient sediment removal/filtration. Either the vegetated area immediately east of the parcel or the 30 m Nichol Drain corridor provides opportunity for planting enhancements downstream of the OGS discharge.

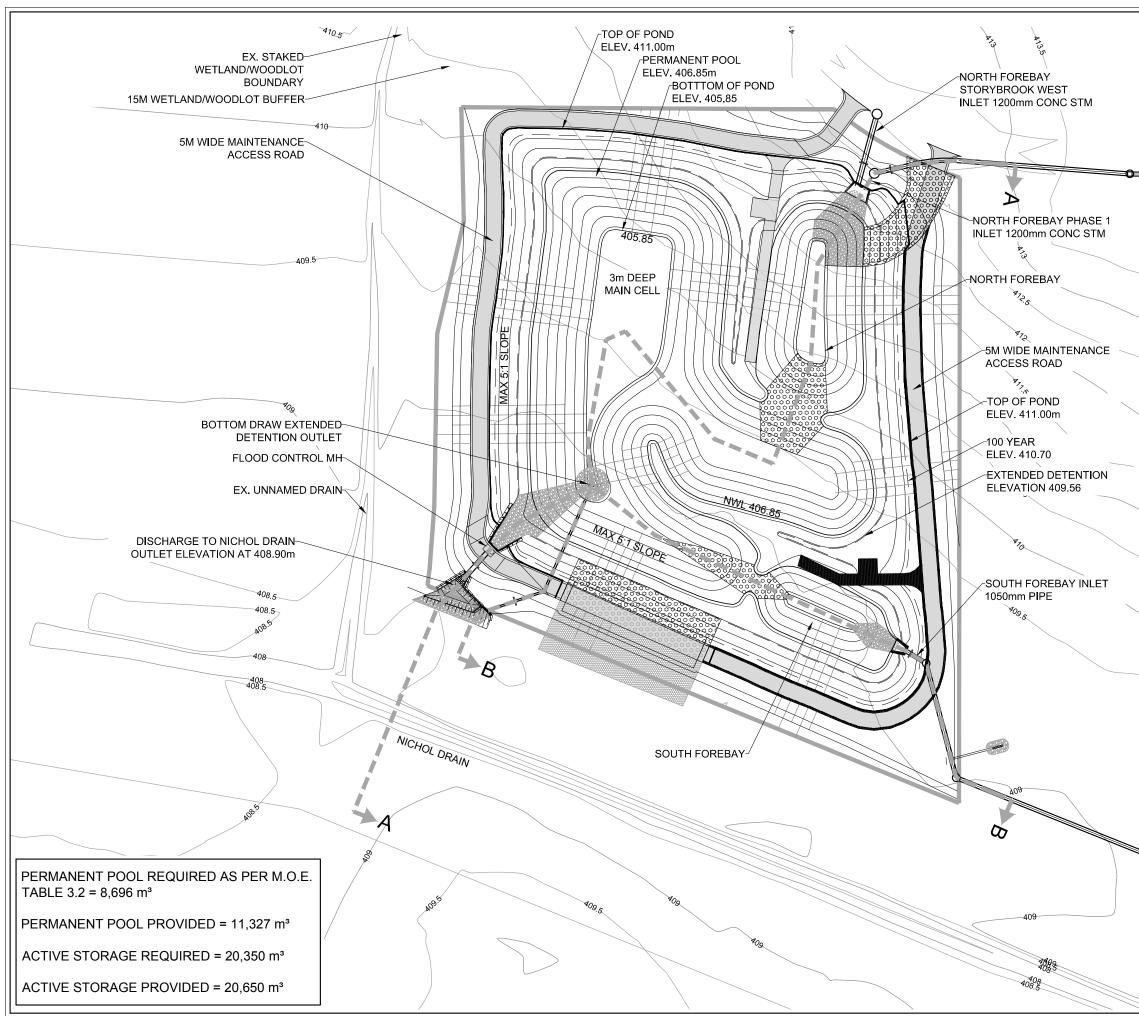
Similarly, the proposed portion of the development in the south west corner which drains to the existing Colborne Street Ditch/Culvert and ultimately the off-site wetland to the south, will require Level 1 quality control treatment. A portion of this drainage area is rear yard and park block, both of which are considered "clean runoff" sources. The portion of the area which drains towards the storm sewer, including driveways and roads, will require quality control measures.

The proposed approach for achieving the required quality control for this area includes the provision of an OGS at the downstream limits of the storm sewer system. The OGS will discharge to the existing Colborne Street ditch which will provide additional treatment prior to release into the wetland. Extended detention is not proposed for this receiver as the post-development flows are lower than the existing pre-development flows as detailed in the sections below.

7.4.3 Pond Locations

The stormwater management ponds have been located at the lowest points and on either side of the Nichol Drain; these locations will adequately service the Nigus lands. The pond outlets will be directed into the Nichol Drain. The flood outlets will be above the 100-year floodline within the drain to allow for free discharge of stormwater from the pond during 2- through 100-year storm events.

7.4.4 North Pond Design


The North Pond stormwater management facility is located on the north side of the Nichol Drain adjacent to the existing woodlot. The following table summarizes the operating characteristics for the North Pond and the storage volumes required to meet the design criteria.

Township of Centre Wellington, North West Fergus Secondary Planning Area

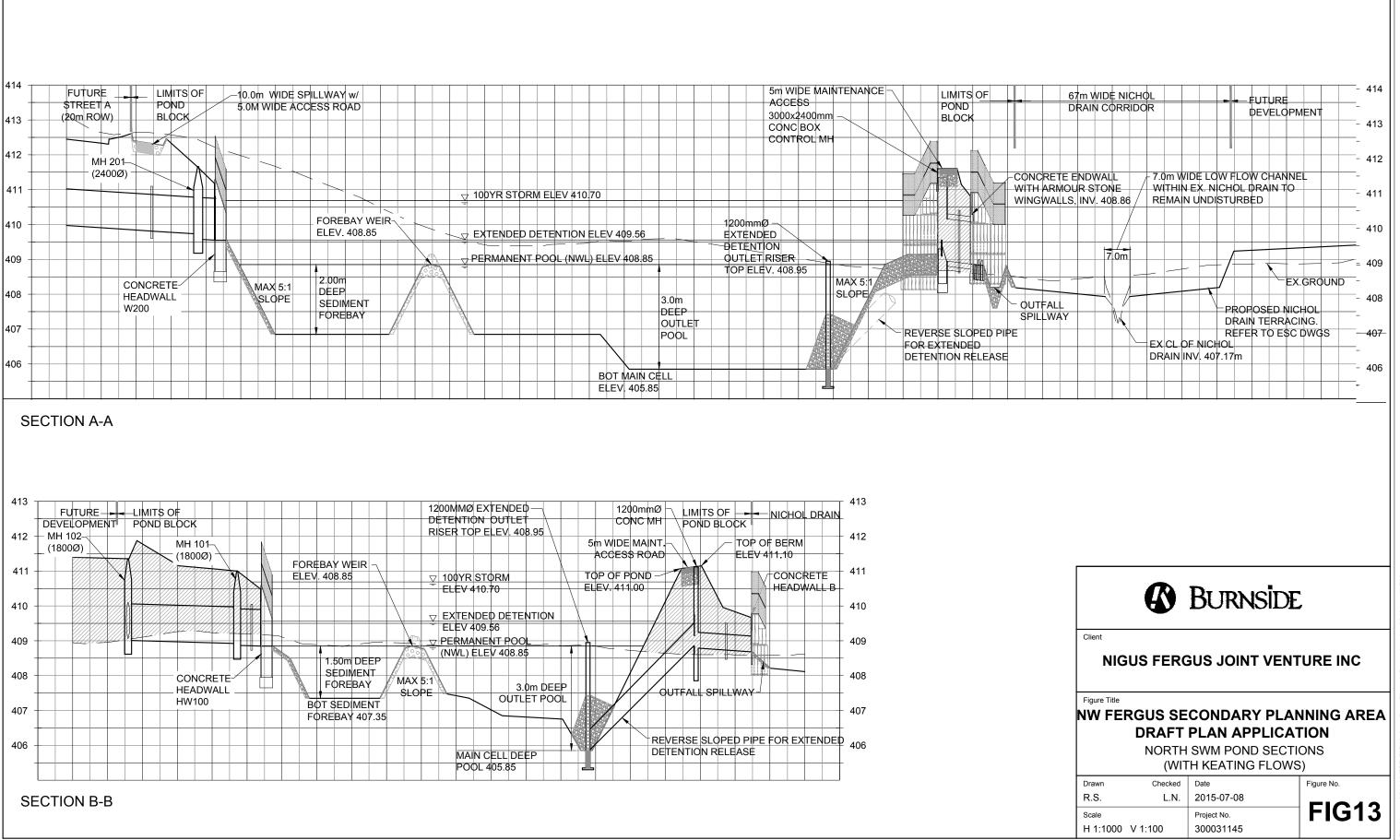
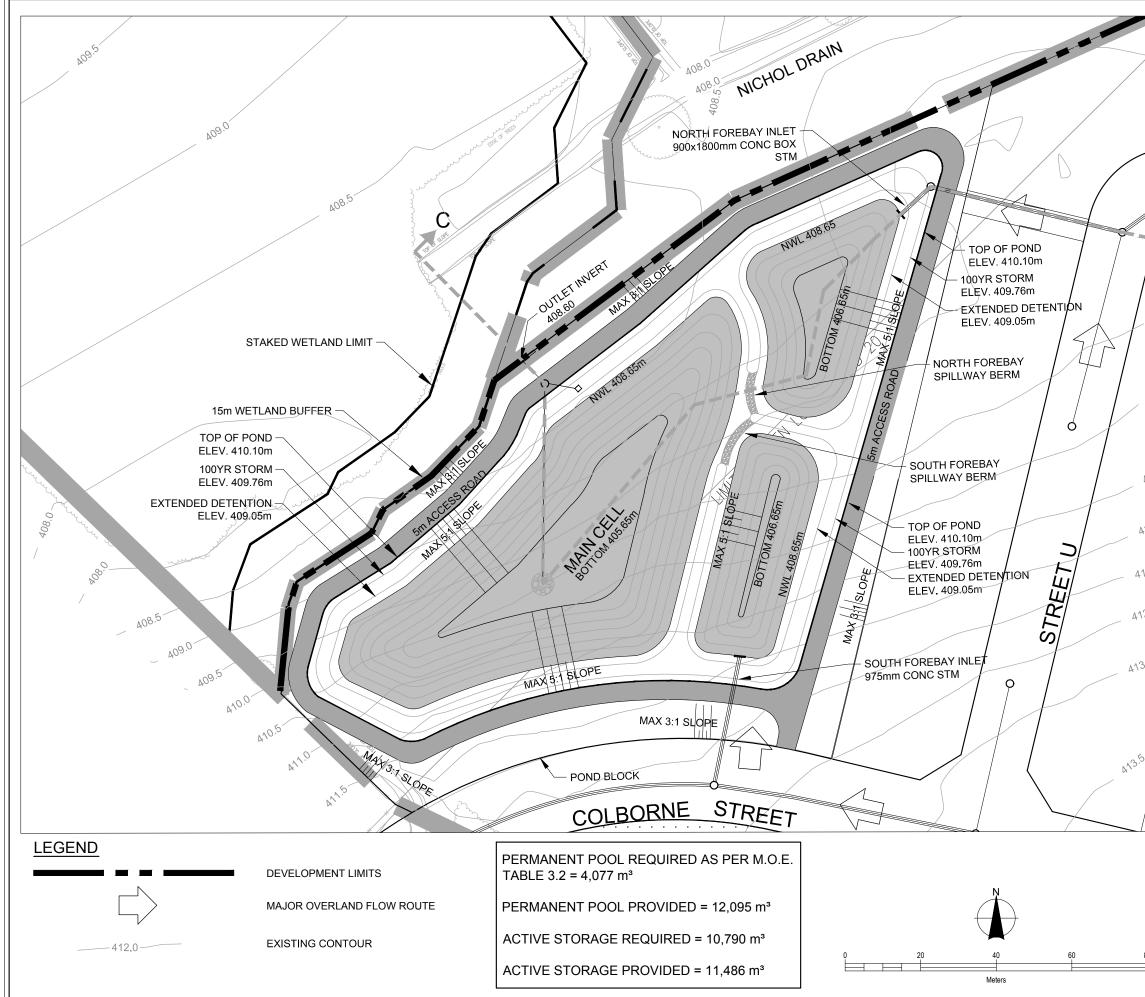

Functional Servicing and Stormwater Management Report, Storybrook Subdivision December 2016 - Revised February 2018

Table 6: Summary Table for North Pond							
Drainage Area	Drainage Area				MP= 53.5		
Pond Block Area	Pond Block Area						
Permanent Pool	Permanent Pool Required			Х	59.49 ha	=	8,696 m ³
Permanent Pool	Provided	=	11,327 m ³				
Max Depth		=	3.0 m				
Permanent Pool	Elevation	=	408.85 m				
Erosion Control							
	SCS Method – Extended Detention						
(ED) Required ED Active Storage Provided							
			6,850 m ³				
Depth	Depth						
Return Event	Return Event Pond Out-Flo (m ³ /s)		Stora	ge V (m³)	'olume)	W	ater Elevation (m)
2-Year	0.328			8,10	0		409.68
5-Year	1.086		1	1,20	00		409.95
10-Year	1.773		1	3,35	50		410.13
25-Year	2.783		1	6,15	50		410.35
50-Year	3.632		1	8,25	50		410.52
100-Year	4.497		2	20,35	50		410.70

Calculations associated with the stormwater management pond sizing are included in Appendix D. Figures 12 and 13 illustrate the proposed North Pond configuration and section including minor grading around the pond.

\ \	<u>\</u>	
\rangle		
	\rangle	
/ FUTURE STI		
- <u>_</u>	~ /	
	\ \	
\sim		
$\overline{}$		
0	20 40	60 80
	Metres	
	Wettes	
	BURNS	יורי
	DURING	NDL
Client		
NIGUS	FERGUS JOINT	
NIGUS		
Figure Title		
NW FERGU		PLANNING AREA
	AFT PLAN APP	
NOR	TH SWM POND COM	IFIGURATION
Drawn	Checked	Figure No.
RS	LN	-
Scale	Project No.	FIG12
1:1000	300031145	

e Name: 031145 FSR FIG13.dwg Date Plotted: December 14, 2016 - 4:17


7.4.5 South Pond Design

The south stormwater management pond is located on the south side of the Nichol Drain, adjacent to the western property boundary. The following table summarizes the operating characteristics for the South Pond and the required volumes to meet the design criteria.

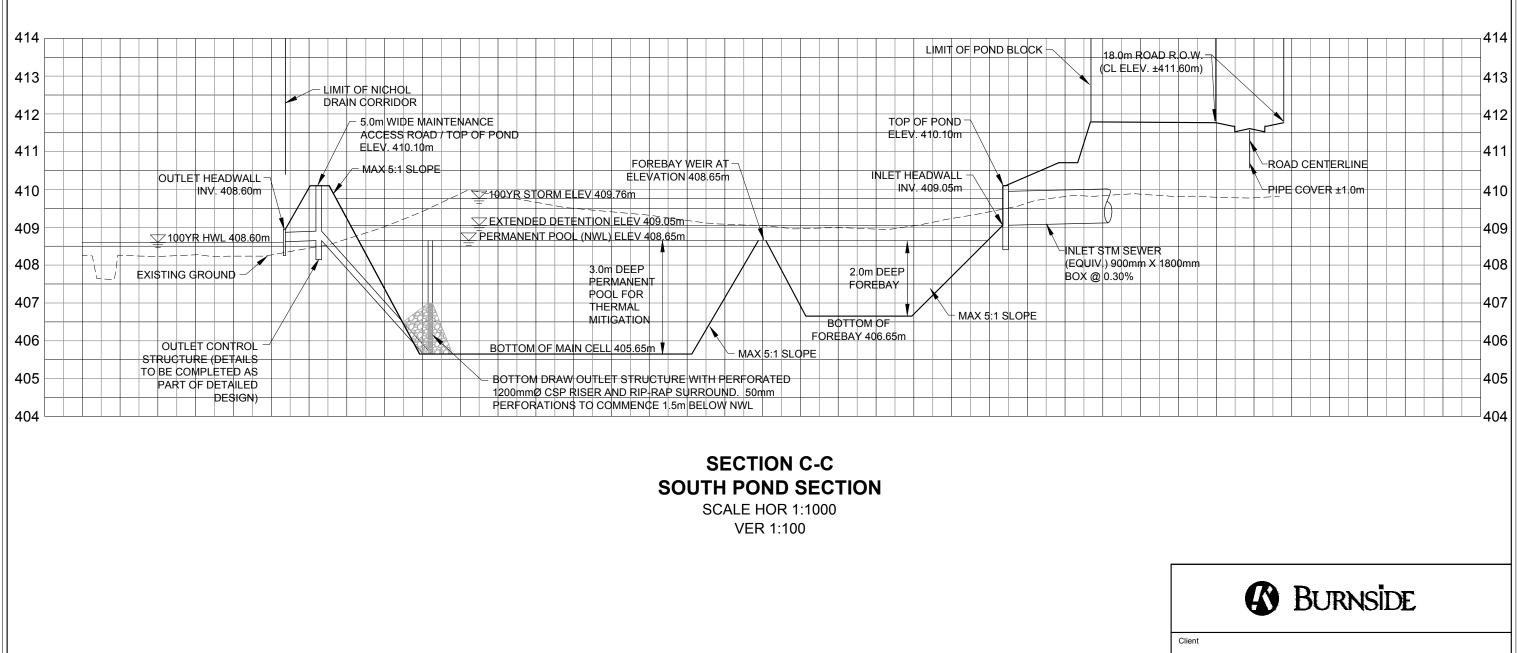

Drainage Area	•	=	27.40 ha	% I	MP = 54.	5	
Pond Block Area	Pond Block Area						
Permanent Pool Required		=	149.9 m ³ /ha	Х	27.37 h	a =	4,077 m ³
Permanent Pool	Permanent Pool Provided		11,486 m ³				
Max Depth		=	3.0 m				
Permanent Pool	Elevation	=	408.65 m				
Erosion Control	Erosion Control						
SCS Method – Extended Detention		=	3,232 m ³				
(ED) Required							
ED Active Storage Provided		=	3,506 m³				
Depth		=	0.40 m				
Return Event	Pond Out-Flo (m ³ /s)	W	Storage (n	• Volu n³)	ume	Wate	r Elevation (m)
2-Year	0.212		3,6	512		4	409.06
5-Year	0.523		5,1	149		4	409.20
10-Year	0.765		6,3	387		4	409.32
25-Year	1.068		8,0	089		4	409.48
50-Year	1.352		9,4	147		4	409.61
100-Year	1.628		10,	790		4	409.76

Table 7: Summary Table for South Pond

Figures 14 and 15 illustrate the South Pond configuration and sections, including minor grading around the pond.

900 800 800	I	77,	20
		(
	_		
C			
J	\square		
- 0		\backslash	\rangle
0.0			
.5			
			0
			>
	6	Burnsi	DE
Client			
NIG		BUS JOINT VE	
Figure Title			LANNING ARE
5		PLAN APPLI	
1			
Drawn PAG	Checked	Date 2016-11-30	Figure No.

NIGUS FERGUS JOINT VENTURE INC

Figure Title

NW FERGUS SECONDARY PLANNING AREA **DRAFT PLAN APPLICATION**

SOUTH SWM POND SECTION

Ì	Drawn	Checked	Date	Figure No.
	PAG	LN	2016-11-30	FIGAE
	Scale		Project No.	FIG15
	AS SHOWN		300031145	

7.4.6 Total Post-Development Flows

The following table summarizes the net storm flows from the subject property under both pre and post-development conditions. Based on the configurations outlined above, the controlled rates leaving the site will be below the pre-development rates for all storms from the 2-through 100-year storm events to all outlets.

Ctorm				Flow Rat	tes (m³/s)			
Storm Event	Node N1		Node S1		Node S2		Node ND	
Lvoin	Pre	Post	Pre	Post	Pre	Post	Pre	Post
2-Year	1.083	0.697	0.283	0.218	0.138	0.107	1.443	0.951
5-Year	2.282	1.966	0.586	0.545	0.277	0.226	3.030	2.620
10-Year	3.246	2.949	0.828	0.802	0.387	0.287	4.307	3.938
25-Year	4.631	4.372	1.174	1.126	0.543	0.360	6.142	5.808
50-Year	5.777	5.526	1.461	1.430	0.671	0.439	7.663	7.368
100-Year	6.985	6.727	1.762	1.725	0.804	0.517	9.265	8.967

Table 8: Flow Ra	ate Summary
------------------	-------------

As per the above table, the area that is conveyed toward the wetland complex (Catchment 206) on the south side of the existing Colborne Street alignment does not require quantity control. The post development flows are less than pre-development flows.

The proposed detailed design for the Commercial Mixed-Use Block will need to include on-site quantity control measures such that the post development flow rates are controlled to the pre-development levels per the table below. The post development controlled rates documented above, for Node S1 and ND are calculated based on the requirement for post to pre-development controls for the commercial block.

Storm	Drainage Area	Flow Rates (m ³ /s)			
Event	(ha)	Pre	Uncontrolled Post	Max. Allowable Post	
2-Year	1.48	0.029	0.096	0.029	
5-Year	1.48	0.059	0.176	0.059	
10-Year	1.48	0.083	0.237	0.083	
25-Year	1.48	0.116	0.324	0.116	
50-Year	1.48	0.143	0.391	0.143	
100-Year	1.48	0.172	0.632	0.172	

Table 9: Commercial/Mixed Use Block Flow Summary

7.5 Water Balance / Infiltration

A preliminary water balance was completed as part of the Secondary Planning process. It was concluded, on a site wide basis, that the rooftop runoff can be directed to the surface or to an infiltration facility to maintain the groundwater recharge.

As part of the Scoped Environmental Impact Study, a more detailed water balance has been undertaken with specific focus on the woodlot / wetland feature and the maintenance of water balance to that feature. The details of that assessment are included under separate cover. It was determined that a post-development water balance can be maintained to the feature through lot grading and roof leader discharge in combination with additional LID measures.

7.6 Low Impact Development

As identified in the Secondary Planning documentation and above, based on Terraprobe's analysis of soil and groundwater conditions, the water balance, under post-development conditions, can be partially maintained through discharge of roof leaders. The at grade discharge of roof leaders ensures that downspouts outlet to grassed swales within the rear yard or side yard, as opposed to outletting to the driveway and entering the storm sewer system.

To ensure the water balance is fully maintained under post-development conditions, LIDs measures will be implemented. LIDs such as bioswales implemented within the buffers and trails will be investigated at the detailed design stage. Roof water will be directed to the bioswale to allow for infiltration and provide a storage depression for the water.

A more refined hydrogeological assessment and study is currently underway. As additional details become available, the impact of the LID measures on the stormwater management design and modelling will be determined. The preliminary stormwater management blocks identified within the EIR currently do not reflect any reductions in runoff volume to the facility as a result of the use of LID techniques.

7.7 Nichol Drain Corridor

As part of the Subwatershed Study and the subsequent Secondary Planning process it was established that the Nichol Drain within the subject lands will be terraced within a 67m corridor, to reconnect the existing low flow watercourse to the floodplain. The approved terracing design incorporates the maintenance of a 7 m wide low flow channel along the existing alignment. The terrace will be formed at a minimum slope of 1% extended from the top of the revised low flow channel banks and 4:1 side slopes will form the corridor banks. The design maintains the 7 m wide low flow channel and a 30 metre buffer on each side of the channel for a total channel corridor width of 67 m. The corridor terracing was included as part of the Phase 1 Draft Plan and detailed

design work and approved through the Site Alteration Permit process. Drain Capacity confirmation will be required, based on as-constructed information, upon completion of the drain work.

7.8 Implementation of the Terracing of the Nichol Drain

As noted above, the proposed terracing design will incorporate the maintenance of a 7 m wide low flow channel along the existing alignment. The terrace will be formed at a minimum slope of 1% extended from the top of the revised low flow channel banks and 4:1 side slopes will form the corridor banks up to existing grades. During Phase 1 of the development, the proposed banks will extend above existing grade in some locations within the SPA. However, the proposed grades will be designed to connect into the proposed drain at the limits of the corridor with the maintenance of positive drainage towards the corridor.

A preliminary staging plan was identified within the Secondary Planning documentation. It should be noted that the proposed timing for the proposed works is limited to April 1 to September 30 based on the fisheries window. A detailed staging plan and erosion sediment control plan will be established at detailed design.

8.0 Erosion and Sediment Control.

The following general Erosion and Sediment Control (ESC) measures will be implemented as part of the proposed construction works associated with the proposed draft plan. A detailed Erosion Sediment Control Plan will be established during the detailed design approvals process. The ESC measures noted below are intended to mitigate the impacts associated with the construction activities on the surrounding environment. The ESC measures listed below are applicable to all construction activities within the subject property:

- a) Erosion and Sediment Control (ESC) measures will be implemented prior to, and maintained during the construction phases, to prevent entry of sediment into the water.
- b) Sediment control fence consisting of non-woven material shall be installed and maintained to prevent sediment from leaving the proposed construction areas. Location of fencing will be established based on the site staging and proposed construction work.
- c) The contractor shall maintain a supply of silt fence, clear stone, straw bales and filter fabric on-site for emergency use.
- d) All in-water and near water works will be conducted in the dry, with appropriate erosion and sediment controls.
- e) No equipment or vehicles are permitted to cross through the watercourse, unless approved by Grand River Conservation Authority.
- f) No sediment-laden water or deleterious substances will be released to the adjacent waterbody at any time. Dewatering discharge containing sediment laden water must be discharged to a sediment bag positioned in a vegetated area and allowed to discharge into existing established vegetation at least 30 m from any watercourse or existing storm catchbasin.
- g) Removal of vegetative cover will be staged and restricted to a period immediately preceding the commencement of earth works in each stage.
- h) Disturbed areas will be temporarily or permanently stabilized or restored as the work progresses.
- If site construction activities are interrupted, and/or inactivity exceeds 30 days, all stripped and/or bare soil areas are to be stabilized using either erosion control matting (e.g. jute), sodding/seeding/mulching or other approved methods to the satisfaction of the site inspector.

- j) Equipment, stockpiled material or construction material will be stored outside watercourse and buffer areas and in a manner that prevents sediment or deleterious substances from entering the Nichol Drain.
- k) Vehicular refueling and maintenance will be conducted a minimum of 30 metres from the water.
- An ESC monitoring program will be used as detailed below in Section 9. Erosion and sediment control methods are to be continuously monitored, evaluated, and upgraded when necessary (see further details below in Section 9.0).
- m) All damaged erosion and sediment control measures should be repaired and/or replaced within 48 hours of the inspection.
- n) After hours contact numbers are to be posted on-site for emergencies.

9.0 Effectiveness Monitoring

The intention of effectiveness monitoring is to provide environmental protection and compliance with all applicable legislation, while contributing to the overall success of a project. As a basis of monitoring a proposed project, it is essential to ensure that the erosion and sediment control measures are properly installed, well maintained, and functioning as intended on a daily basis. A designated ESC inspector should be assigned to assist the Contract Administrator to ensure that all environmental protection measures are appropriately addressed. In general, the primary roles of the designated inspector are to:

- a) Ensure compliance with environmental deliverables.
- b) Ensure effectiveness of project environmental protection and erosion and sediment control measures.
- c) Ensure compliance with environmental regulatory instruments, such as permits and authorizations.

The following monitoring measures will be implemented to ensure that appropriate actions are taken to minimize the effects of the activity on the surrounding environment:

 a) Contract administrator shall verify that the ESC controls are intact on a daily basis and after all rainfall events. Deficiencies shall be reported to the contractor and repaired immediately.

- b) A specific ESC measures review/inspection shall be completed weekly and in advance of, and within 24 hours following significant rain/snowmelt events to monitor all environmental protection measures and in particular works related to erosion and sediment controls, dewatering, restoration and in- or near- water works.
- c) During inactive construction periods, where the site is left alone for 30 days or longer, a monthly inspection should be conducted as a minimum. Inspections should be conducted in advance of, and within 24 hours following significant rainfall events (i.e. events greater than 10 mm of rainfall).
- d) The ESC Inspector shall inspect sediment and erosion control works and prepare an inspection record, as required for review and discussion with the Contract Administrator.

Should concerns arise on site; the Environmental Monitor will contact the relevant parties including the Grand River Conservation Authority Enforcement Officer, the Municipality as well as the proponent.

10.0 Conclusions and Recommendations

This Functional Servicing and Stormwater Management Report is intended to satisfy Township of Centre Wellington and Grand River Conservation Authority requirements for a review of site servicing and stormwater management in support of Draft Plan Approval for Phase 1 and the Storybrook West development of the North West Fergus Secondary Planning Area. Based on a review of all the materials available, the following conclusions and/or recommendations are made:

- The ultimate sanitary infrastructure needed to service NWFSPA includes the existing 375 mm trunk sewer along Millage Lane, at the intersection of Beatty Line and Millage Lane across the frontage of the subject lands which conveys flows through the Fergus Urban Area to the Fergus Water Pollution Control Plant.
- The land holdings within the NWFSPA will be serviced through a combination of gravity sanitary drainage and a sanitary pumping station with ultimate connection to the Beatty Line trunk sewer. Phase 1 of the development will be serviced entirely by an internal gravity system. The Storybrook West development will be serviced though the sanitary pump station.
- Based on recent capacity reports, the site may be accommodated within the existing Fergus WPCP. A planned expansion is included in the Development Charge Background Study for 2018-2026. The need for expansion of the WPCP to service the entire North West Fergus Secondary Plan Area will be dependent on the phasing of the NWFSPA as well as growth pressures in other areas of the community within the urban boundary.

- Trunk distribution watermains exist along both Beatty Line and Colborne Street, adjacent to the development. The Township has confirmed that sufficient capacity and pressure exists within these mains to service development within the NWFSPA. Trunk distributions mains extended via the collector roads within the NWFSPA will supply local distribution mains extended throughout the area via the local road network.
- Sufficient supply capacity currently exists to meet the needs of the entire NWFSPA. As additional population growth occurs throughout the Fergus and Elora urban boundary, additional supply and elevated storage infrastructure may be required and is planned as described in the Development Charges By-Law Background Study Update (2008).
- The proposed storm drainage system will be sized in accordance with Township requirements. The system north of the Nichol Drain will accommodate flows from the Beatty Hollow Subdivision located along the north-east boundary of the secondary planning area and has been sufficiently sized to accommodate the Collie Court residents, should an agreement be reached in that regard.
- A tile drain outlet conveyance system has been including in the design which will serve to convey the existing major system drainage from the property north of the subject lands to the existing receiver adjacent to the woodlot. Future development of the lands to the north will require stand-alone stormwater treatment.
- Two (2) SWM facilities will be required to service the subject lands located on the north and south sides of Nichol Drain towards the western edge of the development. The stormwater management ponds will be sized in accordance with Township and GRCA criteria as detailed in the Stage 2 Subwatershed Study (EIR) completed as part of the Secondary Planning Area application.
- Site specific controls will be provided, during detailed design for the Mixed Use/Commercial Block with the provision of quality and quantity control consistent with the requirements identified through the Subwatershed Study and Secondary Planning process.
- A site wide water balance can be achieved through implementation of a combination of roof leader discharge and LID measures.
- The Nichol Drain will be terraced through the subject lands as part of the Phase 1 development and in accordance with the approved approach outlined in the Stage 2 Subwatershed Study (EIR) completed as part of the Secondary Planning Area application.
- An effectiveness monitoring plan will be implemented during construction to ensure all works are in conformance to the required Erosion Sediment Control Plan for the site.

11.0 References

Aquafor Beach Ltd. And North South Environmental, October 2008. Nichol Drain Subwatershed Study, Phase 1 Existing Conditions.

Chapman, L.J., and D.F. Putman, 1984. The Physiography of Southern Ontario (Third Edition). Ministry of Natural Resources.

Bird Studies Canada, July 1999. Conservation Priorities for the Birds of Southern Ontario. A cooperative project of the Ontario Ministry of Natural Resources, Bird Studies Canada and Environment Canada, Canadian Wildlife Service.

Hoffman, D.S., B.C. Matthews, and R.E. Wickland, 1963. Soils Survey of Wellington County, Report No. 35 of the Ontario Soil Survey. Research Branch, Canada Department of Agriculture and the Ontario Agricultural College.

Lee, H.T., W.D. Bakowsky, J.Riley, J. Bowles, M.Puddister, P. Uhlig, and S.McMurray, 1998. Ecological Land Classification for Southwestern Ontario: First Approximation and its Application. Ontario Ministry of Natural Resources, South Central Region, Science Development and Transfer Branch. Technical Manual ELC-005.

Ministry of Natural Resources. 2000. Significant Wildlife Habitat Technical Guide. 139 pp + appendices.

Ministry of Natural Resources, 1999. Natural Heritage Reference Manual for Policy 2.3 of the Provincial Policy Statement.

Ontario, 2005. Provincial Policy Statement. Queen's Printer of Ontario, 2005.

Township of Centre Wellington, 2005. Municipal Plan for the Township of Centre Wellington.

Wellington County, 2006. Wellington County Official Plan.

Appendix A

Geotechnical Investigation

V.A. WOOD (GUELPH) INCORPORATED CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 TELEPHONE: 519-763-3101

GEOTECHNICAL INVESTIGATION STORYBROOK SUBDIVISION PART OF LOTS 18, 19 AND 20, CONCESSION 14 (GEOGRAPHIC TOWNSHIP OF MITCHELL) TOWNSHIP OF CENTRE WELLINGTON (FERGUS), ONTARIO

> Ref. No. G3719-6-5 May, 2016

> > Prepared for:

Nigus Fergus Joint Venture c/o Sorbara Group of Companies 3700 Steeles Avenue West Suite 800 Vaughan, Ontario L4L 8M9

Attention: Mr. Colin Eden

Distribution.

(2) Copies - Sorbara Group of Companies Copy - R.J. Burnside & Associates Ltd. (Mississauga)
 Copy - R.J. Burnside & Associates Ltd. (Guelph) (2) Copies - V.A. Wood (Guelph) Inc.

CONTENTS

Page

1.0	INTRODUCTION	1
2.0	FIELD WORK	2
3.0	SUBSURFACE CONDITIONS	3
4.0	GROUNDWATER CONDTIONS	6
5.0	DISCUSSION AND RECOMMENDATIONS	7
6.0	STATEMENT OF LIMITATIONS	13

<u>APPENDIX</u>

APPENDIX 'A' Statement of Limitations

ENCLOSURES

	<u>No.</u>
BOREHOLE LOCATION PLAN	1
BOREHOLE LOGS	2 - 29
GRAIN SIZE DISTRIBUTION CURVES	30 - 32

1.0 INTRODUCTION:

V. A. Wood (Guelph) Inc. was retained by Nigus Fergus Joint Venture to carry out a geotechnical investigation for a proposed residential subdivision on Part of Lots 18, 19 & 20, Concession 14 in the Township of Centre Wellington (Fergus), Ontario.

The purpose of the investigation was to reveal the subsurface conditions and to determine the relevant soil properties for recommendations concerning the design and construction of the site services, houses, pavement areas and storm water management systems.

2.0 FIELD WORK:

The fieldwork was carried out April 18 to 22 of 2016 and consisted of twenty-eight (28) boreholes at the locations shown on Enclosure 1. The boreholes were advanced to the sampling depths by means of a track-mounted, power-auger machine equipped for soil sampling. Standard Penetration tests were carried out at frequent intervals of depth and the results are shown on the Borehole Logs as N-values. The subsurface soils were visually inspected, logged and sampled at the borehole locations.

The boreholes were laid out by personnel from V.A. Wood (Guelph) Inc. and a soils technician supervised the fieldwork program. The ground elevation at each borehole was interpolated from a topographic survey produced by J.D. Barnes Ltd. dated April 27, 2007.

3.0 SUBSURFACE CONDITIONS:

Full details of the soils encountered in each borehole are given on the Borehole Logs, Enclosures 2 to 29, inclusive and the following notes are intended to summarize this data.

The boreholes encountered a surficial deposit of <u>topsoil</u> ranging between 150mm and 410mm thick.

The topsoil at Boreholes 1, 2, 3, 5, 7, 8, 10 to 23, and 25 to 28, inclusive was underlain by a deposit of brown or grey <u>silty sand</u> to depths ranging between 0.8 and 3.0 metres below grade. Standard Penetration tests in this material gave N-values ranging between 3 and 48 blows/300mm and the natural moisture content was found to range between 10 and 25%. A typical grain size distribution curve for this material can be found on Enclosure 30.

Based on the test results, the deposit of silty sand is considered to have a generally very loose to dense relative density, however the presence of occasional gravel and/or cobble in this deposit may have resulted in high N-values and these may not accurately represent the relative density of the soil.

A deposit of brown <u>clayey sandy silt</u> were encountered below the silty sand at Borehole 2 and the topsoil at Borehole 24 to a depth of about 2.3 metres below grade. Standard Penetration tests in this material gave N-values ranging between 5 and 18 blows/300mm and the natural moisture was found to range from 14 to 19%.

Based on the test results, the deposit of silty sand is considered to have a generally loose to compact relative density.

A deposit of brown <u>sand and gravel</u> was encountered below the silty sand at Borehole 19 to a depth of 1.7 metres below grade.

A deposit of brown or grey <u>sand</u> were encountered below the silty sand at Boreholes 3, 9, 12, 16, 18, 22, 23, 25, 26 and 28 and below the clayey sandy silt at Borehole 2. This material extended to depths ranging between 2.3 and 6.1 metres below grade and the full depth of investigation (i.e. 6.6 metres below grade). Standard Penetration tests in this material gave N-values ranging between 5 and greater than 100 blows/300mm and the natural moisture was found range between 7 and 23%.

Based on the test results, the deposits of sand and gravel and sand are considered to have generally very loose to very dense relative densities, however the presence of gravel and/or cobble in these deposits may have resulted in high N-values and these may not accurately represent the relative density of the soil.

A deposit of brown <u>silty sand and gravel</u> was encountered below the sand at Borehole 16 to a depth of 4.6 metres below grade. Standard Penetration tests in this material gave *N*-values of 21 to 43 blows/300mm and the natural moisture was found to be about 11%.

Based on the test results, the deposit of silty sand and gravel is considered to have a generally compact to dense relative density, however the presence of gravel and/or cobble in this deposit may have resulted in high N-values and these may not accurately represent the relative density of the soil.

A deposit of brown or grey <u>clayey sandy silt till</u> was encountered below the silty sand at Boreholes 1, 7, 8, 10, 11, 13, 14, 15, 17, 20, 21, and 27, below the sand at Boreholes 2, 3, 9, 18, 22, 23, 25, 26, and 28, topsoil at Boreholes 4 and 6, silty sand and gravel at Borehole 16, sand and gravel at Borehole 19, and clayey sandy silt at Borehole 24. This deposit extended to depths ranging between 3.0 metres below grade and the full depth of investigation (i.e. 6.6 metres below grade). Standard Penetration tests in this material gave N-values ranging between 4 and greater than 100 blows/300mm and the natural moisture content was found to range between 6 and 22%. Pocket penetrometer tests indicated it has an undrained shear strength varying from 50 to 450 kPa. A typical grain size distribution curve for this material can be found on Enclosure 31.

Based on the test results, the deposit of clayey sandy silt till is considered to have a generally loose to very dense relative density, although the presence of occasional gravel and/or cobble in this deposit may have resulted in high N-values and these may not accurately represent the relative density of the soil.

A deposit of grey <u>sand</u> was encountered below the clayey sandy silt till at Borehole 19 to a depth of 4.6 metres below grade. A Standard Penetration test in this material gave an *N*-value of 49 blows/300mm and the natural moisture content was found to be about 12%

Based on the test results, the deposit of sand is considered to have a generally dense relative density.

The silty sand at Borehole 5 and the clayey sandy silt till at Boreholes 21 and 23 was underlain by a deposit of brown <u>silty clay</u> to depths ranging between 4.6 metres below grade and the full depth of the investigation (i.e. 6.6 metres below grade). Standard Penetration tests in this material gave N-values ranging between 12 and 60 blows/300mm and the natural moisture content was found to range between 11 and 31%. Pocket penetrometer tests indicated it has an undrained shear strength varying from 150 to 450 kPa.

Based on the test results, the deposit of silty clay is considered to have a generally stiff to very stiff consistency.

The silty clay at Boreholes 5 and 23 and the sand at Borehole 19 were underlain by a deposit of <u>clavey sandy silt till</u> to the full depth of the investigation (i.e. 6.6 metres below grade). Standard Penetration tests in this material gave N-values ranging between 78 and greater than 100 blows/300mm and the natural moisture content was found to range between 6 and 13%. Pocket penetrometer tests indicated it has an undrained shear strength varying from 300 to 450 kPa.

Based on the test results, the deposit of clayey sandy silt till is considered to have a generally very dense relative density.

3.0 GROUNDWATER CONDITIONS:

Boreholes 1, 4, 6, 8, 10, 15, 21, 22 were dry and open to the full depth of the investigation on completion of the fieldwork program. Boreholes 18, 19, 25 and 28 encountered dry cave-in at elevations ranging between 407.6m± and 410.4± (i.e. $4.9\pm$ to $5.5\pm$ metres below grade) on completion of the fieldwork program. Boreholes 12, 13, 23 and 26 encountered wet cave-in at elevations ranging between 407.2m± and 413.2m± (i.e. $1.8\pm$ to $3.7\pm$ metres below grade) on completion of the fieldwork program. Free water surfaces were encountered at Boreholes 2, 3, 5, 9, 11, 16 and 17 at elevations ranging between 404.9m± to 411.5m± (i.e. $1.2\pm$ to $5.5\pm$ metres below grade) on completion of the fieldwork program.

Monitoring wells were installed in Boreholes 7, 14, 20, 24 and 27 and water levels were measured at the elevations noted in the following chart.

	Ground	May 5, 2016		
Location El. (m±)		Depth Below Existing Grade (m±)	Water Level El. (m±)	
BH 7	414.8	0.9	413.9	
BH 14	416.5	1.2	415.3	
BH 20	413.9	5.8	408.1	
BH 24	415.8	4.3	411.5	
BH 27	414.1	5.6	408.5	

An examination of the soil samples indicated that they were generally moist to saturated.

It is noted that no sub-artesian water pressures were encountered in any of the boreholes.

A colour change from brown to grey was noted in all the boreholes at elevations ranging between $404.7m\pm$ and $415.3\pm$ (i.e. 0.2 to 6.1 metres below grade.

Based on the foregoing, the groundwater table is considered to be located at elevations ranging between 408.1m± to 415.3m±, although perched groundwater conditions can be expected in the looser upper zones underlain by the less permeable till.

5.0 DISCUSSION AND RECOMMENDATIONS:

5.1 <u>General</u>:

The boreholes generally encountered surficial deposits of topsoil underlain by loose to compact silty sand and/or sand underlain by loose to very dense clayey sandy silt till with seams of compact sand and very stiff to hard silty clay.

The groundwater table is considered to be located at elevations ranging between $408.1m\pm$ to $415.3m\pm$, although perched groundwater conditions can be expected in the looser upper zones underlain by the less permeable till.

Full details concerning the proposed development, and in particular, the grading plan was not available at the time of this report which should therefore be reviewed when this information is available. Therefore, the following discussion is considered preliminary.

5.2 <u>Sewers</u>:

It is assumed that the sewer inverts will be located at depths ranging between 3 and 4 metres below the existing grades.

Reference to the Borehole Logs indicates that the subgrade will generally consist of competent deposits of clayey sandy silt till, sand, sand and gravel and/or silty clay which will generally provide adequate support for the pipes and allow the use of normal Class 'B' bedding using Granular 'A' material. Clear crushed stone should <u>not</u> be used as bedding otherwise fines may migrate into the voids of the stone and cause undesirable settlements. Where the exposed subgrade is less competent than the materials identified in the Borehole Logs, the bedding thickness may have to be increased and it may be necessary to protect the excavation with a skim coat of concrete immediately after it has been exposed.

Where sewer trench grades are below the groundwater table, provisions may be required to lower the groundwater table through pumping from local sumps as and where required or through the use of well points. The sides of the excavation to a depth of more than 1.2 metres (and above the water table) should either be cut back at a side slope of 1 to 1 or supported using adequately braced closed sheeting.

The excavated materials will be generally suitable for use as trench backfill provided that they are free of topsoil and boulders. If the on-site materials become wet, they should be air dried prior to re-use as trench backfill. The trench backfill should be placed in 150 to 200mm thick layers and uniformly compacted to at least 95% of its Standard Proctor maximum dry density.

The backfill around manholes should consist of well-graded and well-compacted granular material.

To minimize potential problems and wetting of the subgrade material, backfilling operations should follow closely after excavations, so that only a minimal length of trench is exposed at a time. Should construction be carried out in the winter season, particular attention should be given to make sure no frozen material is used for backfill.

5.3 Foundations:

The boreholes encountered deposits of topsoil and loose, wet upper soils which are not considered to be a suitable bearing strata. Therefore, the foundations for the proposed structures should extend to below the surface to more competent soils. It is anticipated that an adequate stratum for Housing and Small Buildings in accordance with Part 9 of the 2012 Building Code Compendium will be located at the elevations indicated in the following charts:

Borehole No.	Borehole Ground Elev. (m±)	Bearing Stratum	Suitable Bearing Stratum Elev. (m±)	Depth to Suitable Bearing Stratum (m±)	Allowable Bearing Pressure (kPa)
1	413.7	Clayey Silty Sand Till	412.2	1.5	100
2	412.9	Clayey Silty Sand	412.1	0.8	100
3	413.5	Sand	412.0	1.5	100
4	413.1	Clayey Silty Sand Till	412.3	0.8	100
5	409.3	Silty Clay	407.0	2.3	100
6	411.7	Clayey Silty Sand Till	410.2	1.5	100
7	414.8	Clayey Silty Sand Till	413.3	1.5	50
8	413.8	Clayey Silty Sand Till	412.3	1.5	50
9	410.2	Sand	409.4	0.8	50
10	409.6	Clayey Silty Sand Till	408.1	1.5	100
11	410.8	Clayey Silty Sand Till	408.5	2.3	100
12	409.0	Sand	406.0	3.0	100
13	409.0	Clayey Silty Sand Till	406.7	2.3	50
14	416.5	Clayey Silty Sand Till	415.0	1.5	50
15	415.0	Clayey Silty Sand Till	413.5	1.5	50
16	413.5	Sand	412.0	1.5	50
17	411.7	Clayey Silty Sand Till	409.4	2.3	75
18	414.5	Clayey Silty Sand Till	413.0	1.5	100
19	413.1	Clayey Silty Sand Till	411.4	1.7	100
20	413.9	Clayey Silty Sand Till	411.6	2.3	100

Borehole No.	Borehole Ground Elev. (m±)	Bearing Stratum	Sultable Bearing Stratum Elev. (m±)	Depth to Suitable Bearing Stratum (m±)	Allowable Bearing Pressure (kPa)
21	414.6	Clayey Silty Sand Till	413.1	1.5	100
22	414.1	Sand	413.3	0.8	50
23	414.9	Sand	413.4	1.5	100
24	415.8	Clayey Silty Sand Till	413.5	2.3	100
25	415.6	Sand	414.1	1.5	50
26	415.0	Sand	414.2	0.8	50
27	414.1	Clayey Silty Sand Till	412.6	1.5	100
28	414.8	Clayey Silty Sand Till	413.3	1.5	100

If basements are constructed, the basement floors should be located at least 0.5 metres above the observed high groundwater level (i.e. El. 408.1m to 415.3m) otherwise subfloor drainage systems together with continual pumping from the drainage systems will be required.

If there are requirements for cut and fill grading, the foundation grade could be raised using "engineered fill", which would be suitable for supporting normal spread footings designed to an allowable bearing pressure of up to 150 kPa.

The procedure for "engineered fill pad" construction would consist of the following:

- 1. The total removal of topsoil and loose, wet material from beneath the proposed development envelopes.
- 2. Geotechnical personnel from V.A. Wood (Guelph) Inc. prior to placement of "engineered fill" should inspect the exposed subgrade. Any loose or soft zones which are encountered should be removed and replaced with approved on-site or approved imported granular material, compacted to at least 98% Standard Proctor maximum dry density.
- 3. The areas should then be brought up to the final subgrade level with approved onsite or approved imported granular material placed in maximum 200mm thick lifts and compacted to at least 98% Standard Proctor maximum dry density.
- 4. The "engineered fill" under all structures to be supported should extend to at least 0.6 metres laterally beyond the edge of their perimeter at the founding level and at least a distance equal to the depths of the fill pad, at the level of the approved subgrade.

The "engineered fill" should be in place at least one month prior to loading it to minimize settlement.

This "engineered fill" will satisfy the raising of the founding levels to the proposed grades and provide a suitable subgrade for the proposed structures.

All exterior house footings or footings in unheated areas should be located at least 1.2 metres below finished grade for adequate frost protection.

Elevation differences between adjacent footings should not be more than a half of the horizontal distance between them.

It is estimated that the total and differential settlements of the footings designed to the above stated bearing pressures will be less than 25 and 20mm respectively, which are normally considered to be acceptable for the proposed structures.

It is recommended that all foundation excavations be inspected by geotechnical personnel from V.A. Wood (Guelph) Inc. to ensure that the founding soils are similar to those identified in the Borehole Logs and that the founding soils are capable of supporting the design loads.

5.4 Excavation and Groundwater Control:

No major construction problems due to water are anticipated with excavations above *El.* 404.7m±. However, provision should be made for the control of any surface water run-off and minor seepage from any wet sand seams by pumping from local sumps on an as and where required basis. If, however, excavations are extended below the groundwater table, then provisions may be required to lower the groundwater table through more extensive pumping from local sumps as and where required or through the use of well-points.

Excavations to a depth of more than 1.2 metres below grade should be cut back to a side slope of 1 to 1 or, supported using adequately braced sheeting.

Sub-drains will probably be required for basements less than 0.5m above the water table.

5.5 Floor Slabs:

All topsoil should be stripped from the building areas and the proposed subgrade should be re-compacted from the surface to at least 95% of its Standard Proctor maximum dry density. Any loose/wet material encountered should be sub-excavated and replaced with approved fill.

The fill may consist of approved on-site materials free of cobbles/boulders or approved imported fill. All fill materials should be placed in 150 to 200mm thick lifts and compacted to at least 95% of its Standard Proctor maximum dry density. It is recommended the underfloor fill be placed at least one month prior to floor construction in order to minimize settlement.

A layer of well-graded, free-draining material, at least 150mm thick and compacted to at least 98% of it Standard Proctor maximum dry density, should be placed under the floor slabs to provide a uniform bearing surface and to act as a vapour barrier.

Frequent inspections by geotechnical personnel from V.A. Wood (Guelph) Inc. should be carried out during construction to verify compaction of the subgrade and base courses by in-situ density testing using nuclear gauges.

5.6 <u>Storm Water Management</u>:

The grain size distribution curves prepared for the representative soil samples obtained at the boreholes were compared to the family of curves presented in the Supplementary Standard SB-6 of the 2012 Building Code Compendium. Based on the Unified Soils Classification System, the soils are considered to have the following properties:

<u>Material</u>	Unified Soils Classification <u>Group</u>	Estimated Co-efficient of Permeability (k) <u>(cm/sec)</u>
Silty Sand	(SM)	10 ⁻³ - 10 ⁻⁵
Clayey Sandy Silt Till	(CL)	10 ⁻⁶ and less
Silty Clay	(CL)	10 ⁻⁶ and less

5.7 Pavement Designs.

All topsoil should be stripped from the paved areas. The proposed subgrade should then be re-compacted from the surface to at least 98% of its Standard Proctor maximum dry density prior to the road construction. Any loose areas which are detected should be sub-excavated and backfilled with suitable on-site material or approved imported fill. All fill should be placed in 150 to 200mm thick lifts and compacted to at least 98% of its Standard Proctor maximum dry density.

Considering the probable traffic requirements and subsoil conditions, the following pavement designs are recommended:

	Passenger Car Parking (Light Duty) <u>(mm)</u>	Access Road (Medium Duty) <u>(mm)</u>
Asphaltic Concrete	50	90
Granular 'A' Base Course	150	175
Granular 'B' Sub-base Course	e 200	350

The base and sub-base granular materials should be compacted to at least 100% Standard Proctor maximum dry density. The asphalt should be compacted to OPS Specifications.

Frequent inspections by geotechnical personnel from V. A. Wood (Guelph) Inc. should be carried out during construction to verify the compaction of the subgrade, base courses and asphaltic concrete by in-situ density testing using nuclear gauges.

6.0 STATEMENT OF LIMITATIONS:

The Statement of Limitations presented on Appendix 'A' is an integral part of this report.

V. A. WOOD (GUELPH) INC.

J. Broad, B.A. President & General Manager

JB:sm

Encls.

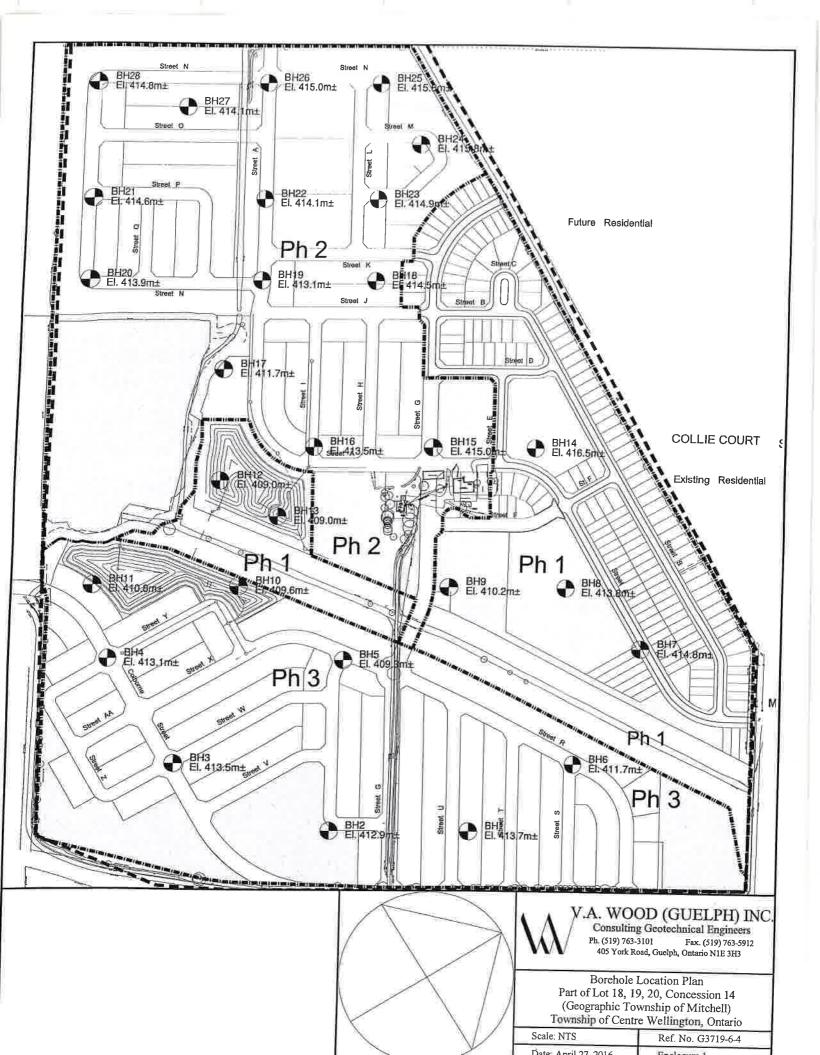
2 copies

LARD PROFESSION in the Waa 2 V. Wood, M.Eng., P En Chief Engineer

APPENDIX

APPENDIX 'A'

Ref. No. G3719-6-5


STATEMENT OF LIMITATIONS:

The conclusions and recommendations in this report are based on information determined at the borehole locations and on geological data of a general nature, which may be available, for the area investigated. Soil and groundwater conditions between and beyond the boreholes may differ from those encountered at the borehole locations and conditions may become apparent during construction, which would not be detected or anticipated at the time of the soil investigation.

We recommend that we be retained to ensure that all necessary stripping, subgrade preparation and compaction requirements are met, and to confirm that the soil conditions do not deviate materially from those encountered in the boreholes. <u>In cases where this recommendation is not followed the company's responsibility is limited to interpreting accurately the information encountered at the boreholes.</u>

This report is applicable only to the project described in the introduction, constructed substantially in accordance with details of alignment and elevations quoted in the text.

This report was prepared by V. A. Wood (Guelph) Inc. for Nigus Fergus Joint Venture. The material in it reflects V.A. Wood (Guelph) Inc. judgment in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, is the responsibility of such Third Parties. V. A. Wood (Guelph) Inc. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report. **ENCLOSURES**

BOREHOLE No: 1

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-591

FAX (519) 763-5912

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 2

SUPERVISOR: M.P.

SUBSURFACE PROFILE SAMPLE N' BLOWS/0.3m WATER CONTENT UNIT WEIGHT EVATION. DEPTH (m) PENETRATION RESISTANCE GROUND WATER % NUMBER BLOWS/0.3m SYMBOL DESCRIPTION TYPE Ц 20 40 80 60 10 15 20 25 5 0.0 Ground Surface 413.7 280mm Topsoil 0.3 1 SS 4 413.4 CI. 2 brown, loose 11 1 SS 10 $\mathbf{r}^{(i)}$ SILTY SAND some clay, trace gravel, moist 11 2 55 7 ę. 1.5 412.2 brown, compact to very dense 24-24 24 28 24 DRY (18-Apr-2016) CLAYEY SANDY SILT TILL 3 SS 18 Ćr. trace gravel, moist 4 ŝŝ 41 NY NY NY NY NY NY NY NY 5 SS 50 0 grey with limestone fragments @ 6 SS 50 075mm 4.6m N 5.6 408.1 7 SS 50 o75mm Probable Boulder/Bedrock Refusal DRILLED BY: ALTECH Drilling and Investigative Services Ltd. HOLE DIAMETER: 210mm DRILL METHOD: Hollow Stem Auger DATUM: Geodetic DRILL DATE: April 18, 2016 SHEET: 1 of 1

BOREHOLE No: 2

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 3

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PRO	OFILE		5	AMPL	.E							
		ELEVATION	SYMBOL GROUND WATER	NUMBER	түре	N' BLOWS/0.3m	PENETRA B	ATION RESI BLOWS/0.3m	STANCE 80		%	ONTE 20 2	T WEIG
	0.0 Ground Surface	412.9		-					· · · · · · · · · · · · · · · · · · ·	<u>'</u>			
0	0.2 175mm Topsoil		55	3	SS	3	a						
0	brown, compact SILTY SAND some clay, trace gravel,	412.1	1	(4)	SS	11	0					٠	
	trace organics and wood,	412.1	2011										
	brown, compact CLAYEY SANDY SILT trace gravel, moist		409.9m± (18-Apr-2016)	2	SS	10	o						
		-	609.9	3	SS	12	0				•		1.1
2.3	3	410.6	EI.4										
	brown, dense SAND	11111	8		_								
	wet		T'M	-A.	SS	49		0					
3.0		409.9							1	1.1			
	grey, dense to very dense CLAYEY SANDY SILT TILL trace gravel, moist	NH NH NH NH	25 25 25 25 25 25 25 25 25 25 25 25 25 2	5	SS	31	o						
		A No. of the second second		6	SS	50		₀125mm					
6.6	End of Borehole	406.3	24 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -	(7 - i)	SS	50		₀125mm		ě			
DF	RILLED BY: ALTECH Drilling and Inve	stigative Service	ces I td			ETED	: 210mm						
	RILL METHOD: Hollow Stem Auger	Sugarive Servi		DATU									

DRILL DATE: April 18, 2016

BOREHOLE No: 3

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

DRILL DATE: April 18, 2016

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 4

SUPERVISOR: M.P.,

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PRO	DFILE			5	SAMPI	.E							_	T
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENE1	TRATIO BLOW 40	N RESIS VS/0.3m 60	TANCE		R CON %	NTENT 20 25	
0.0	Ground Surface	413.5													-
0.2	200mm Topsoil brown, loose to very loose	413.3	1		1	SS	:4	о О				1			
	SILTY SAND moist to wet				1	S 8	6	0				4		•	
1.5		412.0		(9	2	\$8	3	a							
	brown, compact SAND	112.0	-L.L. 1	-201											
2.3	wet	411.2		(18-Apr	3	SS	15	0					•		
2.0	brown, dense to very dense			₩‡											
	CLAYEY SANDY SILT TILL trace gravel, moist			El. 409.8m± (18-Apr-2016)	4	SS	61			00					
		A4 24 24		il ₩.L. @	5	SS	65			0		•			
	grey @ 4.6m	1 20	n An	-	6	SS	39		8						
5.6		407.0	A W A		7 5	55	50		0	100mm					
	End of Borehole		1												
DRIL	LED BY: ALTECH Drilling and Inves	itigative Se	rvices	Ltd.	HOLE	DIAM	ETER:	210mm							1
DRIL	L METHOD: Hollow Stem Auger			I	DATUI	M: Ge	odetic								

BOREHOLE No: 4

T

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 5

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

		SUBSURFACE PRO	DFILE			5	SAMPI	E											Τ
	DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PI	ENET	RATIC BLOV 40	N RESI VS/0.3m	STANCE			%	ONT 20	ENT 25	UNIT WEIGHT
	0.0	Ground Surface	413.1											Car 11	1		1		-
	0.2	225mm Topsoil	412.9	22		1	\$5	3	0										
		brown, loose to very dense CLAYEY SANDY SILT TILL trace gravel,				1	SS	9	0								•		
		moist		24		2	SS	13	þ										
				No No	()														
				100 AN	DRY (19-Apr-2016)	3	SS	(13)	Ð						•	1			
				24 A	Y (19-A	4	SS	35			0					I.			
				10 A	R											1			
						5	SS	35			C.				0				
				A A A A A A A A A															
			- August	\$ 2															
				24 - 24 24 - 24		6	ss	47			p								
			1000	2 5 5															
			12																
6.6	gr	ey @ 6.1m	1 56			7 1	ss	50			in the	125mm		n Ng t	1				
0.0		End of Borehole	406.6									South		•					
				<u> </u>				,I											Ļ
D	RILL	ED BY: ALTECH Drilling and Inves	stigative S	ervices	Ltd.	HOLE	DIAM	ETER:	210	nm									
Dł	RILL	METHOD: Hollow Stem Auger				DATU	M: Ge	odetic											

DRILL DATE: April 19, 2016

BOREHOLE No: 5

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

DRILL DATE: April 19, 2016

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 6

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PR	OFILE			5	SAMPI	LE									Τ
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	20	RATION BLOW: 40	I RESI S/0.3m 60	ISTANCE	5		CONT %		UNIT WEIGHT
0.0	ereand entrated	409.3							_				<u></u>	E		-
0.2		409.1	22		1	SS	6	.6								
	grey, loose to compact SILTY SAND some clay, trace gravel, moist				1	SS	9	а. Т						•		
				-	2	S S	19	ĕ								
				(9	3	GS	17	a						1		
2.3	grey, stiff	407.0		-201												6
	SILTY CLAY some sand,		22	-Apr	4	SS	12	R								
14	moist			El. 404.9m± (19-Apr-2016)												
			E	404.9	5	S S	13	ö						31.	3%	8
4.6		404.7		ı∳ W.L. @ EI												
	grey, very dense SILTY SAND				6	SS	81				-5					
	some clay, trace gravel, moist															
5.6		402.8			7	SS	50		a 50)mm		1.				
	End of Borehole															
DRIL	LED BY: ALTECH Drilling and Inve	stigative Se	rvices	Ltd:	HOLF	DIAM	ETER	210mm								ī
	L METHOD: Hollow Stem Auger				DATU											

BOREHOLE No: 6

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 7

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-5912

		SUBSURFACE PROF	ILE				SAMPI	-E					1					11
	UEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	N BLOWS/0.3m	20	RATION BLOW 40	N RESIS /S/0.3m 60 '	STANCE			%	ONT.	ENT 25	UNIT WEIGHT
0	.0	Ground Surface	411.7											_				+
		150mm Topsoil	411.7	NA N		()) ()	SS	5	Q									
		brown, loose to very dense CLAYEY SANDY SILT TILL trace gravel, moist		4 -X4		1	SS	6	(9)							.•		
1		trace organics @ 0.8m		an at		2	SS	: 4	D									
				No. V														
				10 10 10 10	DRY (18-Apr-2016)	3	GS	16	Ċ,	-					•			
					(18-A													
				15 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DRY	ৰ	SS	50		0	150mm							
	6	grey @ 3.0m																
			1.	(142 AAAA)	ł	5	SS	50		0	150mm		*					
	ł		10.11															
1				A A														
-					-	6	SS	50		o7	′5mm							
			AN D	- 24 14														
			CH LIAN	N 20	,													
				A 20 5	ľ													
6.6			405.2	E		7	SS	50		٥7	5mm		•					
		End of Borehole												4				
DF	RILLE	ED BY: ALTECH Drilling and Invest	igative Se	ervices	Ltd	HOLE	DIAN	ETER:	: 210mm							_		1
DR	RILL	METHOD: Hollow Stem Auger				DATU	IM: Ge	odetic										

DRILL DATE: April 18, 2016

BOREHOLE No: 7

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 8

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

SUBSURFACE PROFILE SAMPLE MONITORING WATER CONTENT UNIT WEIGHT ELEVATION PENETRATION % DEPTH (m) NUMBER N-VALUE RESISTANCE DESCRIPTION SYMBOL TYPE 20 40 60 80 10 15 20 25 5 . 0.0 Ground Surface 414.8 Protective Casing 0.2 200mm Topsoil 414.6 1 55 4 0 brown, very loose Concrete 11 SILTY SAND đ SS 4 some clay, trace gravel, 11 moist 11 Cuttings 413.9m± (5-May-2016) XXXIIIIIIIIIIIIII 2 SS 3 11 1.5 413.3 brown, compact to very dense AL HE AL HE HE HE AL AL AL HE HE HE HE HE HE HE HE HE 19mm Riser CLAYEY SANDY SILT TILL 3 SS 14 ¢\$ trace gravel, moist Hole Plug a125mm, rock ш 4 SS 50 0 ______ 2 _o 150mm, 5 SS 50 rock . Screen -Silica Sand grey @ 4.6m 6 SS 50 o125mm 7 17 SS 80 6.6 408.3 Ö End of Borehole DRILLED BY: ALTECH Drilling and Investigative Services Ltd. HOLE DIAMETER: 210mm

DRILL DATE: April 20, 2016

DRILL METHOD: Hollow Stem Auger

SHEET: 1 of 1

DATUM: Geodetic

BOREHOLE No: 8

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 9

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH_ (519) 763-3101 FAX (519) 763-5912

		SUBSURFACE PRO	FILE				SAMPI	.E						T	-	-			
	UEPIH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	N BLOWS/0.3m		NETI 20	RATIOI BLOW 40	N RESIS /S/0.3m 60	STANCE	W. 5	АТЕР 10	%			UNIT WEIGHT
0.	.0	Ground Surface	413.8 413.7					1		_				1		19	_^	<u> </u>	
0	2	150mm Topsoil	413.7	\sim	1	9	SS	4	0					1					
		brown, loose to compact SILTY SAND some clay, trace gravel, moist				1	SS	6	e								S. 9 -		
1.5	5		412.2	111		2	SS	-11	ier.					1					
		brown, compact to very dense CLAYEY SANDY SILT TILL trace gravel, moist	412.3		DRY (20-Apr-2016)	3	88	25		ġ					•);				
	9	grey @ 2.3m	1 1		DRY (20	4	SS	45			0								
						5	S 8	.41			o			•					
			AMINA			6	SS	41			a.								
6.6		End of Borehole	407.3	A A M		7	\$\$	50			۰1	50mm		•					
DR	RILLE	ED BY: ALTECH Drilling and Inves	tigative Se	ervices	Ltd.	HOLE	DIAN	IETER:	: 150n	nm			(Ī
DR	RILLI	METHOD: Hollow Stem Auger				DATU	IM: Ge	odetic											

DRILL DATE: April 20, 2016

BOREHOLE No: 9

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

SUBSURFACE PROFILE

ENCLOSURE No: 10

SUPERVISOR: M.P.

SAMPLE

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENE		N RESI: /S/0.3m 60	STANCE 80	5 '		R CC %		ENT 25	UNIT WEIGHT
1	0.0	Ground Surface	410.2			-								1	1	- U	1	1
T		410mm Topsoil		~?		ar≀ '	SS	5	ā				P -					
L	0.4		409.8	12		_												
		brown, loose to compact				গ	85	В	0						1.0	£		
-l		SAND some silt,																
		moist to wet,				2	SS	10	(r)									
						~												
	- 1																	
	- 1		*****		+													6.08
	- 1		1			3	88	18	0						ф.			1. 10
					Y.	1					14 + 1							11
					16)													
					El. 408.1m± (20-Apr-2016) ⁱ	4	SS	11	10									
	1		0.000		dA-	-	-	_										6 (j
1					(50	- 1	- 1	1				1						- 1
		wet gravel seam @ 3.0m	21222		Ë	5	SS	24				1					1 1	1
			21022		8.1		02	24	.0								1	
					4													
			14 14 14 14 14 14 14 14 14 14 14 14 14 1		®													
	- 8				M.L.													
4.	6				3													
44.	.0	arev verv dense	05.6	a J														
		grey, very dense CLAYEY SANDY SILT TILL	24	1		6	SS	70			0					- 1	- J.	
	t	trace gravel, moist	4	S A	-			-							14		- 02	
	1	lioist	Þ	\$														
		31	x	\$ 1									1	1				
			4	4		- 6		- 1								- 1		
			2	7 <u>8</u>													1	
			24	S DA										1				
6.6	5	40	03.7			7	SS	40		C)				1		- 6		
		End of Borehole																
					1	- 1												
	_			_	_									_	-	_		
	DRILL	LED BY: ALTECH Drilling and Investiga	ative Se	rvices	Ltd.	HOLE	DIAM	ETER:	150mm									

DRILL METHOD: Hollow Stem Auger

DRILL DATE: April 20, 2016

SHEET: 1 of 1

DATUM: Geodetic

BOREHOLE No: 10

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 11

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PRO	DFILE			8	SAMPL	.E						T		-			
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0,3m	PE	ENETI 20	RATION BLOW 40	N RESIS /S/0.3m 60	STANCE 80	۲	10	%			UNIT WEIGHT
0.0		409.6		1					_				-				-	
0.2	175mm Topsoil	409.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		245	SS	- 34	a										
	brown, loose to compact SILTY SAND some clay, trace gravel, moist				ৰ	S8	9	G								p		
1.5		408.1		ŀ	2	SS	्म	0.										
	brown, compact to very dense CLAYEY SANDY SILT TILL trace gravel, moist		AL NO NO	DRY (19-Apr-2016)	3	SS	14	[0						•				
li i	grey @ 2.3m		x]	(19														
	1		A N	ЛКY	4	SS	25		Ð									
		100 100 100 100 100 100	A A A A		5	SS	36			0:			•					
		24 24 24	4 26 A		6	SS	50			o	150mm							
		ALL BY WA													1			
6.6		403.1			7	ss	50			01	50mm	1						
	End of Borehole		<u></u>															
וופת	LED BY: ALTECH Drilling and Inves	tigativo Sa	Nices	1 + d		DIAM	ETER	240							_			1
	L METHOD: Hollow Stem Auger	ana og	NCES		DATU		ETER: odetic	2101	ann				ā.					

DRILL DATE: April 19, 2016

BOREHOLE No: 11

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 12

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

SUBSURFACE PROFILE SAMPLE		
E O I O I O H DESCRIPTION H I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I H I I I I I I	VATER COI % 5 10 15 2	T WEIG
0.0 Ground Surface 410.8		
0.2 175mm Topsoil 410.6 2 1 SS 4		
brown, compact SILTY SAND		
o some clay, trace gravel,		•
brown, loose to very dense CLAYEY SANDY SILT TILL trace gravel,		
trace gravel, moist		
21 2 3 SS 6 0	•	
4 SS 40 0		
		11
1 5 SS 40		
44 5 40 44 5 5 5 6 40 6 6 6 6 6 6 6 6 6 6 6 6 6		
<u>o</u>		
EI: 40		
© 6 SS 50 ₀ 50mm		
M.L. 0		
DYNAU COST		
	1.1	
grey @ 6.1m	1.	
6.6 404.3 7 SS 50 0150mm		
End of Borehole		
	1	
DRILLED BY: ALTECH Drilling and Investigative Services Ltd. HOLE DIAMETER: 210mm		
DRILL METHOD: Hollow Stem Auger DATUM: Geodetic		

BOREHOLE No: 12

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-591

FAX (519) 763-5912

UNIT WEIGHT

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 13

SUPERVISOR: M.P.

SUBSURFACE PROFILE SAMPLE WATER CONTENT LOWS/0.3m ELEVATION PENETRATION RESISTANCE DEPTH (m) GROUND WATER % NUMBER BLOWS/0.3m DESCRIPTION SYMBOL ТҮРЕ ZB 20 40 60 80 10 15 20 25 5 0.0 409.0 Ground Surface 0.2 175mm Topsoil 408.8 ł \$\$ 6 ö brown, compact to dense 11 SILTY SAND 1 SS 10 200 11 some clay, trace gravel, moist 12 2 SS 21 boulder @ 1.2m 23 $\|$ cobbles @ 1.5m Y з SS 39 o rock 407 2m± (19-Apr-2016) GS 4 12 iò. 3.0 11 406.0 grey, dense to very dense SAND 5 SS 32 some silt, ш moist 0 <u>.</u>. WET 6 SS 50 o 150mm, rock some gravel @ 6.1m 7 SS 50 6.6 402.5 o150mm End of Borehole

DRILLED BY: ALTECH Drilling and Investigative Services Ltd.

HOLE DIAMETER: 210mm

DRILL METHOD: Hollow Stem Auger

DRILL DATE: April 19, 2016

DATUM: Geodetic SHEET: 1 of 1

BOREHOLE No: 13

V.A. WOOD (GUELPH) INC, CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

DRILL DATE: April 19, 2016

LOCATION: Township of Centre Wellington, ON

SUBSURFACE PROFILE

ENCLOSURE No: 14

SUPERVISOR: M.P.

SAMPLE

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-5912

-								1					- D						- 1 - i
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	'N' BLOWS/0.3m	PEN	В	ATION LOW	l RESI S/0.3m 60	STANC				%	ONT 20	ENT	UNIT WEIGHT
0.0		409.0												1	û.	1	1		1-1
0.2	175mm Topsoil	408.8	~2		1	SS	4	0											
l –	brown, loose to dense		[]]																11
E.	SILTY SAND some clay, trace gravel, moist		11-1		1	SS	7	Ø									•		
		1 1			2	SS	10	ାସ											
	-	1		¥	3	SS	48			οľ	ock								
2.3		406 7		El. 407.2m± (19-Apr-2016) I		1.5.42									0.				
	grey, compact to very dense CLAYEY SANDY SILT TILL		2 - F	-Apr	-														
	trace gravel,		1	(19	4	\$\$	21	9											
	moist		x .	ŧ															
				7.2															
	1	24	1	.40	5	55	17	00						į	•				
		24	\$ v	ш ©															
			7 1		- 1	- 0													1
- 0		D	\$ 1	WET C.I.														- 9	
		2		Ň															
		22	1 2		- 1														
		24	8 1	F	6	SS	38		0										
		1	7 2		-	00			u										
		D	\$ 0		- 1								11						
		Į.		1											- 1				
		8																	
		1																	
			1																
5.6		402.5	- 5		ž	SS	50			o 12	25mm		8.0.;						
	End of Borehole	102.0	14	-											- 8				
		a 10											1.1		ł				1
						- 1											10		
- 1																			
1			1					_						-	_		_		
DRI	LLED BY: ALTECH Drilling and Inve	stigative Se	rvices	Ltd.	HOLE	DIAN	IETER	: 210mm	n										
DRII	LL METHOD: Hollow Stem Auger				DATU	IM: Ge	eodetic												
ייסס																			1

BOREHOLE No: 14

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 15

SUPERVISOR: M.P.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE	PROFIL	E			SAMP	LE								
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	MONITORING	NUMBER	TYPE	N-VALUE		NETRATION ESISTANCE 40 60 8				%	NTENT 20 25	UNIT WEIGHT
0.0	Ground Surface	416.5		*	<u>ה</u>										
0.2	175mm Topsoil	416.3	1		1	SS	4	0							
	brown, loose SILTY SAND some clay, trace gravel, moist			Concrete		SS	5	0					•		
	moist	1 1			2	SS	35	ъ							
1.5		445.0		()	-				1						
	brown, compact to very dense CLAYEY SANDY SILT TILL trace gravel,	415.0		El. 415.3m± (5-May-2016)	3	SS	14	0		Î	a				
	moist		27 27 23 23	(5-N											
		1000	10 20	alug 10 19					£ 1						
				Hole Plug	4	SS	55		0						F -
1		A BARAN	2	0											
					5	GS	50		o 125mm, rock		1	•			
g	ırey @ 4.6m	AL AN AN AN AN AN AN AN		Silica Sand	6	55	53		o						
		410.0			7	SS	50		ം 75mm	-					
-	End of Borehole	410.0			1	82									
	LED BY: ALTECH Drilling and Inv	/estigativ	Soni				210				_				
	L METHOD: Hollow Stem Auger	Congativi	C Gervi		ole dia Atum: G			111							
				5.											

DRILL DATE: April 20, 2016

BOREHOLE No: 15

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 16

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

h	SUBSURFACE PRO	FILE				SAMPI	LE					T					Т
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	'N' BLOWS/0.3m	PENI 20		VS/0.3m 60	STANCE 80		/ATE	%		TENT	
0.0	Ground Surface	415.0			-				'		1		1	1_	1	1	F
0.3	250mm Topsoil	414.8	253	1	1	S5	4	0									
	brown, compact		Ĩ														
	SILTY SAND some clay, trace gravel,				્ત	SS	11	X29				1					
	moist		1110000000		4	1											
				()	2	SS	16	00				P					
1.5		413.5															
1.0	brown, compact to very dense		<u></u> ,	~													Ľ
	CLAYEY SANDY SILT TILL		1000 ST00 H	DRY (20-Apr-2016)	3	SS	13	0				Ι.					
	trace gravel, moist		AL AL	or-2									1				
				P-AI													
				7 (2	4	SS	26		à								
				DR	a	55	20		98 			į					
1					-		225					l.					
				4	5	SS	36		Q				•	à			
		E0 07														Ľ. 1	
		101				1											
		0	2														
	grey @ 4.6m	10	≸ b														
		5	5								- 1						
			5		6	SS	20	ø									
		204										- 4					
1		20	\$ 1									1			1		
1		B	st n									1					
		3	¥ 4														
		J.	x									4					
5.6		100 5			7	ss	65			0		1					- F
.0	End of Borehole	408.5	1-2	-													
			1												- 1		
															- 1		
			1												_		
DRILL	LED BY: ALTECH Drilling and Invest	tigative Se	rvices	Ltd.	HOLE	DIAM	IETER:	150mm	1								
DRIL	METHOD: Hollow Stem Auger				יידעח	M· Co	odetic										
					DULIO	ivi. Ge	ouelic										

DRILL DATE: April 20, 2016

BOREHOLE No: 16

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 17

SUPERVISOR: M.P.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

1		SUBSURFACE PROF	ILE			3	SAMPI	E											Т
	DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	'N' BLOWS/0.3m	F	20	RATIOI BLOW 40	N RESI: /S/0.3m 60 '	STANCE 80			ER C0 %		25	UNIT WEIGHT
	0.0	Ground Surface	413.5												_	_			-
F	0.2	225mm Topsoil	413.3	$\frac{2}{2}$, <u>1</u>	SS	(4)	0										
	3	brown, loose SILTY SAND some clay, trace gravel, some organics,				4	SS	6	a.								•	ŀ	
		moist				2	SS	4	0										
1	.5		412.0	11-1															
F	.5	brown, loose	412.0																
		SAND			t	3	SS	5	31										
		moist			-							-		•					
2	.3		411.2		-	1													
		brown, compact to dense SILTY SAND AND GRAVEL			El. 411.1m± (20-Apr-2016) [,] 1	4	SS	21		61									
	- (*	moist		見る	2016	14	55			(192)									
					\Pr-\		- d												
					50-1	5								14					
			175		ž –	5	SS	43			ΞÓ.				٠				
			225	000	1.1	1								1					
			0.0	Pogl	4													- di	
			1. A	no a	Ш													1	1
4.6	5		408.9	3.4	©														
	1	grey, very dense	400.0	A A	M.L.														
		CLAYEY SANDY SILT TILL trace gravel,	i i i i i i i i i i i i i i i i i i i			6	SS	54			Ċ	ġ.							
	r	moist	2.61	1						10									
			20	7 8															
			20	1															
				A A				- di											
			0	s 8		- 6													
~ ~			4	4		7	SS	50				25mm							
6.6	-	End of Borehole	407.0	1.3	-						01	20mm		•					1
		End of Borenole					1												
	1																		
				68													- 7		
	-					1			_								_		1
D	RILL	ED BY: ALTECH Drilling and Investig	gative Se	rvices	Ltd	HOLE	DIAM	ETER:	21(Omm									
Р	RILI	. METHOD: Hollow Stem Auger																	1
U	1 11-6-	. METTOD. HONOW Stelli Auger				DATU	WI: Geo	odetic											
D	RILL	DATE: April 20, 2016			ι.	SHEE	T: 1 of	1											F

BOREHOLE No: 17

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 18

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PR	OFILE			5	SAMPI	LE											1
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	N ¹ BLOWS/0.3m	PI	ENETI 20	RATIO BLOV 40	N RES VS/0.3n 60	ISTANC n 80		"ER 10 1	%		ENT 25	
0.0	Ground Surface	411.7											 _					1-
0.3	280mm Topsoil	411.4	222		<u>1</u>	SS	3	ō.										
	brown, loose SILTY SAND some clay, trace gravel,				1	SS	9	ō:								٠		
	moist			¥	2	SS	:4	0										
1.5		410.2		16)														
	brown, loose to very dense CLAYEY SANDY SILT TILL trace gravel, moist		14 94 V	El. 410.5m± (20-Apr-2016) il	3	S 8	7	o					3	•				
				2m± (
				410.	4	SS	22		0									
	grey @ 3.0m	N 004 004 004 004 00		W.L. @ El.	5	S5	44			ο.			•					
	•	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100			6	\$\$	80					a						
.6		405.2	AN AN AN		7 3	ss	50			01	125mm							
	End of Borehole																	
	ED BY: ALTECH Drilling and Inve	estigative Ser	rvices I	Ltd. I	HOLE	DIAM	ETER:	210	mm							_]
DRILL	. METHOD: Hollow Stem Auger			Į	DATUI	VI: Ge	odetic											l.

DRILL DATE: April 20, 2016

BOREHOLE No: 18

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 19

SUPERVISOR: M.P.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

		SUBSURFACE PRO	FILE				SAMP	LE									
		DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENE 20	TRATIO BLOW 40	N RESI: /S/0.3m 60	STANCE 80		10 15	6		UNIT WEIGHT
0.		Ground Surface	414.5										<u> </u>	V	1	<u>^</u>	F
0,	2	175mm Topsoil	414.3	11121211		3	SS	4	0								
		brown, compact SILTY SAND some clay, trace gravel,				â	SS		D.								
0.1	8	moist	413.7														
		brown, loose SAND moist				2	85	б	•0								
1.5	+	brown, compact to very dense	413.0														
		CLAYEY SANDY SILT TILL trace gravel, moist		10 AN		3	SS	11	ø					•			
		sand seam @ 2.3m			016)												
1					pr-2	4	SS	19	Ċ								
		grey @ 3.0m			El. 409.6m± (22-Apr-2016)												
					Ť	5						1					
			1 1 1 2 2	AL A	09.61	5	SS	54			orock		•				
				T A	H 14									1			
					0												
	1		1	F 2	DRY C.I. @												
			1														
			4 2		¥	6	SS	50		¢.	125mm,	rock	ł	4			ł.
1	Ľ			*]								-		4			
			T N	\$ B													
ι,	li -		A A	*									1				
	<u>n</u>		×.	8 N													
6.6			408.0	8		Ż	SS	50		۰1	50mm		•			1	
		End of Borehole															
DR	RILL	ED BY: ALTECH Drilling and Invest	ligative Se	rvices	Ltd.	HOLE	DIAM	IETER	: 210mm							1	ĺ
DR	RILL	METHOD: Hollow Stem Auger				DATU	M: Ge	odetic									
DR	ILL	DATE: April 22, 2016				SHEE	T: 1 of	F1									

BOREHOLE No: 19

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 20

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROF	ILE				SAMPI	.E						Τ				
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENE 20	BL		RESIS 5/0.3m 60	STANCE 80			ER C %		UNIT WEIGHT
0.0	Ground Surface	413.1														1	-
	410mm Topsoil		2/1/2		1	SS	4	0					1				11
0.4	In any one lange a	412.7	2		1	SS	7	0									11
	brown, loose SILTY SAND		11:					0								•	
	some clay, trace gravel,																
	moist				2	SS	7	0									
1.5		411.6															11
1.7	grey, compact	411.4															
	SAND AND GRAVEL	1	1		3	SS	20	o					μ.	•			
	grey, compact	4	4 N	l t													11
	CLAYEY SANDY SILT TILL		4														
	trace gravel, moist		24		4	SS	20	0					ñ u				P 4
	moist		201	ł	-		20										
3.0	grey, dense	410.1	4 84	16)													
	SAND	1 1		407.6m± (21-Apr-2016)													
	some silt,			₫	5	SS	49			0				•			
- 1	moist			(51													
				t a											1		
				07.6													
4.6				Ш. 4	- 1	1											
	grey, very dense	408.5	14 1	0													
	CLAYEY SANDY SILT TILL	100		C.I.	6	SS	50			0			1		b 1		
1	trace gravel, moist	(H)		DRY													
1	moist	1000	4 24														
			\$ 0	Ā		- P										1	
1																	
		1.1					- 10										
		P			_		_										
5.6		406.6			7	SS	50			ა 12	25mm						8
	End of Borehole																
DRIL	LED BY: ALTECH Drilling and Invest	igative S	ervices	Ltd.	HOLE		ETER:	210mm									1
	L METHOD: Hollow Stem Auger						odetic										

DRILL DATE: April 21, 2016

BOREHOLE No: 20

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 21

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	1	E PROFIL	E				SAMPI	.E										
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL		MONITORING	NUMBER	ТҮРЕ	N-VALUE	PE R 20	ENET ESIS 40	RATIO TANC 60	DN E 80		АТЕ 10	%	6	ENT 25	UNIT WEIGHT
0.0	Ground Surface 250mm Topsoil brown, loose to compact SILTY SAND some clay, trace gravel, moist to wet brown, dense to very dense CLAYEY SANDY SILT TILL trace gravel, moist	413.9 413.7 411.6		a Sand Hole Plug Protective Casing El. 408.1m± (5-may-2016)	19mm Riser Concrete	2 1 1 2 3 4 5	<u>ک</u> <u>SS</u> <u>SS</u> <u>SS</u> <u>SS</u> <u>SS</u>	2 4 7 4 15 39 60	20	40	orock		•	10	15	20	•	
g	rey @ 4.6m End of Borehole	407.3	A A	Slitca Sand Slitca Sand M.L. @ El. 408.1m±	Screen	6	55 55 55	31	o	o 12	25mm		•					

DRILL DATE: April 21, 2016

DRILL METHOD: Hollow Stem Auger

SHEET: 1 of 1

DATUM: Geodetic

BOREHOLE No: 21

Т

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 22

SUPERVISOR: M.P.

T

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PRO	FILE			5	SAMPI	E										T
DEPTH (m)		ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENETR	ATION BLOW 40	N RESI S/0.3m 60	STANCE 80			R CC %		ENT 25	UNIT WEIGHT
0.0		414.6											_	-			-
0.2	2 200mm Topsoil brown, compact	414.4	11 to the second	1	Ŭ.	SS	3	6						1		Ĩ.	
0.8	SILTY SAND	413.8			1	SS	10	D							٠		
	brown, loose to very dense CLAYEY SANDY SILT TILL trace gravel, moist		10 22 20		2	SS	8	0						ŀ			
			12 12 12	DRY (21-Apr-2016)	3	SS	27	ō			_		۲				
				(21-A													
		1000		DRY	4	SS	25	Ö									
			10 20 X		5	SS	64			0							
	grey @ 4.6m	1 AT 21			6	SS	53		ġ								
	grey, very stiff SILTY CLAY	408.5	1 2 2 2)			
6.6	some sand, moist	408.1	2	1	<u>7</u> 3	55	25	o rock	¢.					•			
	End of Borehole											1					
DRII	LLED BY: ALTECH Drilling and Invest	igative Se	rvices	Ltd.	HOLE	DIAM	ETER:	210mm									i
	L METHOD: Hollow Stem Auger				DATU												

BOREHOLE No: 22

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 23

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

[SUBSURFACE PRO	FILE	14		6	SAMPL	.E				-						-	T
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	"N" BLOWS/0.3m	P	ENETF	RATIOI BLOW 40	N RESI: /S/0.3m 60	STANCE 80	5	10	%			UNIT WEIGHT
0.0	Ground Surface	414.1												-			1	P
0.3	280mm Topsoil	413.8	222		t,	SS	4	ŧ							T			
0.8	brown, loose SILTY SAND some clay, trace gravel, moist	413.3			1	SS	7	0							•	¥.		
	brown, loose to compact SAND moist to wet				2	SS	8	0										
				DRY (21-Apr-2016)	3	SS	19		6						59	0		
2.3	grey, dense to very dense	411.8	J.J. J	21-A														
	CLAYEY SANDY SILT TILL trace gravel, moist		20 20 10 10	DRY (;	4	SS	45			n								
				-	5	55	34		Ċ	0,				a				
		A4 A4 A4 A			6	SS	73				0	rock						
6		407.6	N 1 1 1 1		7	SS	50			o 1	25mm				3			
	End of Borehole																	
DRILL	ED BY: ALTECH Drilling and Inves	tigative Se	rvices	Ltd.	HOI F	DIAM	ETER	210	mm			t				_		Ì
	METHOD: Hollow Stem Auger							210										
DIVICE	me more nonow stem Auger				DATU	wi: Ge	odetic											1

DRILL DATE: April 21, 2016

SHEET: 1 of 1

BOREHOLE No: 23

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 24

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PR	OFILE			5	SAMPL	.E							_		T
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENE 20	BLO	ON RESI NS/0.3m 60	STANCE 80			%	TENT	
0.0		414.9												1,	<u> </u>	+-
0.2		414.7	22 22		1	SS	4	0				1.7				
	brown, loose to compact SANDY SILT trace clay, moist				1	SS	10	Ċ.						•		
1.5		413.4		r-2016)	2	SS	7	0								
	brown, compact SAND some silt, some gravel, wet			Ei. 411.2m± (22-Apr-2016)	3	SS	22	Q		_				•		
2.3		412.6		1.2m												6
3.0	brown, compact CLAYEY SANDY SILT TILL trace gravel, moist	411.9		0	4	SS	16	Q							1	
	grey, very stiff SILTY CLAY some sand, moist		TH TH TH	ul▲ WET C.I.	5	SS	26	o					•			
4.6	grey, very dense CLAYEY SANDY SILT TILL trace gravel,	410.3	1 an	_	6	SS	78				0					
6.6	moist	408.3	A A A A A A		7 5	55	50		0	100mm						
	End of Borehole		1:512													
DRIL	LED BY: ALTECH Drilling and Inve	estigative Ser	vices	Ltd.	HOLE	DIAM	ETER:	210mm								ī
	L METHOD: Hollow Stem Auger	-			DATU											

BOREHOLE No: 24

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 25

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFAC	E PROFIL	.E			:	SAMPI	.E					1	_			-	
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	MONITORING		NUMBER	ТҮРЕ	N-VALUE	PE R 20	ENETI ESIS ⁻ 40	RATIO TANC 60	ON E 80			9	%	TENT	UNIT WEIGHT
0.0	Ground Surface 150mm Topsoil brown, loose to compact CLAYEY SANDY SILT	415.8		Protective Casing	ete	1	\$\$ \$\$	4	0									
	trace gravel, moist to wet			Protective Ca	Riser Concrete	2	55	8	19	ALC: NOT A						•		
2.3	wet sand seams @ 1.5m grey, compact to very dense	413.5		Hole Plug	19mm Riser	3	55	16	¢.						•	í		
	ČLÁYEY ŠANDY SIĹT TILL trace gravel, moist to wet			Hole F Hole F EL 411.5m± (5-May-2016)	-	4	SS SS	28	0			-				1		
			Pr. Pr. Nr. Pr. Pr. Pr. Pr. Pr. Pr. Pr. Pr. Pr. P		Silica Sand	6	SS	50		01	00mn							
.6	End of Borehole					7	SS	50		o 12	25mm							
DRIL	End of Borehole	nvestigativ	ve Servio	ces Ltd.	HOLE	E DIAN	METER	: 210m										

DRILL METHOD: Hollow Stem Auger

DATUM: Geodetic

DRILL DATE: April 22, 2016

BOREHOLE No: 25

Т

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 26

SUPERVISOR: M.P.

Т

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PRO	5	SAMPI	-E									Τ			
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENETF	RATION BLOWS	/0.3m	NCE	TER	%			FINIT MELOLIT
0.0	Ground Surface	415.6												<u></u>	<u></u>	1
0.3	330mm Topsoil	415.3	12		3	SS	3	ē.								
	grey/mottled, loose SILTY SAND some clay, trace gravel, moist				Ť	55	B	<u>р</u> .						•		
1.5		414.1		ļ	2	55	6	a								
	grey, compact				1											
	SAND wet				3	\$\$	14	063C						•		
2.3		413.3														
	grey, dense to very dense CLAYEY SANDY SILT TILL		4	H												
	trace gravel,		at a	016)	4	\$\$	31	¢.								
	moist	1010		pr-2												
		411000		22-A	5	SS	35	10	40						1	
			an an an	ŧ	-	55		3	c .			,				
		ALL		'i∬ DRY C.I. @ EI. 410.4m± (22-Apr-2016)	6	55	50		o 12	5mm, roc	×					
6.6	End of Borehole	409.1			7 4	55	50		∘ 50	mm, rock						
	ED BY: ALTECH Drilling and Invest	igative Se	ervices		HOLE			: 210mm								

DRILL DATE: April 22, 2016

BOREHOLE No: 26

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 27

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PR		8	SAMPL	.E					1			Π		
DEPTH (m)		ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENET	RATION BLOW 40	N RESIS S/0.3m 60	STANCE		10 1	6	UNIT WEIGHT
0.		415.0											_		 F
0.2		414.8	frank reaction		1	SS	4	ø							
0.8	brown, compact SILTY SAND some clay, trace gravel, moist	414.2			ł	\$\$	10	2					•		
	brown, compact to very dense SAND some silt, wet				2	S S	10	ē							
				016)·I∱	3	SS	10	Þ						۲	
	grey @ 2.3m			413.2m± (21-Apr-2016) 1	4	SS	22	o			3				
				El. 413.2m±	5	SS	16	in							
				WET C.I. @ E											
					6	SS	58			o rock					
<u>6.1</u> <u>6.6</u>	grey, very dense CLAYEY SANDY SILT TILL trace gravel, moist End of Borehole	408.9 408.5			7	SS	50		o 7:	5mm					
	ILLED BY: ALTECH Drilling and Inve ILL METHOD: Hollow Stem Auger			ETER:	: 210mm										

DRILL DATE: April 21, 2016

BOREHOLE No: 27

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON

ENCLOSURE No: 28

SUPERVISOR: M.P.

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROFILE							.E											
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	MONITORING	MONITORING		ТҮРЕ	N-VALUE				RATIO TANC 60				%	TEN 0 25		UNIT WEIGHT
0.0	Ground Surface 175mm Topsoil	414.1	27 12		Casing	4	SS	â	a		ц								
	brown, compact SILTY SAND some clay, trace gravel, moist			Concrete	Protective Casing	ï	SS	12	6		N					•			
1.5	grey, compact to very dense	412.6				2	SS	11	ିର										
	grey, compact to very dense CLAYEY SANDY SILT TILL trace gravel, moist		20 20 20		19mm Riser	3	SS	14	Ø						é				
				Hole Plug		4	SS	36		\$									
				408.5m± \$5-May-2016)		5	SS	79			141-141-141-141-141-141-141-141-141-141		¢	•	1				
		11 AN AN AN AN AN AG				6	\$\$	37		c	The second s								
6.6		407.6	24 X			ż	SS	54	-		IG:				•				
	End of Borehole																		
	LED BY: ALTECH Drilling and I		e Servi			E DIAN UM: Ge			m										
	L DATE: April 21, 2016		ET: 1 of																

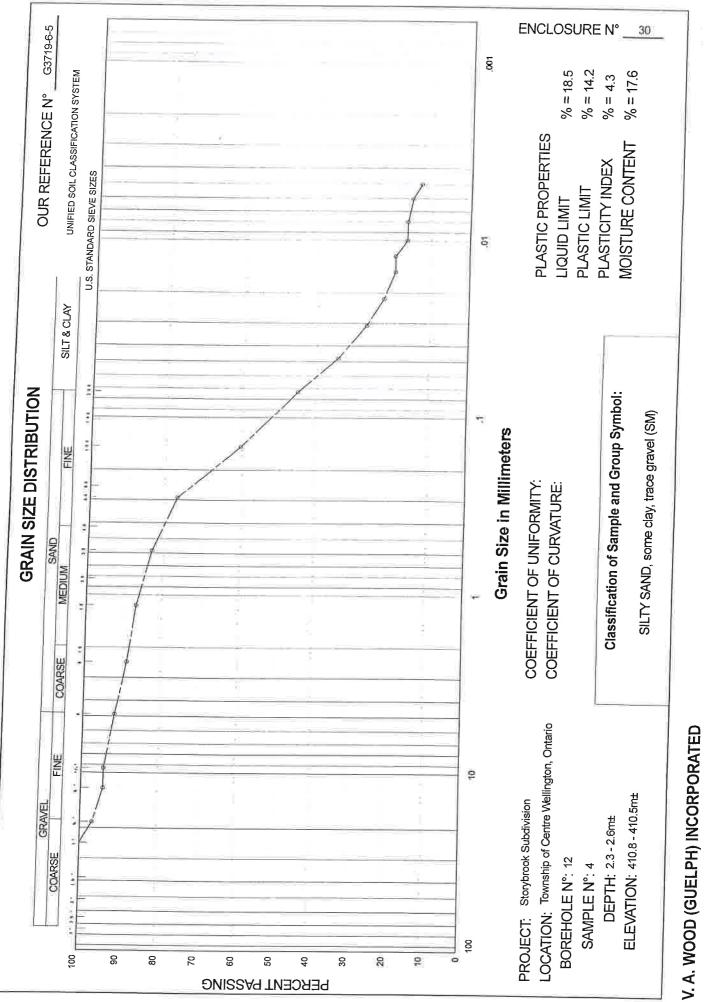
REFERENCE No: G3719-6-5

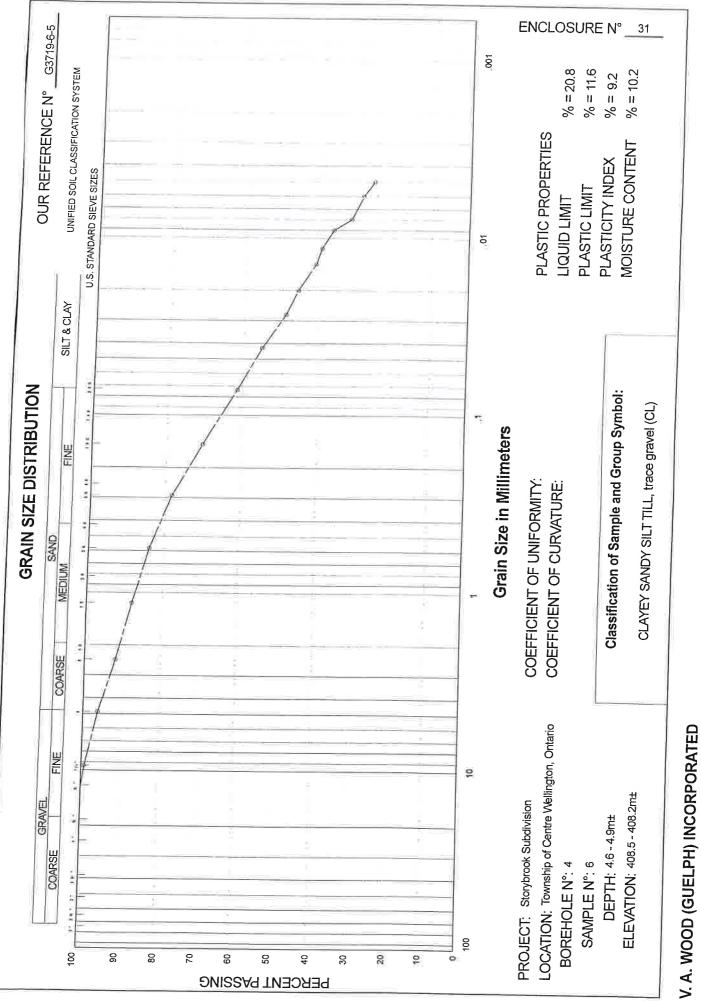
BOREHOLE No: 28

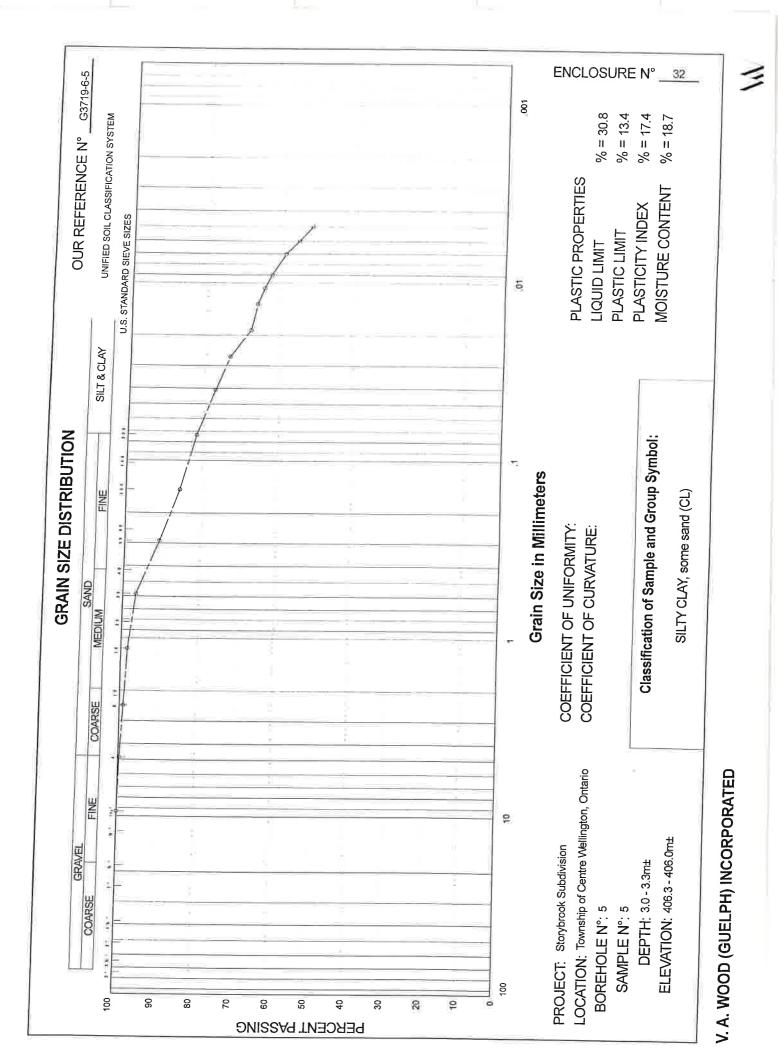
CLIENT: Nigus Fergus Joint Venture

PROJECT: Storybrook Subdivision

LOCATION: Township of Centre Wellington, ON


ENCLOSURE No: 29


SUPERVISOR: M.P.


V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

		SUBSURFACE PRO	FILE			1	SAMP	LE	Τ										
	DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	'N' BLOWS/0.3m	P	20	RATIO BLOW 40	N RESI /S/0.3m 60	STANCE 80			ER C %)	ГЕNT 25	UNIT WEIGHT
	0.0	Ground Surface	414.	8					1			_				<u></u>	f	<u></u>	
C).3	300mm Topsoil	414.	$\frac{1}{2}$		1	SS	4	5				· · · · ·						11
		brown, loose SILTY SAND				.1	SS	7	0										11
0	.8	some clay, trace gravel, moist	414.0) _					İ					1			Ĩ		
		brown, loose SAND				2	SS	5	0										
1.	.5	some silt,	413.3																
		moist																	
	1	brown, compact to very dense CLAYEY SANDY SILT TILL		AN AN		3	SS	11								e i			6
		trace gravel, moist		84 B															
				d Sta															
						4	SS	27		0									
				27 2	16)									1					64
	1	cobbles @ 3.0m			El. 409.3.m± (21-Apr-2016)														
	ŀ			A A	1-Å	5	SS	50			0	125mm	i, rock		٠				
				No.	1	1								l.				Y I	
			1	8 ⁴ 8	3.1														
				27 2	409.														
	1			A 8	ш														
1	g	ırey @ 4.6m		4.8 0	0		245	- 37											
					DRY C.I. (6	SS	54			3	b)							
					DR														
				AT 28	¥											ŧ			
				21 2															
T I	1																		1
					-			2000											1
6.6	-		408.3	1		7	SS	57				0		8	6				
		End of Borehole						6											
																<u>p</u> 1			
	Ľ.,												-						
DF	RILLI	ED BY: ALTECH Drilling and Invest	igative S	ervices	L.td.	HOLE		/IETER	: 210	mm									1
DF	RILL	METHOD: Hollow Stem Auger				DATL	IM: Ge	eodetic											
DR	RILL	DATE: April 21, 2016				SHEE	T: 1 o	f 1											

Consulting Geotechnical & Environmental Engineering Construction Materials Engineering, Inspection & Testing

HYDROGEOLOGICAL STUDY **PROPOSED RESIDENTIAL SUBDIVISION** NIGUS PROPERTY TOWNSHIP OF CENTRE WELLINGTON, ONTARIO

Prepared For: Sorbara Development Group 3700 Steeles Avenue West, Suite 800 Vaughan, Ontario L4L 8M9

Attention: Mr. Andy Margaritis

> File No.: 1-07-2438 © Terraprobe Limited January 6, 2009

Distribution of Report:

6 copies	_	Sorbara Development Group
1 сору	_	Terraprobe Limited

Terraprobe Limited

10 Bram Court Brampton, Ontario L6W 3R6

220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8 (905) 796-2650 Fax: 796-2250 (705) 739-8355 Fax: 739-8369

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558 www.terraprobe.ca

903 Barton Street, Unit 22 Stoney Creek, Ontario L8E 5P5 (905) 643-7560 Fax: 643-7559

TABLE OF CONTENTS

1.0	Introdu	ction	. 1
2.0	Proced	ure	2
3.0	Site and	d Project Description	3
	3.1	Site Location and Project Description	3
	3.2	Site Drainage and Topography	3
	3.3	Local Geology and Hydrogeology	3
	3.4	Site Inspection to Assess Hydrogeologic Features	.4
	3.5	Local Climate	5
4.0	Results	of Investigation	6
	4.1	Subsurface Investigation	6
	4.1.1	Topsoil	7
	4.1.2	Disturbed/Weathered Soil Zone	.7
	4.1.3	Clayey Silt to Sandy Silt Till	.7
	4.1.4	Sandy Silt	7
	4.1.5	Sand and Gravel Deposits	7
	4.1.6	Ground Water	8
5.0	Discuss	sion and Recommendations	9
	5.1	Overview of Hydrogeologic Features of Site	9
	5.2	Water Balance1	0
	5.3	Maintenance of Ground Water Recharge 1	0
	5.4	Maintenance of Ground Water Transmission Pathways1	1
6.0	Summa	ary and Conclusions 1	2
Referen	nces		4

LIST OF TABLES

Table 1: MOE Well Record Summary Table 2: Ground Water Elevations Table 3: Water Balance

LIST OF FIGURES

Figure 1: Site Location Plan Figure 2: Site and Borehole Location Plan Figure 3: MOE Well Location Plan Figure 4: A-A' Hydrogeologic Cross Section Figure 5: B-B' Hydrogeologic Cross Section Figure 6: Ground Water Elevations

LIST OF APPENDICES

Appendix A: MOE Water Well Records Appendix B: Borehole Logs Appendix C: Grain Size Analysis

1.0 INTRODUCTION

Terraprobe Limited was retained by the Sorbara Development Group to evaluate a proposed residential development in the Township of Centre Wellington, Ontario (Figures 1 & 2). The purpose of the evaluation was to provide information regarding the hydrogeological considerations for development of the property, including:

- hydrogeologic setting of the property;
- document existing ground water levels;
- identification of ground water recharge and discharge zones;
- contribution of the property to base flow in surrounding watercourses; and,
- requirements and design measures which can be used to maintain the ground water function of the site.

2.0 PROCEDURE

The scope of work for the study consists of the following:

- A review of available geologic and hydrogeologic information for the site including topographic mapping, geologic mapping, MOE well records, and the results of previous investigations conducted by Terraprobe and others in the area.
- A review of meteorological data to assess local climate and water balance.
- A detailed visual inspection of the site and surrounding areas to determine local topography and drainage. The presence of significant hydrogeologic features such as closed depressions (areas of ground water recharge), seeps, springs, or presence of phreatophytic vegetation was assessed.
- A subsurface investigation of the site consisting of drilling a series of twenty (20) boreholes. Standpipe piezometers were installed at each borehole location to assess shallow ground water levels. Nested piezometers were installed at two locations to determine the vertical gradient.

3.0 SITE AND PROJECT DESCRIPTION

3.1 Site Location and Project Description

The site is located north of Colborne Street and west of Beatty Line North, in the Township of Centre Wellington (Figure 1). The property to be developed is an irregular-shaped parcel of approximately 100 ha (250 acres) in total size. The property is bounded by Colborne Street to the south, Beatty Line North and a former rail line to the east, Colborne Street and agricultural lands to the west and agricultural lands to the north.

The property comprises agricultural fields and a rural dwelling is located in the central portion of the site. A woodlot is located in the west central portion of the site and a tributary to Irvine Creek, known as Nichol Drain No. 1, crosses through the site in an east-west direction. A drainage swale is located in the northwestern portion of the site, which drains to the south towards the woodlot.

The property is proposed to be developed as a residential subdivision. The proposed development (low and medium density) would include single family and town houses lots, open space blocks and internal roads. A school is proposed for the southeast corner of the property, and some commercial development in the central portion. The development will be serviced by sanitary and storm sewers and municipal water.

3.2 Site Drainage and Topography

The subject site consists of gently rolling lands, and generally slopes down to the north in the southern portion of the site (south of the Nichol Drain), to the south in the area immediately north of the Nichol Drain, and to the west in the north east portion of the site. Elevations on site range from approximately 409 m at the western portion of the Nichol Drain to about 420 m in the west central portion of the site.

Surface water drainage at the site is directed towards the Nichol Drain in the southern portion of the site and to the drainage swale in the north east portion of the site. A drainage ditch is located along the southern boundary of the property (along Colborne Street), which receives some surface water drainage from the southernmost portion of the site. The Nichol Drain flows to the west and discharges to Irvine Creek, a tributary to the Grand River.

3.3 Local Geology and Hydrogeology

Based on geologic mapping of the area, the overburden materials in the vicinity of the site generally consist of deposits of Wentworth Till, which comprises sandy glacial till. Lacustrine kame and outwash sand is located in the vicinity of the Nichol Drain which crosses through the property. A deposit of

outwash gravel is located in the northeast corner of the property. The overburden materials are underlain by bedrock of the Guelph Formation, which consists of dolostone. The bedrock elevation in the vicinity of the subject site is approximately 400 masl, and the thickness of overburden is on the order of 20 to 25 m.

Local hydrogeologic conditions were assessed based on information obtained from Ministry of Environment well records (Appendix A). Selected well records are plotted on Figure 3. Geologic cross-sections were prepared using the well records and are presented in Figures 4 and 5.

A buried bedrock valley feature crosses through the area, beginning on the west side of Bellwood Lake, approximately 6 km northeast of the property, and extending in a southwest direction, crossing the Grand River at the Elora Gorge, approximately 1.5 km southwest of the subject property. Based on the MOE well records for the area, the bedrock valley is located immediately southeast of the subject property. Two wells in this area were drilled to depths of approximately 70 m and did not encountered bedrock, as shown on the attached Figure 4. The bedrock valley in this area is filled with glacial till, underlain by sand deposits.

A review of the MOE water well records was conducted for wells within 1 km of the site. The records indicate the majority of the wells in the vicinity of the site are drilled and completed in the deep confined system (bedrock aquifer). The pumping rates of the wells are generally less than 10 gpm. A summary of MOE water records is provided in the attached Table 1. It is noted that the urban portion of Fergus is serviced with municipal water obtained from wells completed in the bedrock aquifer.

In summary, two distinct zones of ground water transmission (aquifer zones) can be identified in the area:

- A shallow aquifer system, which is found at a depth of several metres or less. This system consists of an unconfined shallow water table. Perched water is noted in the sand and gravel deposits within the glacial till. The ground water flow rates within this unit will be slow as a result of the low permeability of the glacial till soils.
- A deep confined system that is typically found at depths of 20 to 25 m below ground surface. This system consists of dolostone bedrock found beneath the upper deposit of glacial till.

3.4 Site Inspection to Assess Hydrogeologic Features

A detailed site inspection was conducted to assess the presence of features which are significant from a hydrogeologic viewpoint. In particular, the site was inspected to assess the following:

- The presence of closed drainage features or depressions which may allow for ponding and significant infiltration of water.
- Inspection of swales and drainage courses for evidence of ground water seepage or springs.
- Assessment of the presence of phreatophytic vegetation, which may indicate seasonally high ground water levels and/or ground water discharge and seepage.

The results of the inspection performed in June 2008 indicate that there are no significant low-lying areas or closed depressions which allow for ponding and infiltration of ground water. The Nichol Drain crosses through the southern portion of the property, and flows to the west. The Nichol Drain has been channelized in the past, and has been used to convey drainage from the farm lands. This feature was flowing at the time of our site inspection. The ground and banks were wet due to recent rainfall. No seepage or springs were identified during our site inspection.

A woodlot in located in the west central portion of the site, which contains a wetland feature. This wetland feature appears to be partially fed by the drainage swale located in the northwestern portion of the site. This drainage swale receives flow from the discharge of tile drains from the neighbouring property to the north and surface water drainage. This feature was dry during our site inspection and it appears that it does not flow in the dry seasons. No seepage or springs were noted during our site inspection.

3.5 Local Climate

The site is situated in a climatic region known as Huron Slopes. The climate is characteristic of Southern Ontario, consisting of temperate conditions with an excess of rainfall (i.e., rainfall exceeds evaporation and evapotranspiration). Table 3.1 summarizes climatic conditions for the area based on Environment Canada weather records from 1950 to 1980 (Brown et al., 1980).

Table 3.1: Climate Data	
Mean annual frost-free period	135 days
Mean annual total precipitation	890mm
Mean annual actual evapotranspiration	560 mm
Mean annual water surplus	330 mm

As noted above, there is a mean annual water surplus of approximately 330 mm. This represents the volume of water that is available for ground water recharge and runoff.

4.0 RESULTS OF INVESTIGATION

4.1 Subsurface Investigation

The subsurface investigation of the site was conducted between January 14 and 17, 2008. It consisted of drilling and sampling a total of twenty (20) exploratory boreholes extending to a depth of about 4.6 m to 9.3 m below ground surface. The ground surface elevations at borehole locations were estimated from the topographic information provided by the client, and are referenced to geodetic datum.

The drilling was conducted under the full time supervision of a Terraprobe field technician who logged the borings and examined the samples as they were obtained. The results of the investigation are provided in detail on the accompanying borehole logs (Appendix B).

Soil samples were obtained from the boreholes using a split-barrel sampler advanced by a 63.5 kg hammer dropping approximately 760 mm. The results of these Standard Penetration Tests are reported as "N" values on the borehole logs at the corresponding depths.

Samples obtained from the boreholes were inspected in the field immediately upon retrieval for type, texture, colour and odour. The samples obtained were then sealed in clean plastic containers and transferred to the Terraprobe laboratory where the samples were examined. Appropriate samples were selected for laboratory testing. Laboratory testing consisted of grain size analysis by sieve/hydrometer.

Ground water conditions were monitored during and at the completion of each borehole. Standpipe type piezometers comprising of 20 mm diameter PVC tubing were installed at each borehole location to facilitate shallow ground water monitoring. Nested piezometers were installed at two borehole locations (Borehole 12 and 17). The PVC tubing was slotted near its base and fitted with a bentonite clay seal as shown on the accompanying borehole logs. Water levels in the standpipes were measured on three occasions to determine seasonal variations in the ground water levels.

In summary, the boreholes generally encountered a topsoil layer at the ground surface underlain by glacial till materials, comprising clayey silt to sandy silt. Layers of sand and gravel were encountered along the Nichol Drain and in the northeast corner of the site.

A brief summary of the subsurface soils encountered at the site is presented below. The stratigraphic information is presented in detail on the enclosed borehole logs. It should be noted that the soil conditions are confirmed at the borehole locations only and may vary between and beyond the boreholes. The stratigraphic boundaries as shown on the logs are based on a non-continuous sampling. These boundaries represent an inferred transition between the various strata, rather than a precise plane of geologic change.

4.1.1 Topsoil

A topsoil layer varying in thickness from about 200 to 1170 mm was encountered at the ground surface at all borehole locations. The topsoil is dark brown to black in colour, and predominantly consists of a silt matrix.

It must be noted that the data provided here pertaining to the topsoil thickness is confirmed at the respective borehole locations only, and may vary between and beyond the boreholes. Further, the above data may not be sufficient for estimating the topsoil quantities and/or associated costs.

4.1.2 Disturbed/Weathered Soil Zone

A zone of weathered/disturbed soil was penetrated beneath the topsoil layer in Boreholes 2, 3, 4, 5, 9, 10, 11, 12, 14, 18 and 20. The disturbed/weathered soil zone extended to depths of about 0.7 m below ground surface. The composition of the soils encountered within this zone was similar to that of the underlying undisturbed native soils but included trace amounts of natural organic soil (topsoil).

4.1.3 Clayey Silt to Sandy Silt Till

Clayey silty and/or sandy silt glacial till deposits were encountered at each borehole location. In Boreholes 3, 5, 9, 10, 11, 12, 14, 16, 17, 18 and 20 the glacial till deposits were encountered beneath the topsoil and extended to the full depth of investigation. In Boreholes 1, 2, 4, 6, 7, 8, 13, 15 and 19 clayey to sandy silt till deposit was encountered at varying depths, interbedded with (above or below) sand deposits. The glacial till deposits extended to the full depth of investigation at each borehole location.

The grain size distribution curves of three samples obtained from this deposit (Borehole 5, Sample 4; Borehole 7, Sample 5; and, Borehole 16, Sample 3) are appended.

4.1.4 Sandy Silt

A layer of sandy silt was encountered beneath the topsoil in Boreholes 1, 6, 7, 8, 13, and 19. This layer extended to a depth of up to about 1.2 m below ground surface. This layer generally contained trace to some clay and trace organic soil (topsoil) and rootlets.

4.1.5 Sand and Gravel Deposits

Sand layers were encountered in Boreholes 1, 2, 4, 6, 7, 8, 13, 15 and 19. The sand deposits encountered in Boreholes 1, 4, 6, 7 and 19 were generally only about 0.4 to 0.7 m in thickness and were underlain by glacial till deposits.

Combinations of sand and gravel deposits ranging from approximately 2.4 to 3.2 m in thickness were encountered in Boreholes 8, 13 and 15, located along the Nichol Drain, and in Borehole 2, located in the northeast corner of the property. These sand and gravel deposits ranged from fine sand with trace silt to sandy gravel in composition. The sand and gravel deposits were fully penetrated at each of these boreholes locations, and were underlain by glacial till deposits.

The grain size distribution curves of two samples obtained from the sand and gravel deposits (Borehole 8, Sample 3 and Borehole 13, Sample 5) are appended.

4.1.6 Ground Water

Standpipe piezometers were installed at each borehole location to assess shallow ground water levels. Water levels measurements were obtained on January 28, 2008, March 28, 2008 and June 23, 2008. These water level measurements are provided in the attached Table 2. The ground water elevations from the June 23, 2008 measurements are shown on the attached Figure 6.

Shallow ground water flow at the site generally follows site topography and flows to the northwest in the areas to the south of the Nichol Drain, to the southwest in the areas immediately north of the Nichol Drain, and to the northwest in the northern portion of the site. The ground water levels were generally found to be within 2 m of ground surface.

Nested piezometers were installed at two locations (BH 12 and 17), in the order to determine the vertical gradient. The water level measurements from these wells are presented below:

Well No.	Depth	G	round Water Elevation	on
Wen NO.	Deptil	January 28, 2008	March 28, 2008	June 23, 2008
12S	4.6	407.8	407.7	407.9
12D	9.1	405.3	407.0	407.1
17S	4.6	408.5	408.4	408.2
17D	8.8	407.4	406.8	406.5

Generally, the water level in the shallow wells is at a higher elevation than the corresponding deep wells, indicating that there is a downward gradient.

5.0 DISCUSSION AND RECOMMENDATIONS

The following discussion and recommendations are based on the data gathered for this study. They are presented for site planning purposes. It is noted that further engineering consultation will be required during the final design and construction of the development.

5.1 Overview of Hydrogeologic Features of Site

The results of the study indicate that the site hydrogeologic characteristics can be summarized as follows:

- Generally, the site stratigraphy predominantly consists of low permeability sandy silt to clayey silt glacial till deposits. Sand and gravel deposits were noted in the vicinity of the Nichol Drain and the northeast corner of the property.
- The Nichol Drain crosses through the southern portion of the site and flows towards a woodlot located in the west central portion of the site. A drainage swale flows in the southerly direction from the north property boundary to the woodlot. A wetland feature is located in the woodlot, which appears to the partially fed by the drainage swale. The drainage swale receives its flow from the discharge of tile drains on the property to the north of the site, and surface water drainage.
- The water table was typically found within 2 m of ground surface. Shallow ground water flow at the site generally follows site topography and flows to the northwest in the areas to the south of the Nichol Drain, to the southwest in the areas immediately north of the Nichol Drain, and to the northwest in the northern portion of the site.
- The local water wells are typically drilled wells completed in the dolostone bedrock, which is typically encountered at a depth of 20 to 25 m below ground surface. A buried bedrock valley feature is located immediately southeast of the subject site.

Based on these factors, the primary considerations with respect to the hydrogeologic aspects of site development will be the following:

- Preservation or enhancement of ground water recharge across the property area (i.e., no net reduction in recharge to aquifers).
- Preservation of ground water flow and transmission pathways.

The above objectives should be considered in conjunction with the requirements for site development and, in particular, storm water management practices at the site.

5.2 Water Balance

A water balance was conducted to assess the infiltration recharge rates at the site for pre-development and post-development conditions. The water balance was conducted using Environment Canada data presented in Section 3.5 of this report.

The calculations are summarized in Table 3.

The results of the water balance calculations indicate the following:

- The development of the site, and coverage with hard-surfaced areas, will reduce ground water infiltration rates and increase run-off.
- The volume of roof run-off created following development exceeds the potential loss in infiltration (roof run-off = $265,242 \text{ m}^3/a$, while loss of infiltration = $78,019 \text{ m}^3/a$).
- Ground water infiltration rates at the site can be maintained or enhanced through the infiltration of roof run-off. The calculations indicate that approximately 29% of the roof runoff would be needed to maintain the pre-development infiltration rates.

5.3 Maintenance of Ground Water Recharge

The existing ground water recharge rates at the site are expected to be approximately 165 mm/a. This recharge occurs in a broad or diffuse manner over the entire site. There are no significant local depressions or zones of enhanced recharge.

The site will generally be developed as a residential subdivision, with some commercial development in the central portion of the site. The water balance presented in Table 3 should be revised as additional details become available when the development plans are finalized. In general, development of the site will result in creation of hard surfaced areas and will result in an increase in water available for runoff. It will also result in a considerable decrease in evapotranspiration. This net increase in runoff provides an opportunity for maintenance of ground water recharge through a variety of infiltration techniques.

Based on site conditions, there are a number of storm water management techniques which are available to maintain ground water recharge rates. Roof leaders for the buildings could be discharged to overland flow or to an infiltration facility. Infiltration facilities may be considered in the area of commercial development. This could include one or more of the following:

- Soak-away pits or gravel-filled trenches (to capture and store runoff to allow infiltration)
- An underground perforated pipe system (leaky pipe)

An assessment of an enhanced infiltration system design can be completed once plans for the development are finalized.

5.4 Maintenance of Ground Water Transmission Pathways

In general, the overall continuity of the ground water flow at the site should be maintained, where practical. Generally, the ground water transmission pathways can be maintained through the following means:

- If basements are constructed below the water table they will require foundation drains. Water collected in foundation drains could be pumped to an infiltration facility to allow the ground water to re-infiltrate. However, it is expected that a limited amount of water would be collected from foundation drains in areas underlain by glacial till as a results of the low permeability of this soil.
- The bedding materials for underground services may serve as a subdrain to collect and convey ground water away from existing ground water transmission zones. This effect can be mitigated by the provision of trench plugs to cutoff granular bedding at all manhole locations.
- The excavation of underground services across sand layers may interrupt ground water flow. Trench backfilling operations should be carried out with materials that are similar to the materials that have been excavated. In particular, sand zones must not be truncated by backfilling of the trench using lower permeability materials (such as the silt till identified across the bulk of the site). The continuity of sand zones can be ensured by backfilling with native sandy material as excavated.

As part of final design, proposed site grading, drainage, and servicing plans should be reviewed by this office. The review should specifically address the requirement to maintain the zones of ground water transmission, as noted above.

6.0 SUMMARY AND CONCLUSIONS

- 1. Generally, the site stratigraphy predominantly consists of low permeability sandy silt to clayey silt glacial till deposits. Sand and gravel deposits were noted in the vicinity of the Nichol Drain and in the northeast corner of the property.
- 2. The primary hydrogeologic function of the site is the provision of ground water recharge across the site and the maintenance of ground water flow or transmission pathways.
- 3. A wetland feature is located in the woodlot in the east central portion of the site, which appears to be fed by the drainage swale located in the northwestern portion of the site. This drainage swale receives its flow from the discharge of tile drains on the property to the north of the site, and surface water drainage.
- 4. A water balance has been prepared based on preliminary site plan details. The calculations confirm the feasibility of site development.
- 5. In general, site design should incorporate the following measures:
 - Infiltration rates at the site can generally be maintained by the direction of roof runoff to overland flow. Infiltration facilities may be considered in the commercial areas.
 - Trench plugs should be used at all manhole locations.
 - Trench backfilling operations should be carried out with materials that are similar to the materials that have been excavated. In particular, sand zones must not be truncated by backfilling of the trench using lower permeability materials.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.


Respectfully submitted,

Terraprobe Limited

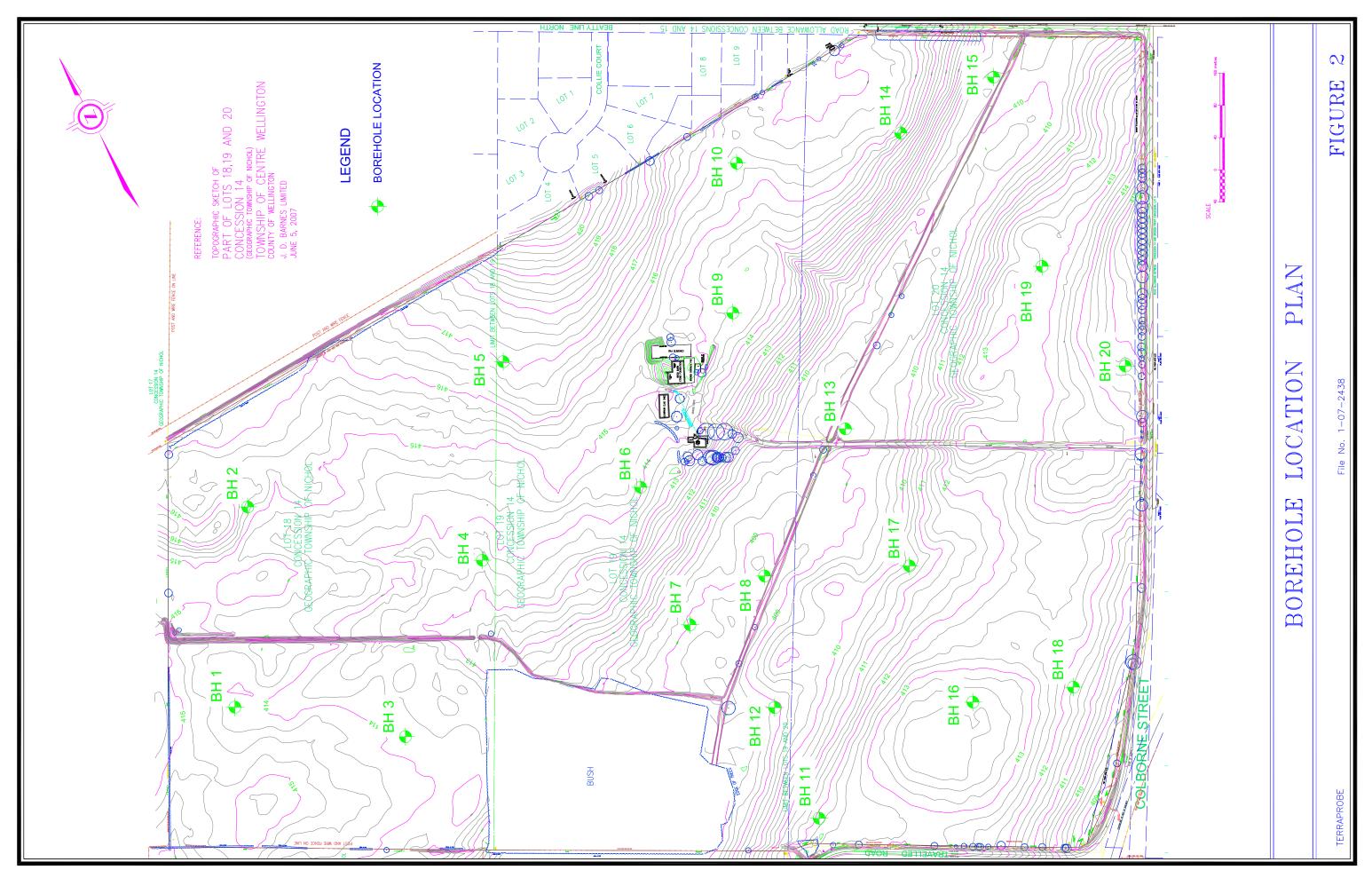
David A. MacGillivray, P.Eng., P.Geo. Associate

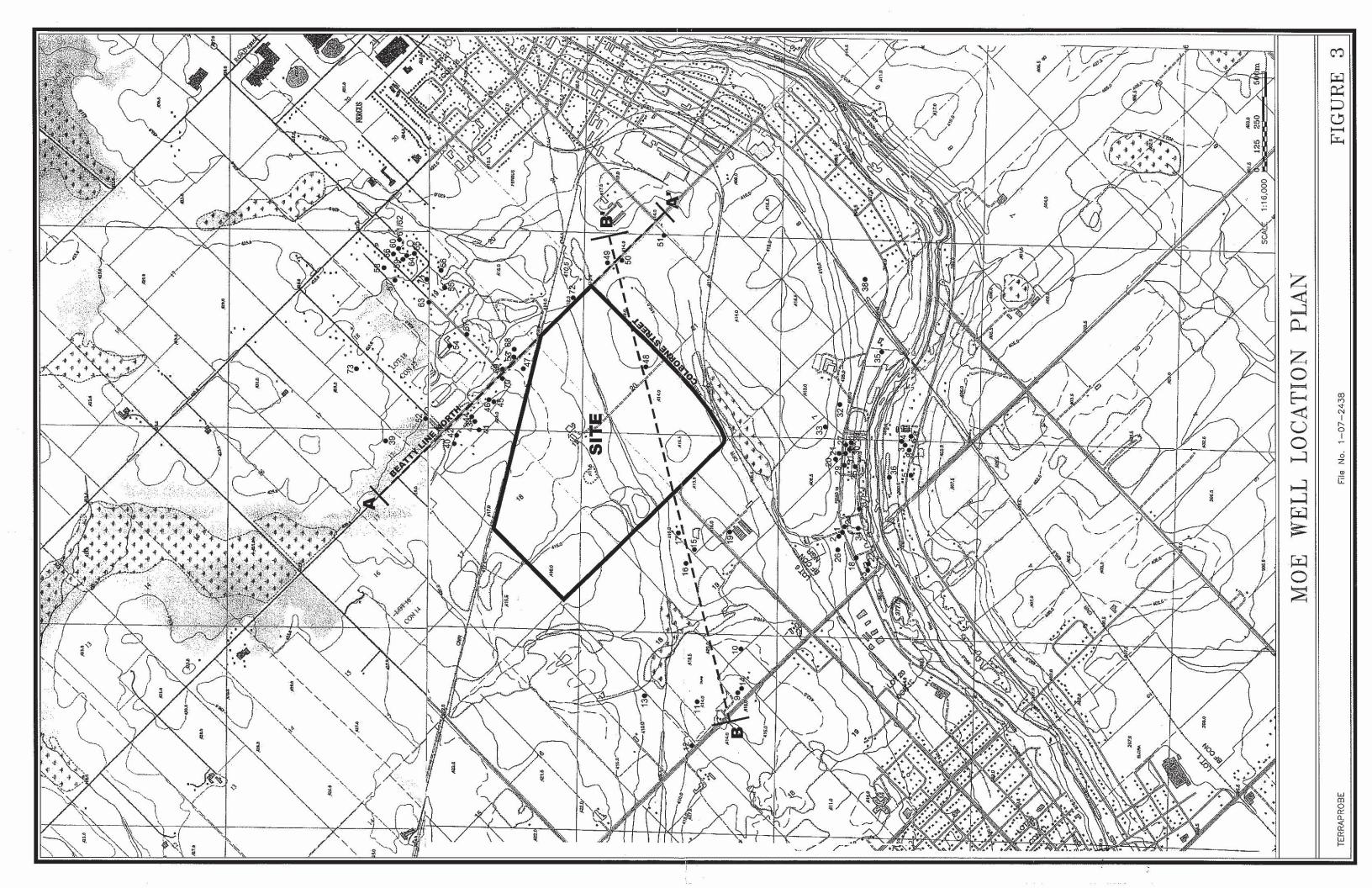
PROFESSIONA LICENSED STOMZIK D.A.MacGILLIVRAY Principal POLINCE OF ONTP

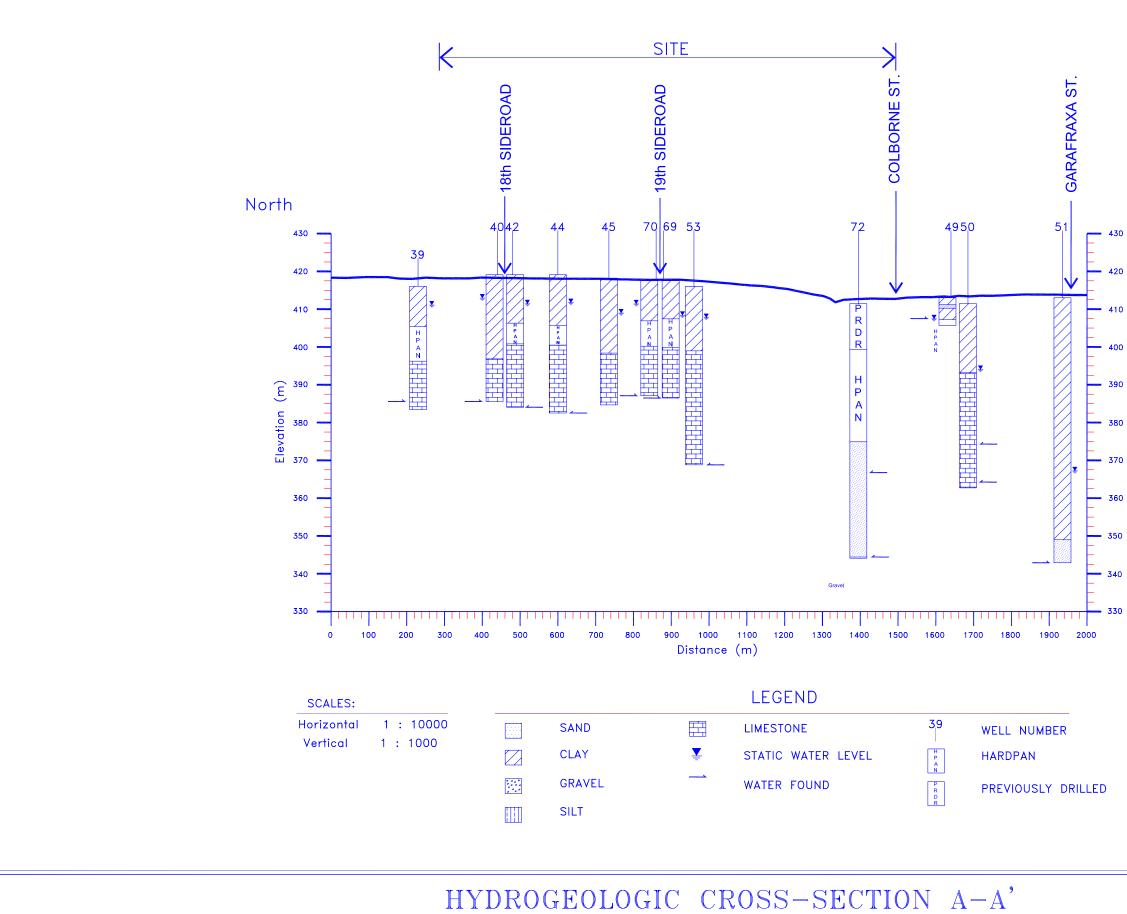
Paul W. Bowen, P.Geo., P.Eng.,

REFERENCES

- Aquafor Beech Limited, February 2008, Nichol Drain Subwatershed Study Phase 1 Existing Conditions Final Report; Prepared for Township of Centre Wellington.
- Barnett, P.J. Cowan, W.R. and Henry, A.P., 1991; *Quaternary Geology of Ontario, Southern Sheet*; Ontario Ministry of Northern Development and Mines, Map No. 2556, scale 1:1 000 000.
- Blackport Hydrogeology Inc., August 2002; Ground Water Management Study Township of Centre Wellington; Prepared for Township of Centre Wellington. Reference No. 001031.
- Brown, D.M, McKay, G.A, and Chapman, L.J.; *The Climate of Southern Ontario, Climatological Studies, Number 5*; Environment Canada, Atmospheric Environment Service, 1980.
- Chapman, L.J. and Putnam, D.F., 1984; *The Physiography of Southern Ontario*. Ministry of Natural Resources; 1984.
- Ontario Geological Survey, 1991; *Bedrock Geology of Ontario, Southern Sheet*; Ontario Geological Survey, Map No. 2544; scale 1:1 000 000.
- Ontario Ministry of Environment and Energy; MOEE Hydrogeological Technical Information Requirements for Land Development Applications, April 1995.

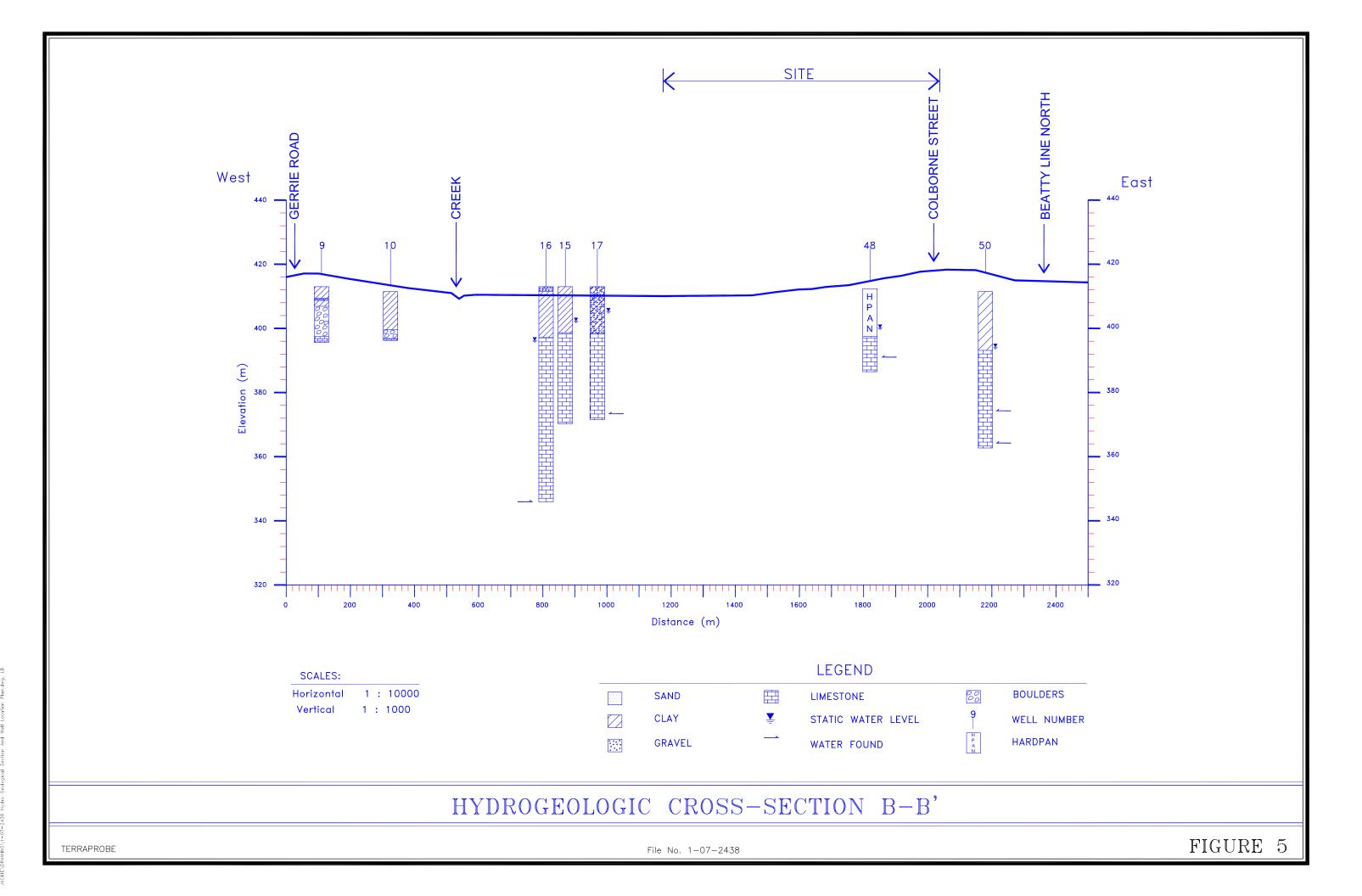


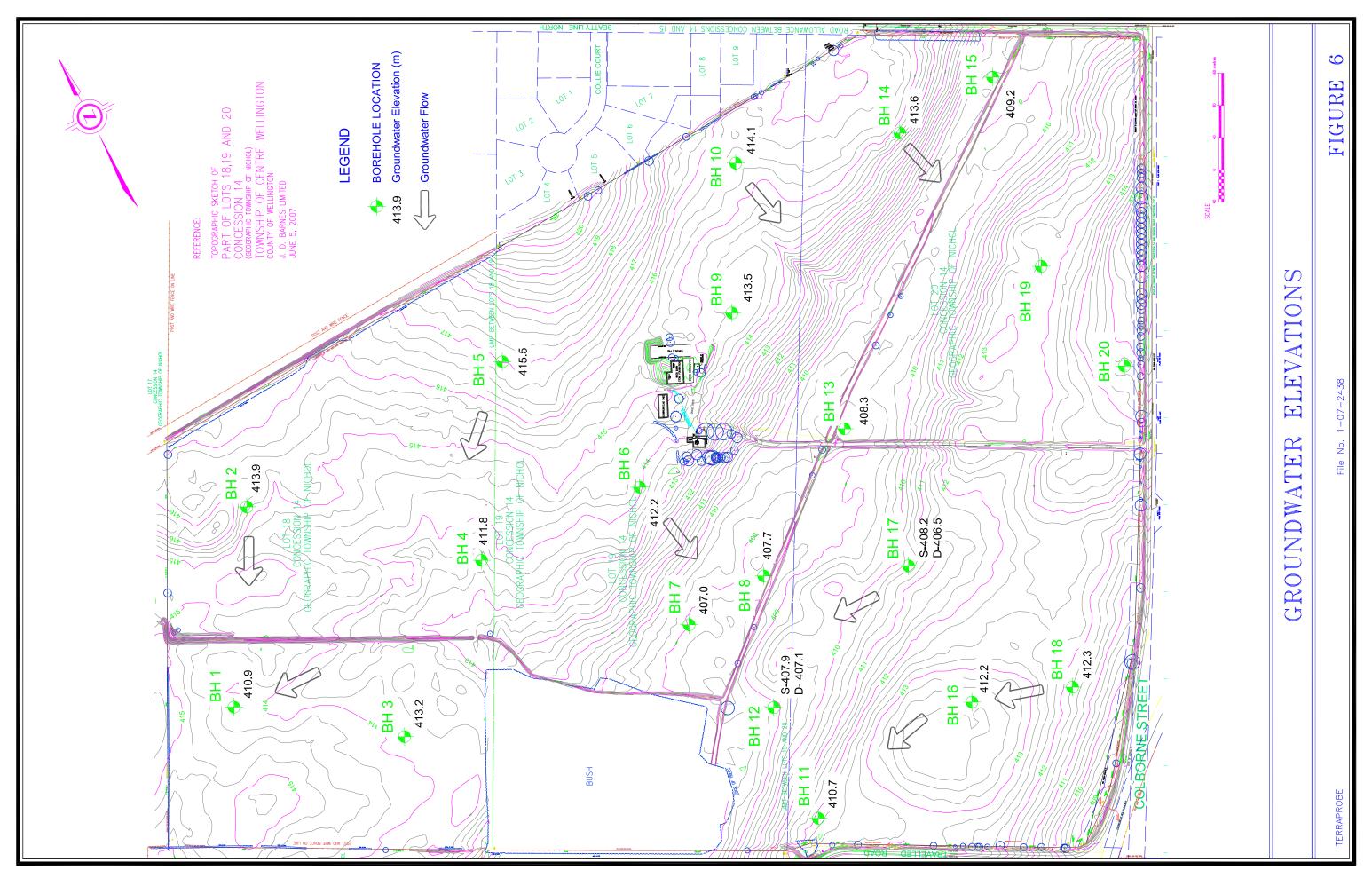

NIGUS PROPERTY, TOWNSHIP OF CENTRE WELLINGTON

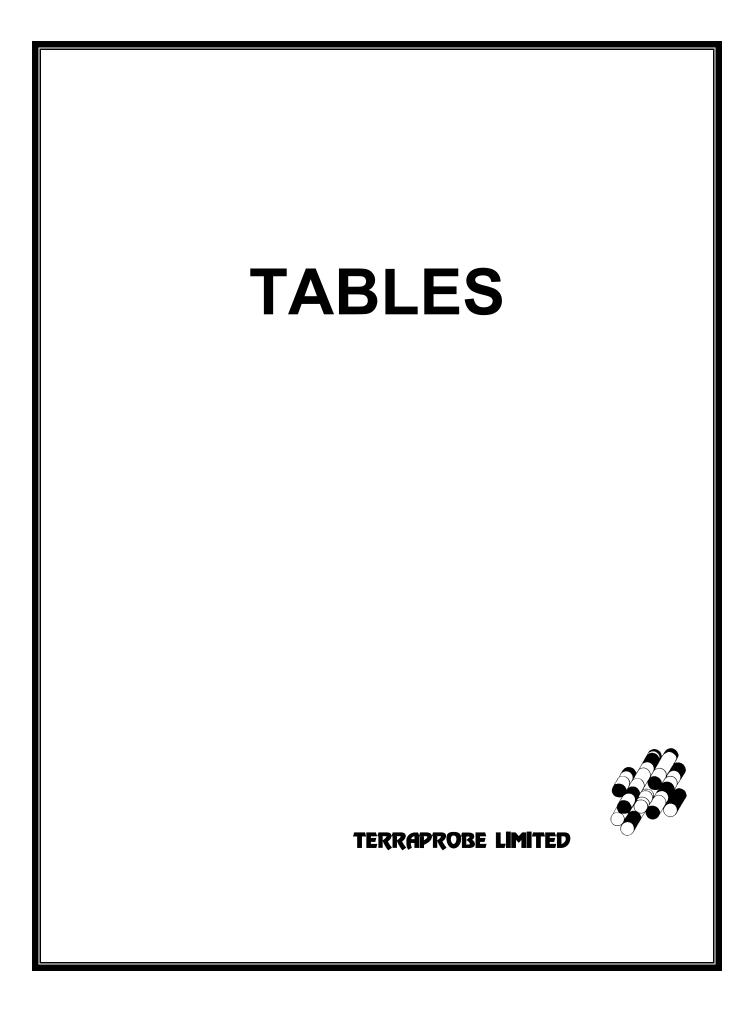


TERRAPROBE

FILE No. 1-07-2438




TERRAPROBE


UTOCAD 2008 FILES\2 Projects And Well Location Plan.dwg. LB

File No. 1-07-2438

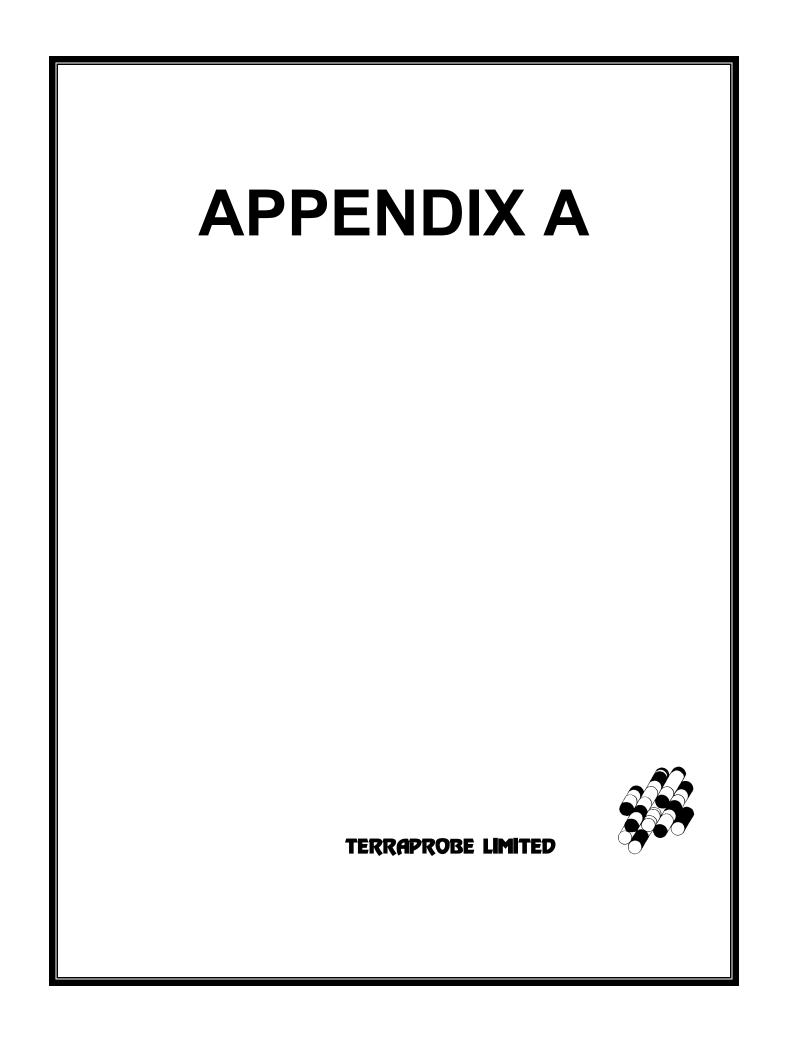
South 430 420 410 390 370 350 340 FIGURE 4

TABLE 1: MOE Well Records Summary

Total # Wells	72		
Total number of wells completed in bedrock	54	75.0	%
Total number of wells completed in overburden	18	25.0	%
Total number of wells flowing artesian	2	2.8	%
Total number of wells with casing diameter greater than 12 inches	16	22.2	%
Total number of wells with casing diameter less than 12 inches	55	76.4	%
Total number of wells with an unknown casing diameter	1	1.4	%
Depth Ranges			
Less than 25 ft.	14	19.4	%
25 ft to 50 ft	5	6.9	%
51 ft. to 100 ft	8	11.1	%
101 ft to 150 ft	25	34.7	%
151 ft to 200 ft	14	19.4	%
Greater than 200 ft	6	8.3	%
Water Use			
Domestic or Stock	64	88.9	%
Commercial	0	0.0	%
Industrial	0	0.0	%
Public Supply	2	2.8	%
Irrigation	1	1.4	%
Unknown	5	6.9	%
Water Quality			
Fresh	65	90.3	%
Salty	0	0.0	%
Dry	0	0.0	Ŵ
Unknown	7	9.7	%
Range of Reported Pumping Rates			,
0 to 23 lpm (0 to 5 igpm)	15	20.8	%
23 to 45 lpm (6 to 10 igpm)	36	50.0	%
45 to 68 lpm (11 to 15 igpm)	6	8.3	%
68 to 91 lpm (16 to 20 igpm)	3	4.2	%
91 to 454 lpm (20 to 100 igpm)	4	5.6	%
Greater than 454 lpm (greater than 100 igpm)	0	0.0	%
No data	8	11.1	%

TABLE 2:Ground Water Elevations

	Depth	Ground			Water	Level		•
Well No.	(mbgl)	Surface	28-J	an-08	28-N	lar-08	23-J	un-08
	(111591)	Elevation (m)	mbgl	geodetic	mbgl	geodetic	mbgl	geodetic
1	4.9	414.1	3.01	411.1	N/A	N/A	3.22	410.9
2	5.0	415.4	1.47	413.9	N/A	N/A	1.55	413.9
3	5.0	414.1	0.95	413.2	N/A	N/A	0.87	413.2
4	4.7	413.4	1.56	411.8	N/A	N/A	1.63	411.8
5	4.8	417.0	1.60	415.4	N/A	N/A	1.54	415.5
6	4.8	414.1	1.62	412.5	1.69	412.4	1.86	412.2
7	4.8	409.0	1.60	407.4	N/A	N/A	2.01	407.0
8	5.0	408.8	1.20	407.6	1.30	407.5	1.15	407.7
9	5.0	414.7	1.07	413.6	1.00	413.7	1.17	413.5
10	4.6	415.4	1.03	414.4	0.65	414.8	1.29	414.1
11	4.6	412.1	1.21	410.9	1.30	410.8	1.37	410.7
12S	4.6	408.9	1.14	407.8	1.20	407.7	1.02	407.9
12D	9.1	408.9	3.62	405.3	1.90	407.0	1.84	407.1
13	4.9	409.1	0.73	408.4	0.95	408.2	0.84	408.3
14	4.8	414.5	0.90	413.6	0.93	413.6	0.91	413.6
15	4.7	410.4	1.36	409.0	1.20	409.2	1.2	409.2
16	5.0	413.7	0.93	412.8	frozen	frozen	1.47	412.2
17\$	4.6	410.4	1.87	408.5	2.05	408.4	2.19	408.2
17D	8.8	410.4	3.05	407.4	3.65	406.8	3.91	406.5
-18	4.7	411.7	N/Á	N/A	0.60	411.1	-0.63	412.3
19	4.6	412.8	1.04	411.8	1.00	411.8	Ň/Á	N/Å
20	5.0	414.7	1.00	413.7	1.80	412.9	N/A	N/A


mbgl - metres below ground level

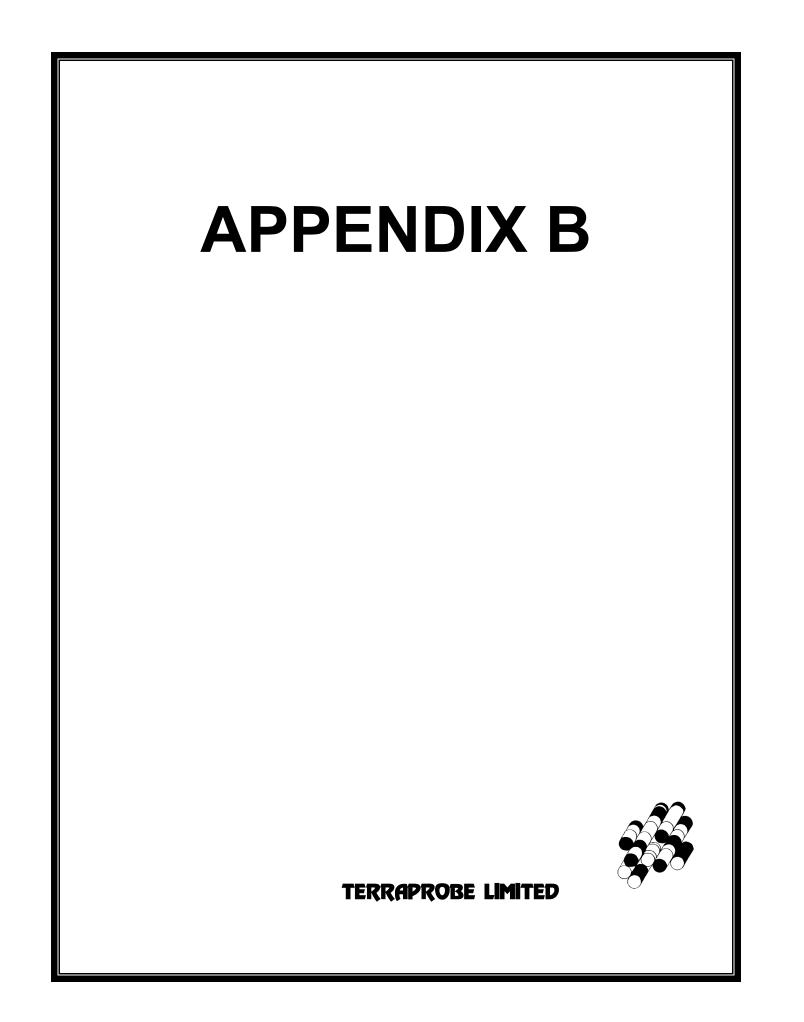
1. Climate Information

Precipitation Evapotranspiration Water Surplus	890 mm/a <u>560</u> mm/a 330 mm/a	
2. Infiltration Rates		
<i>Table 2 Approach - Infiltration Factors</i> Rolling land Medium combinations of clay and loam Cultivated lands TOTAL	0.2 0.2 <u>0.1</u> 0.5	
Infiltration (0.5 x 330) Run-off (330-165)	165 mm/a 165 mm/a	
<i>Table 3 Approach - Typical Recharge Rates</i> silty sand to sandy silt silt clayey silt	150 - 200 mm/a 125 - 150 mm/a 100 - 125 mm/a	
Site development area is underlain primarily by claye Based on the above, the rec w		n/a
3. Property Statistics		
Parks & Schools SWM Woodlot Nichol Drain Channel Roads Lots (Roof) Lots (Driveway, parking, sidewalks) Lots (Open space, lawns, gardens) TOTAL	63,600 m ² 37,500 m ² 58,100 m ² 65,500 m ² 113,900 m ² 298,025 m ² 60,915 m ² 296,060 m ² 993,600 m²	6.36 ha 3.75 ha 5.81 ha 6.55 ha 11.39 ha 29.80 ha 6.09 ha 29.61 ha 99.36 ha

TABLE 3: WATER BALANCE

Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- developn Volume of available roof runoff	Precipitation (m ³) 463,476 155,585 265,242 884,304 ent and Post-Develop Precipitation (m ³) 884,304 884,304 ation ion		Infiltration (m ³) 85,925 nil nil 85,925 85,925	163,944 Run-Off (m³) 85,925 155,585 265,242 506,753 Run-Off (m³) 163,944 506,753
Land Use Area (m²) awns, Parks, 520,760 SWM, Openspace 520,760 Road, Sidewalk, 174,815 Pavement 298,025 Area 298,025 Area 298,025 Area 993,600 FOTAL 993,600 S. Comparison of Pre-Development Pre-Development Post-Development Post-Development Y. Infiltration of Roof Runoff /olume of post-development infiltra Defecit from pre- to post- development infiltra /olume of available roof runoff	Precipitation (m ³) 463,476 155,585 265,242 884,304 ent and Post-Develop Precipitation (m ³) 884,304 884,304 ation ion	291,626 nil 291,626 291,626 oment Evapotranspiration (m³) 556,416	85,925 nil nil 85,925 Infiltration (m ³) 163,944	85,925 155,585 265,242 506,753 Run-Off (m ³) 163,944 506,753
awns, Parks, 520,760 SWM, Openspace SWM, Openspace Road, Sidewalk, 174,815 Pavement 298,025 Area 298,025 FOTAL 993,600 6. Comparison of Pre-Development Pre-Development Post-Development Post-Development Volume of post-development infiltra Volume of pre-development infiltra Volume of pre-development infiltra Volume of available roof runoff	463,476 155,585 265,242 884,304 ent and Post-Develop Precipitation (m ³) 884,304 884,304 ation ion	291,626 nil 291,626 291,626 oment Evapotranspiration (m³) 556,416	85,925 nil nil 85,925 Infiltration (m ³) 163,944	85,925 155,585 265,242 506,753 Run-Off (m ³) 163,944 506,753
SWM, Openspace Road, Sidewalk, 174,815 Pavement 298,025 Area 298,025 Area 993,600 TOTAL 993,600 6. Comparison of Pre-Development Pre-Development Post-Development Post-Development Volume of post-development infiltra Volume of pre-development infiltra Volume of pre-development infiltra Volume of available roof runoff	155,585 265,242 884,304 ent and Post-Develop Precipitation (m ³) 884,304 884,304	nil nil 291,626 oment Evapotranspiration (m ³) 556,416	nil nil 85,925 Infiltration (m ³) 163,944	155,585 265,242 506,753 Run-Off (m ³) 163,944 506,753
Pavement Residential Roof 298,025 Area TOTAL 993,600 6. Comparison of Pre-Development Pre-Development 7. Infiltration of Roof Runoff Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- developm Volume of available roof runoff	265,242 884,304 ent and Post-Develop Precipitation (m ³) 884,304 884,304 ation ion	nil 291,626 oment Evapotranspiration (m ³) 556,416	nil 85,925 Infiltration (m ³) 163,944	265,242 506,753 Run-Off (m ³) 163,944 506,753
Area TOTAL 993,600 6. Comparison of Pre-Development Pre-Development Post-Development 7. Infiltration of Roof Runoff Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- developm Volume of available roof runoff	884,304 ent and Post-Develop Precipitation (m ³) 884,304 884,304	291,626 oment Evapotranspiration (m³) 556,416	85,925	506,753 Run-Off (m³) 163,944 506,753
TOTAL 993,600 6. Comparison of Pre-Development Pre-Development Post-Development Post-Development 7. Infiltration of Roof Runoff Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- development Volume of available roof runoff	ent and Post-Develop Precipitation (m ³) 884,304 884,304	oment Evapotranspiration (m³) 556,416	Infiltration (m ³) 163,944	Run-Off (m³) 163,944 506,753
6. Comparison of Pre-Development Pre-Development Post-Development 7. Infiltration of Roof Runoff Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- developm Volume of available roof runoff	ent and Post-Develop Precipitation (m ³) 884,304 884,304	oment Evapotranspiration (m³) 556,416	Infiltration (m ³) 163,944	Run-Off (m³) 163,944 506,753
6. Comparison of Pre-Development Pre-Development Post-Development 7. Infiltration of Roof Runoff Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- developm Volume of available roof runoff	ent and Post-Develop Precipitation (m ³) 884,304 884,304	oment Evapotranspiration (m³) 556,416	Infiltration (m ³) 163,944	Run-Off (m³) 163,944 506,753
Pre-Development	Precipitation (m ³) 884,304 884,304 ation	Evapotranspiration (m ³) 556,416	163,944	163,944 506,753
Post-Development 7. Infiltration of Roof Runoff Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- developm Volume of available roof runoff	884,304 884,304 884,304	556,416	163,944	163,944 506,753
Post-Development 7. Infiltration of Roof Runoff Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- developm Volume of available roof runoff	884,304 ation ion			506,753
7. Infiltration of Roof Runoff Volume of post-development infiltra Volume of pre-development infiltra Defecit from pre- to post- developn Volume of available roof runoff	ation	291,626	85,925	
Percentage of roof runoff required				85,925 163,944 78,019 265,242
	to match pre-developr	nent infiltration		29%

	WATER W	ELL DA	TA	SYSTE	2M 2	1 007	86	N							÷		GROUND WATER BULLETIN REPORT
WELL NUMBER		SSION	LOT	WELL NO	UTM EASTING NORTHIN	ELE' G FEE	V T DATE	DRILLER	DIA	OF	FOUND	LVL	LVL	RATE	TIME	WATER	OWNER/LOG/SCREEN DEPTHS IN FEET TO WHICH FORMATIONS EXTEND
.1	BF		6		547527	1300	07/58	1659		FR	100	20	40	7	3/00		HUGHES E PRDG 0015 GREY LMSN 0100
2	BF		6	67-	4837683 547522	1300	12/58	2521	4	FR	125	20	60	· 6	1/00	D0	HUGHES E GRVL CLAY 0011 GREY LMSN 0125
3	BF		6		4837688 547980	1285	96/68	2521	4	FR	142	23	70	10	1/00	DO	GRVL STNS 0007 GREY LMSN 0142
4	BF		6		4837360				4	FR	123	18	60	4	2/30	DO	DEJEAN F O
	BF		4	3482	4837370 547830		•		4	FR	193	20	60	9	1/00	B Ø	PRDG 0008 GREY LMSN 0123 YORK HOLDINGS
5	pr		0		4837340	1270	24710	1,00	•			;				· · ·	CLAY STNS 0012 BRWN ROCK 0060 WHIT ROCK 0150 BRWN ROCK 0165 GREY ROCK 0195
6	BF		6		548020	1285	06/76	1669	4	FR	125	18	65	8	3/00		BETTOIL PETER BLCK TPSL 0002 BRWN CLAY 0033 BRWN LMSN
	:				4837350						-			•	7/00	D 0	0125 YUEL 1
8	BF		.6	7020	547950 4837350			S. 45 .		FR	75	15	60	. 9	3/00		BRWN CLAY STNS 0005 BRWN LMSN 0075
9	CON	13	18		546700 4838180	1355	09/70	1657	2				•			• .	TOWN FLORA & FERGUS BRWN CLAY 0012 GRVL 0014 GREY CLAY 0020
										.:							BLDR CLAY MSND 0051 GRVL 0054 GREY CLAY 0055 ROCK 0057
10	CON	13	18		546940 4838450	1350	09/70	1657	2								TOWN FLORA & FERGUS Brwn Clay STNS 0011 Grey Clay STNS 0039
- 11	CON	13	18		546700	1350	09/70	1657	2								BLDR 0048 ROCK 0050 Town Flora & Fergus
••	CON	13	10		4838400	2.00,0											BRWN CLAY STNS 0020 GREY CLAY STNS 0040 BLDR CLAY 0055 ROCK 0056
12	CON	13	18		546450	1350	09/70	1657	2								TOWN FLORA & FERGUS Brwn Clay STNS 0010 Grey Clay 0039 BLDR
	•				4838420			1/57	•								0048 ROCK 0049 Town Flora Fergus
13	CON	13	18		546680 4838650	1555	09770	1657	2								BRWN CLAY 0007 GREY CLAY STNS 0015 BLDR GRVL 0024 ROCK 0026
. 14	CON	13	19		546716	1350	07/65	2521	4	FR	107	25	80	6	1/00	IR DO	GILBERT W CLAY STNS 0052 GREY LMSN 0107
15	CON	13	19	10 S	4838177 547427	1355	08/74	2521	4	FR		35	80	10	1/00	DO	VELDMAN JOHN
16	CON		19	5240	4838420 547350		6 09/77	5469	. 6	FR	220	55	80	60	2/00	PS	CLAY GVLY 8047 BRWN ROCK HARD 8140 Pentecostal Church
10					4838450												TPSL 8001 SAND GRVL 8005 BRWN CLAY 8018 Grey Clay STNS 8052 Brwn LMSN 8220
17	CON	13	19		547500 4838500	1355	10/77	2564	<u></u> 4	FR	130	25	50	9	2/00	ST DO	BOUWMAN JOHN Grvl Clay 0048 Brwn Lmsn 0136
18	CON	13	20	67-	547389 4837861		5 11/63	2521	4	FR	176	23	67	9	2/00	ST DO	ALLAN D CLAY STNS 0029 GREY LMSN 0176
19	CON	13	20	67-	547550		12/69	2521	. 4	FR	160	33	65	10	2/00	ST	CRAWFORD O CLAY MSND 0010 MSND 0052 GREY LMSN 0160
20	CON	13	21	67-	4838250 547883	1300	02/64	2521	4	FR	120	30	80	5	2/00	PS	MARTIN T CLAY 0020 GREY LMSN 0120
	1			1915	4837713											-	GLAI GUED BREI ENGR GAEG


WATER WELL DATA SYSTEM 21 OCT 86

GROUND WATER BULLETIN REPORT

WELL NUMBER	CONCESSI ETC		LOT	WELL NO	UTM EASTING NORTHING	ELEV FEET	DATE	DRILLER	DIA		WATER FOUND FEET	LVL	LVL	RATE	TIME	WATER USE	OWNER/LOG/SCREEN DEPTHS IN FEET TO WHICH FORMATIONS EXTEND
21	CON	13	21		547920	1300	04/70	1659	4	FR	175	33	55	8	2/00	DO	KELLEY GLEN Yllw Clay STNS 0015 GREY LMSN 0177
22	CON	13	21	67-		1275	07/70	1659	4	FR	170	FLW	20	10	8/00	DO	DENYS JOSEP FILL 0006 GREY LMSN 0170
23	CON	13	21	67-		1275	12/71	2406	5	FR FR	170 188	8	15	12	2/90	D.0	SMYTH T W GREY GRVL FILL 0005 BRWN ROCK 0064 GREY Rock 0130 Brwn Rock 0188
24	CON	13	21		547557 4837666	1285	01/74	2521	5	FR	153	FLW	10	20	/30		WOLFE CECIL GREY LMSN 0153
25	CON	13	21		547848 4837627	1290	05/74	1659	4	.FR	55	24	۰.		3/00		MAC HARDY Brwn Sand Clay 0004 whit LMSN 0055
26	CON	13	21		547450 4837700	1295	06/75	2521	-	FR	156	30	40		1/00		DRIMME NORM CLAY 0003 GREY LMSN 0156
27	CON	13	21		547830 4837670	1300	06/76	4544	5	FR	160	18	35	22	1/30	DO	O P A DEVELOPMENTS BLCK TPSL STNS 0002 RED CLAY STNS 0020 GRVL DRY 0023 BRWN ROCK SOFT 0165
28	CON	13	21		547970 4837650	1300	06/76	4544	. 5	FR FR FR	175 180 200	25	40	30	1/00	DO	O P A DEVELOPMENTS BLCK TPSL 0003 RED CLAY SAND STNS 0024 GRVL 0025 BRWN ROCK 0205
29	CON	13	21		547870 4837670	1300	06/76	4544	5	FR	153	20	20	20	/30	DO	O P A DEVELOPMENTS Red Clay STNS Sand 0021 Grvl FSND 0022 Brwn Rock 0155
30	CON	13	21	-	547940 4837660	1300	06/76	4544	5	FR FR	150 197	12	21	25	/45	00	O P A DEVELOPMENTS RED CLAY STNS SAND 0020 GRVL 0026 BRWN ROCK SOFT 0203
31	CON	13	21		547910 4837670	1300	06/76	4544	5	FR	138	22	22	18	/30	DO	O P A DEVELOPMENTS BLCK TPSL STNS 0002 RED CLAY STNS 0019 GRVL 0023 BRWN ROCK SOFT 0145
32	CON P	13	22			1320	07/64	2521	4	FR	151	25	80	5	2/00	DO	THEBER B GRVL CLAY 0005 GREY LMSN 0151
33	CON	13	22	67-	4837718 548059 4837722	1300	04/74	5469	5	FR	168	18	32	12	1	DO	PAL MAR LTD BLCK TPSL 0002 BRWN CLAY ROCK 0017 BRWN
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												ROCK 6024 BRWN ROCK 0035 GREY ROCK 0166 BRWN ROCK 0171
34	CON	13	22	67- 5313	547550 4837600	1280	10/74	1804.	6	FR	137	12	12	10	1/00	DO	RICE I BLCK TPSL STNS FILL 0004 WHIT LMSN ROCK WBRG 0139
35	CON	13	22		548450 4837500	1300	05/74	1669	4	FR	122	31	40	8	1/30	DO	BAWMAN G BLCK TPSL 0005 BRWN CLAY 0008 WHIT LMSN 0122
36	CON	13	22		547800 4837450	1310	12/75	2521	4	FR	240	30	100	7	1/00	DO	DIPON ROOF TRUSSES PRDG 0004 GREY LMSN 0240
37	CON	13	22	67-		1280	09/78	4544	5	FR	114 127	40	51	8	1/00	D0	BRAKSFORD E Blck Rock 0040 Brwn LMSN 0125 UNKN 0127
38	CON	13	23	67-	548825 4837557	1318	07/63	1659	4	FR	80	30	40	8	2/00	DO	KEEN G TPSL 0004 WHIT LMSN 9080

Ti	ATER WE	אמ דד	ጥ ላ	2V STF	м 2:	LOCT	86	•	,								GROUND WATER BULLETIN REPORT	
11	ALDIA 615	UL UA	IIR)											TFOT		-	OWNER/LOG/SCREEN	
WELL NUMBER	CONCES: ETC		LOT	WELL NO	UTM EASTING NORTHING	ELEV FEET	/ DATE	DRILLER	DIA	OF	WATER FOUND FEET	LVL	LVL	RATE	TIME	WATEI USE	R DEPTHS IN FEET TO WHICH	
																	1	
						- v										7		
39	CON	14	18		547960 4839650	1365	03/68	1617	4	FR	100	16	30	15		DO	NIXON SR MELVIN Clay MSND 0006 Clay STNS 0035 HPAN 0065 Grey LMSN 0107	
40	CON	14	18		547930 4839650	1375	01/73	3406	4	FR	110	20	45	10	1/00	DO .	ENGLAND J Brwn Clay 6021 Grey Clay Grvl 0073 Whit	
41	CON	14	18		548000 4839570	1375	10/73	3737	4	FR	117	25	62	3	1/00	DO	LMSN 0110 Ventry J BLCK TPSL 0001 Grey Clay BLDR 0045 BRWN	
42	CON	14	18			1375	10/73	3737	4	FR	115	25	62	3	1/00	DO	LMSN 0117 Arbuckle R Blck TPSL 0002 Grey Clay Bldr 0042 Grey	
43	CON	14	18	67-	4839640 548040	1375	10/73	3737	4	FR	115	25	65	3	1/00	DO	HPAN BLDR 0060 BRWN LMSN 0115 Foster H	
44	CON	14	18		4839 <u>55</u> 0 548050	1375	08/74	3740	4	FR	120	24	35	7	1/00	DO	BLCK TPSL 0001 GREY CLAY BLDR 0042 GREY HPAN BLDR 0063 BRWN LMSN 0115 Morabito Paul	
45	CON			5250 4	4839550							30	60		2/00		BLCK TPSL 0001 GREY CLAY BLDR 0044 GREY HPAN BLDR 0061 BRWN LMSN 0120 Anderson C	
45			19	1924	548146 4839450				4	50	100						ANDERSON C CLAY STNS 0065 GREY LMSN 0110 ANDERSON WM	
άþ	CON	14	19		548150 4839470	1210	04/69	1911	. 4	FR	129	28	60	5	2/00	00	PRDG 0006 CLAY MSND 0030 CLAY STNS 0070 Grey LMSN 0129	
47	CON	14	19		548320 4839300	1360	08/70	1659	4	FR	144	27	35	8	8/00	DO	HOOKER GORDEN Clay MSND Bldr 0065 Grey LMSN 0144	
48	CON	14	20		548336 4838709	1353	08/55	2414	4	FR	70	40	45	10		DO	PEARSON W TPSL 0001 HPAN STNS 0048 BRWN LMSN 0084	
49	CON	14	21		548720 4838879	1355	06/62	2519	30	FR	18	18	24	1	/30	DO	MCHARDY G I TPSL 0001 BRWN CLAY MSND 0006 BRWN FSND 0009 GREY CLAY STNS 0018 GRVL MSND 0019	
50	CON	14	21		548725	1350	02/72	3316	4	FR	122	57	85	9	2/00	ST DO	BLUE HPAN BLDR 0024 D FERGUS FUR FARMS	
51	CON	14	22	67-	4838825 549000	1355	12/75	2521	4	FR	155 230	150	200	1	1/00	DO	CLAY STNS SAND 0060 BRWN ROCK 0160 Blab Henry	
52	CON	15	18	67-	<u>4838600</u> 548077 4839818	1375	08/66	2519	30	FR	12	12	18	3	2/00	ST	CLAY 0210 FSND 0230 Whittick J TPSL 0001 BRWN CLAY 0006 BRWN MSND 0018	
53	CON	15	19	67-	548400 4839350	1365	04/68	1617	5	FR	155	27	40	15	3/30	D ₀	MILLAGE CHARLES CLAY STNS 0056 GREY LMSN 0155	
54	CON	15	19	67-	548420 4839670	1375	07/69	1617	4	FR	126	24	40			ST DO	PRDG 0016 SILT 0080 LMSN 0126	
55	CON	15	19	67-	548725 4839700	1375	08/71	3413	30	FR	10	10	10	10	2/00	DO	MEALING J BRWN CLAY 0010 CSND 0018	
56	CON	15	19	67-	548800 4839725	1375	09/71	3413	30	FR	10	10	10	10	2/00	DO	WHITE D BRWN CLAY 0010 CSND 0018	
57	CON	15	19	67-	4839725 548750 4839950	1375	01/71	3637	30	FR FR	12 17	10	17	12	2/00	DO	SANT BRWN FILL 0001 BRWN CLAY 0010 YLLW GRVL SAND 0012 BLCK CSND GRVL 0017	

	WATER W	ELL D	ATA	SYST	ЕМ	21 001	86			. 1							GROUND WA	TER BULI	LETIN	REPORT	
/ELL IMBER	CONCE	SSION C	LO.	WEL F NO	UTM L EASTIN NORTHI	IG ELE ING FEE	V T DATE	DRILLER	DI	S KIND A OF S WATE	FOUND	LVL	PUMP LVL FEET	RATE	E TIME		OWNER/LOG DEPTHS IN FEET 1 FORMATIONS EX	O WHICH			
								برج										No sta			
58	CON	15	19		548800 4840000	1375	01/71	3637	30	FR	9	9	17	10	2/00	E	ANT E RWN FILL 0001 BRWN C RVL STNS 0013 BLCK C			CSND	
59	CON	15	19	67- 4374	548850 4839900	1375	09/72	3413	30	FR	6	6	14	3	4/00	D0 E	EXACTOR CONST RWN CLAY 0006 GRVL 0			0018	
50 [°]	CON	15	19	67-	548900 4839920	1375	07/73	2519	30	FR	7	7	15	6	1/00	E	ELMONT BLDG CORP Brwn Clay 0007 Brwn S Clay Stns 0023	AND GRVL	. 0009	GREY	
61	CON	15	19		548950 4839920	1575	08/73	2519	30	FŖ	6	6	19			DO E	SELWOOD BLDG CORP SRWN CLAY 0002 GREY S 1012 GREY CLAY BLDR 0	AND 0006 020	BRWN	SAND	
ŝ2	CON	15	19		548950 4839920	1375	08/73	2519	30	FR	6	6	20	6	/30	DO E	BELMONT BLDG CORP BRWN TPSL 0002 GREY S D012 GREY CLAY STNS 0	AND 0006	BRWN	SAND	
63	CON	15	19		548660 4839800	1375	08/73	2519	30	FR	6	6	20	6	1/00	£	BELMONT BLDG CORP Brwn Clay 0004 Grey S Clay 0021	AND GRVI	. 0016	GREÝ	
64	CON	15	19		548850 4839900	1375	08/73	2519	30	FR	4	3	18	5	1/00	E	BELMONT BLDG CORP Brwn Clay TPSL 0002 G Brey Clay 0020	REY SAND	GRVL	0012	
65	CON	15	19		548880 4839850	1375	08/73	2510	30	FR	7	7	24	8	1/00	Ē	CORP D Brwn Clay 0005 Brwn C D019 Grey Clay Stns 0		GREY	GRVL	
66	CON	15	19	67- 4780	548870 4839950	1375	09/73	2519	30	FR	5	4	14	.8	1/00	Ē	BELMONT BLDG CORP Brwn Clay 0005 Brwn S Clay Rock 0020	AND GRVL	0012	GREY	
67	CON	15	19		548470 4839584	1370	10/74	3740	4	FR	148	18	35	10	1/00		BAKER ALUN Brwn Fill 0006 Grey C Stns 0059 Brwn LMSN 6	LAY 0018 068 GRE	GREY	ĤPAN 0145	
68	CON	15	19		548350 4839350	1370	10/74	3740	4	FR	130	30	40	10	1/00	DO	3RWN LMSN 0148 Hamilton Neil Contr Brwn Clay 0034 Grey H Lmsn 0080 Grey LMSN 0	PAN BLDI	R 0060	BRWN	:
69	CON	15	19		548300 4839400	1370	05/75	3740	4	FR	102	30	40	12	1/00	DO	HAMILTON NEIL CONTR BRWN CLAY 0033 GREY H LMSN 0102		R 0058	BRWN	
70	CON	15	19		548270 4839400	1379	05/75	3740	4	FR	100	20	40	8	1/00	DO	HAMILTON NEIL CONTR Brwn Clay 0035 Grey H 0100	PAN 005	7 BRWN	LMSN	. '
71	CON	15	19		548750 4839800		09/75	2519	30	FR	6	6	24	3	1/00	DO	MCDONALD PERSEY Brwn Clay 0003 Grey (0025	RVL 001	9 GREY	CLAY	
72	CON	15	20		548692 4839055		12/54	2411	3	FR FR	150 220		100	5		DØ	MACK H Prdr 0040 HPAN Grvl (0221	120 FSN	0220	GRVL	
73	CON	15	18	67- 5142	548300 4840150	1395	06/74	2519	30	FR		10	18	5	1/00	DO	LARSON CONSTRUCTION BRWN CLAY 0005 BRWN S 0020 BLUE HPAN CLAY	AND 001		: SAND	

LOG	i OF	BOF	REHO	LE	1
-----	------	-----	------	----	---

	PROJECT: Colborne Street & Bea							DATE: Equipi							stem /	Augers	8	
	CLIENT: Nigus Holdings Inc.						E	ELEVA		I DAT	UM:	_G	eodeti	0			FILE:	1-07-24
	SOIL PROFILE			SAMF	PLES	ALE	PENE RESIS	TRATIO	N PLOT	\geq			PLAST	IC NATU	JRAL	LIQUID	ы С	STANDPI
	DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SCALE	SHEA O UI • P0 2	0 40 NR STR NCONFI DCKET I 0 40	RENG NED PEN.	TH kP	ia FIELD LAB V/	VANE	₩P I	IC NATL MOIS CONT CONT CONT CONT CONT CONT CONT CONT		w L	ORGANIC (mdd) VAPOUR	INSTALLAT OR REMARI
	SANDY SILT - some clay, trace		1	ss	11	414												
413.4	compact, brown, wet		2	ss	25	413												
1.4			3	ss	35	412												
411.2	(GLACIAL TILL)		4	SS	61	112												
2.9			5	SS	84	411												
	(GLACIAL TILL)				_	410												
409.2			6	SS	93/23c	n												

\mathcal{N}	LOCATION: Fergus, Ontario							EQUIPME	NT	Track	(-M∩u	nt - Ho	bllow S	Stem /	Augers	\$	
	CLIENT: Nigus Holdings Ind														luger		1-
	SOIL PROFILE			SAMF	LES	щ	PENE	TRATION									
ELEV DEPTH	DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	Z SC	SHE OU ● P	AR STREN NCONFINED OCKET PEN 20 40	60 GTH k	80 Pa FIELD	VANE	₩ _P I		w o ONTEN	LIQUID LIMIT 	0RGANIC VAPOUR	S INS F
	410mm TOPSOIL	<u>x¹ 1_x x</u>															
415.0	WEATHERED / DISTURBED	<u>17 st 1</u> ,	1	SS	9	415	+		_	_							
	trace organics						$ \rangle$										
414.2	SANDY SILT - some clay, trace grave compact, brown, moist (GLACIAL TILL)		2	SS	19												Ţ
	SAND - trace silt to silty, compact, brown, wet		3	SS	23	414											
	• • •			00	23												
					-	413											
			4	SS	15												
					-												
			5	SS	14	412			_	_							
411.7																	
3.8	CLAYEY SILT - some sand,		1														
	sand, trace gravel, very stiff, grey, moist,		1			411											
	(GLACIAL TILL)		6	SS	26	411											
410.4 5.0	End of Borehole								-								

PROJECT: Colborne Street

LOG OF BOREHOLE 3

\mathcal{I}	LOCATION: Fergus, Ontario						EC	QUIP	MEN	•	Irack	-Mour	nt - Ho	liow S	stem /	Augers		
	CLIENT: Nigus Holdings Inc.						EL	.EVA		DAT	UM:	Ge	eodetic)			FILE:	1-07-243
LEV PTH	SOIL PROFILE	STRAT PLOT	NUMBER	SAMF	"N" VALUES	ELEVATION SCALE	PENETF RESIST/ 20 SHEAF O UNC	ANCE 4 R STF CONF	PLOT 06 RENG) 8 FH kP +	0 10 a FIELD LAB V/	VANE	PLASTI LIMIT W P I WAT	\	URAL TURE TENT v D	LIQUID LIMIT WL T (%)	a organic a vapour	STANDPIPE INSTALLATIO OR REMARKS
	Ground Surface	1.51 Jz . 5					20	4	06	38	0 10	00	1	0 2	20 3	0		
0.0		$\frac{x \cdot y}{y}$		0.00		414												
413.7 0.4			1	SS	8		$ \setminus $											
0.4 413.4			-				$ \rangle $											
0.7																		Ţ
	SANDY SILT - trace clay,		2	SS	22	413												$\overline{\nabla}$
	trace gravel, compact to very dense, brown, moist,																	
	compact to very dense, brown, moist,																	
	(GLACIAL TILL)		3	SS	17		4	$ \neg$										
						412			\geq									
			-									L						
			4	SS	82/23cr	n												
411.1			5	SS	50/5cm	411												
3.1	CLAYEY SILT	KK]			411												
	some sand, trace gravel,	1 H																
	hard, grey, damp	m																
	(GLACIAL TILL)		6	SS	83/23cr	n												
		H	1		-	410												
		HH	1															目
		KK]_	SS	89													
409.1		1 H	<i>'</i>	33	09						-							
5.0	End of Borehole																	

Borehole was open and water level at 1.2m upon completion of drilling. Water level in piezometer at 1.0m on January 28, 2008 and at 0.9m on June 23, 2008.

LOG	OF	BOF	REH	OLI	E 4
-----	----	-----	-----	-----	-----

	PROJECT:	Colborne Street & Bea	tty Line					_ I	DATE:		1	4 Jar	nuary	2008					
\mathcal{O}		Fergus, Ontario														tem A	ugers		4 07 04
		Nigus Holdings Inc.		1							DAIL	JM:	Ge	eodetic	;			FILE:	1-07-24
ELEV		PROFILE	PLOT		SAMF		ELEVATION SCALE	RESIS	AR STR	_PLOT 60	80) 10 a	00	PLASTI LIMIT	C NATU MOIST CONT		IQUID LIMIT	ORGANIC VAPOUR	STANDPII INSTALLAT OR REMARK
DEPTH 413.4	Ground Surface	RIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVAT	• P	NCONFII OCKET F 20 40	PEN.		IELD V AB VA	NE	WAT	ER CO			(ppm)	REWARP
0.0 <u>413.1</u> 0.3 412.7	WEATHERED /			1	ss	9	413												
<u>412.7</u> 0.7 <u>412.2</u> 1.2	SANDY SILT - tr dense, brown, m			2	SS	32			\mathbb{N}										Ā
411.5	SAND - trace silt dense, brown, w	-		3	SS	42	412												_
1.9	SANDY SILT - tr trace gravel very dense, grey			4	SS	50/13cr	n ⁴¹¹						Ϊ						
	(GLACIAL TILI			5	SS	50/15cr	'n												
						_	410												
400.7				6	SS	50/8cm	409												
408.7 4.7	End	of Borehole		0	33	50/601													

LOG C	of Bore	HOLE 5
-------	---------	--------

	PROJECT: Colborr	e Street & Beatty Lir	ne				DA	TE:		15 Jar	nuary	2008					
$\mathbf{\mathcal{T}}$	LOCATION: Fergus	, Ontario					EC	UIPMEN	NT:	Track-	Mour	nt - Ho	llow S	tem A	ugers	;	
Ű	CLIENT: Nigus I	Holdings Inc.					EL	EVATIO	N DAT	UM:	Ge	eodetic	>			FILE:	1-0
	SOIL PROFILI			SAMF		CALE		ANCE PLO				PLASTI	C NATU MOIST CONT	RAL L		NIC	STA INSTA
ELEV DEPTH	DESCRIPTION	страт ріот	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE		40 STREN CONFINED	GTH kP	a FIELD V LAB VA	VANE	w _Р		NTENT	[₩] ∟ —	d) ORGANIC VAPOUR	RE
417.0 0.0 416.7	Ground Surface 300mm TOPSOIL	<u>x1</u>	<u>, x</u>			<u>417</u>		40						, <u> </u>	, 		
0.3 <u>416.3</u>	WEATHERED / DISTUR trace organics	BED 4	1 	SS	8												
0.7	SANDY SILT - some clay occassional sand lenses, compact, brown, moist	, trace gravel,	2	SS	23	416											Ā
415.1	(GLACIAL TILL)		3	SS	30	415											Ŧ
1.9	SILT AND CLAY - some trace gravel, hard, brown, damp	sand,	4	SS	36	415	GR.S	A.SI.CL									
	(GLACIAL TILL)				-	414		.42.38									
413.3			5	SS	65												
3.8	SANDY SILT - trace clay, trace gravel, very dense, grey, moist (GLACIAL TILL)					413				$\overline{}$							
412.2 4.8	End of Boreh		6	SS	50/13cr	n											

	PROJECT: Colborne Street & Beat	tty Line					DA1	E:	1	4 Jan	uary	2008					
60	-						EQU	JIPMEN	T: <u></u>	rack-N	Moun	t - Sol	id Ster	n Aug	ers		
-	CLIENT: Nigus Holdings Inc.						ELE	VATIO	N DATI	UM:	Ge	odetic	;			FILE:	1-07-2
	SOIL PROFILE	OT	~	SAMF		I SCALE	PENETRA RESISTAN 20	ICE PLO	Г <u>></u>) 100	0	PLASTIC LIMIT	NATUR MOISTU CONTE	AL LIC JRE L NT L	DIUC IMIT	ORGANIC VAPOUR	STANDP INSTALLA
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION	SHEAR S O UNCC POCK 20	NFINED	+ F × L	FIELD V LAB VAI	NE	WP WAT	ER CON	TENT (^w ∟ ⊣ %)	v (ppm)	OR REMAR
	Ground Surface 200mm TOPSOIL	<u>st iz</u>				414		-						1			
0.2 413.4	SANDY SILT trace to some clay, trace organics, loose to compact, brown, moist			SS	10												
0.7 412.9 1.2	SAND - trace silt, dense, brown, moist		2	SS	31	413											Ā
	CLAYEY SILT - some sand, trace gravel, very stiff to hard, brown, damp		3	SS	29												
	(GLACIAL TILL)				-	412											
			4	SS	85					\setminus							
			5	SS	50/13ci	n 411											
	grey					410											
			6	SS	50/13ci	'n											
409.3 4.8	End of Borehole	-MK	Ľ		50,100	·											<u> </u>

Borehole was caving at 3.0m and water level at 1.2m upon completion of drilling. Water level in piezometer at 1.6m on January 28, 2008, at 1.7m on March 28, 2008 and at 1.9m on June 23, 2008.

n h	PROJECT: Colborne Street & Be	atty Line								15 J							
	LOCATION: Fergus, Ontario CLIENT: Nigus Holdings Inc.									Trac DATUM:				Stem Au	-	FILE:	1.0
			1	0.4.1.45		I	PENE	RATION				I	5				
	SOIL PROFILE		-	SAMF		CALE	RESIS	TANCE F	PLOT 60		100	PLASTI LIMIT	IC NATL MOIS CON	JRAL LI	QUID LIMIT	ANIC DUR	STA INSTA
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SCALE	SHEA O UN • PC	R STRI	ENGTH	i kPa + FIELI × LAB) VANE VANE	₩ _₽ ₩ ₩A1	TER CC		[₩] ∟ —	(mdd) ORGANIC (mdd) VAPOUR	RE
409.0 0.0	Ground Surface 360mm TOPSOIL	<u>zt iz</u>				409		0 40	60	80	100	1	0 2	0 30	-		
408.6		1, 1,	1	ss	10												
0.4 408.3	SANDY SILT some clay, trace organics,		_		-												
0.7	loose to compact, brown, moist]	\vdash			400		\mathbf{X}									$\overline{\Delta}$
407.8	SAND - some silt, trace gravel, ∖dense, brown, wet		2	SS	38	408											
1.2	(,,	-			_												
	SILTY SAND TO SANDY SILT gravelly, some clay,		3	ss	40												
	dense to very dense, brown, moist		_			407											
	(GLACIAL TILL)		_		_												
	grey		4	SS	40												
			-		-	406		.SA.SI.C 32.29.11	N								
			5	SS	85	400				\nearrow							
					_												
										`	\backslash						
						405					\wedge						
											$ \rangle$						
40.4.0			6	SS	50/13c	m											
404.2 4.8	End of Borehole																
			1														

LOG OF BOREHOLE 8

	CLIENT: Nigus Holdings Inc.										UM:						1-07-2
	SOIL PROFILE			SAMF	LES	CALE	RESIS	TANCE	E PLOT				PLAST LIMIT	JRAL TURE	LIQUID LIMIT	UR UR	STAND
Ŧ	DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHEA O UI ● P0	AR STI	RENG INED	TH kP + ×	FIELD LAB VA	VANE	^w Р I		w L	d ORGANIC (a VAPOUR	INSTALL OF REMAI
.0		$\frac{\frac{\sqrt{1}}{2}}{\frac{1}{2}} \frac{\sqrt{1}}{\sqrt{1}}$	1	SS	8		N										
.6 .6	trace clay, trace gravel, compact, brown, wet		2	ss	16	408											Ā
.2	SAND some silt and clay, trace gravel, dense to very dense, brown, wet		3	ss	44	407	GF 1	SA.SI	GL .Q								
	gravelly		4	SS	60												
			5	SS	50/13cr	406 n						>					
.1 .8	CLAYEY SILT some sand, trace gravel,					405				/	/						
.8	hard, grey, moist (GLACIAL TILL)		6	SS	41	404											
	End of Borehole																

Borehole was open and water level at 1.2m upon completion of drilling. Water level in piezometer at 1.2m on January 28, 2008, at 1.3m on March 28, 2008 and at 1.2m on June 23, 2008.

LOG	OF	BO	REF	IOL	.E 9
-----	----	----	-----	-----	------

γ		Colborne Street & Bea Fergus, Ontario										<u>15 Jar</u> Track-				tem /	Augers		
\mathcal{O}		Nigus Holdings Inc.															hugera		1-07-24
		Nigus Holdings Inc.									DAI		0		5				1-07-24
	SOIL	. PROFILE			SAMF	PLES	ALE	PENE1 RESIS	TANCE		\geq			PLAST		JRAL	LIQUID	링원	STANDPIP
ELEV DEPTH		CRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHEA O UN	R STI	INED	TH kPa + ×	a FIELD LAB VA	VANE	₩ _P I WA1	IC NATU MOIST CONT W CONT CONT CONT CONT CONT CONT CONT CONT			d) ORGANIC (Mapour	INSTALLATI OR REMARKS
414.7	Ground Surface 410mm TOPSO		<u>×1</u> /					2								0 3			
414.3	4101111110130	11L	1, 11	1	ss	12													
	WEATHERED /	DISTURBED]				$ \rangle$											
- 414.0			_				414	$ \rangle$											
0.7	CLAYEY SILT - very stiff to hard	sandy, trace gravel, I, brown, moist		2	SS	24													∑ Į
	(GLACIAL TIL	L)			SS	51	413			\mathbf{X}									
412.8 1.9	SANDY SILT																		
	trace clay, trace	gravel,		4	00	50/15cr													
	very dense, brov (GLACIAL TIL			+	33	50/150	412												
				5	SS	94/28cr	n						/						
	grey						411						/						
													/						
				6	ss	85	410					/							
409.7 5.0		l of Borehole	1.1.1																

Borehole was open and water level at 0.9m upon completion of drilling. Water level in piezometer at 1.1m on January 28, 2008, at 1.0m on March 28, 2008 and at 1.2m on June 23, 2008.

LOG OF BOREHOLE	10
-----------------	----

	PROJECT: Colborne Street & Beat	ty Line					_ I	DATE	:		15 Januar	/ 2008					
	LOCATION: Fergus, Ontario						_ I	EQUIP	MEN	T: _	Track-Mou	nt - Ho	bllow S	Stem /	Augers	3	
	CLIENT: Nigus Holdings Inc.						_ I	ELEV	ATION	N DAT	UM: _ @	ieodeti	с			FILE:	1-07-24
	SOIL PROFILE			SAMF	PLES	щ		TRATIC		_			NAT			() ~	CTANDDID
		F			S	ELEVATION SCALE		20 4			0 100	PLAST LIMIT	TIC NATI MOIS CON	JRAL TURE TENT	LIQUID LIMIT	ORGANIC VAPOUR	STANDPIP INSTALLATI
ELEV	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	NOI		AR STI				W P	\ 	v 5	ΨL	ORG VAF	OR REMARKS
DEPTH	DESCRIPTION	TRAI	NUN	≿	N" //	EVAT		NCONF OCKET			FIELD VANE	WA	TER CO	ONTEN	T (%)	(ppm)	
	Ground Surface				-	Ш					0 100	1	10 2	:0 3	30	(PP)	
0.0	360mm TOPSOIL	<u>sti</u> z 17 sti															
415.0 0.4	WEATHERED / DISTURBED	ÎÌÌ	1	SS	9	415	\vdash										
414.6			⊢				`										
+	SANDY SILT, trace clay, trace gravel,	-															
	compact, brown, moist		2	SS	36)									
1.2			\vdash			414											Ţ
		KX	1														
413.5	some sand, trace gravel, very stiff, brown, moist	<u> </u>	3	SS	30												
1.9										\vdash							
						440					\sim						
	SANDY SILT trace clay, trace gravel,		4	SS	50/13cr	n 413						1					
	very dense, brown, damp																
			5	22	50/15cr												
	(GLACIAL TILL)			- 33	50/150												
						412											
	arov.																
	grey																
410.0						411	<u> </u>										
410.8 4.6	End of Borehole		6	SS	50/8cm	1											
			1	1								1	1				1

Sheet 1 of 1

		Colborne Street & Bea	atty Line																
		Fergus, Ontario									-				id Ster		-		4 07 0
		Nigus Holdings Inc.		<u> </u>			1				DAT		Ge	eodetic	;			FILE	: <u>1-07-2</u>
ELEV DEPTH		PROFILE	STRAT PLOT	NUMBER	SAMF	"N" VALUES	ELEVATION SCALE	RESIS 2 SHEA 0 U	AR ST	E PLOT 10 6 RENG		0 10	VANE	^w Р			₩ L —	ORGANIC VAPOUR	STANDF INSTALLA OR REMAR
	Ground Surface 360mm TOPSO		<u>x¹/z⁻-</u>				団 412		20 4	6	0 8	0 10	00	10	20) 3	80		
411.7			1, 11	1	ss	5	412	1											
	WEATHERED /	DISTURBED		1				$ \rangle$											
<u>411.3</u> 0.8	CLAYEY SILT -		-##	╞		_		$ \rangle$											
	trace gravel,	un moist		2	SS	14	411	\vdash											
	stiff to hard, brow								$\left \right\rangle$										_
	(GLACIAL TIL	L)		3	ss	49				\mathbb{N}									
				_			410				\searrow								
				4	SS	50/8cn	-						/						
				Ļ															
				5	ss	96/23ci	409 n												
				┣		-													
				1			408												
			Ħ	1			-100												
407.5 4.6	F ,	l of Borehole		6	SS	50/8cn													
4.0	End																		
				1		1		1	1										1

Borehole was caving at 4.0m and water level at 1.5m upon completion of drilling. Water level in piezometer at 1.2m on January 28, 2008, at 1.3m on March 28, 2008 and at 1.4m on June 23, 2008.

	PROJECT: Colbo	rne Street & Beat	ty Line					[DATE:			17 Ja	nuary	2008					
	LOCATION: Fergu							_ 1	QUIP	MEN	T: _	Track	-Mour	nt - So	lid Ste	em Au	igers		
-	CLIENT: Nigus	Holdings Inc.						E	ELEVA		I DAT	UM:	_G	eodeti	2			FILE:	1-07
	SOIL PROFI	E			SAMF	LES	Ш	PENE	TRATIO TANCE	N PLOT	>				NATL	IRAL		υr	STAN
ELEV DEPTH	DESCRIPTION Ground Surface	I	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	2 SHEA 0 UI • P	AR STF	0 6 RENG INED PEN.	0 8 TH kP +	a FIELD LAB V	VANE	WP WAT			₩∟ —-• Г (%)	d ORGANIC MAPOUR	INSTA
0.0			<u>x¹1z <u>x</u> 1₂ x11</u>	1	SS	11	409												
<u>408.7</u> 0.4	SANDY SILT trace to some clay, trace	e rootlets,																	Ā
407.9 1.2				2	SS	14	408	$\left \uparrow \right $											
407.2	some silt, brown, saturated, comp	act		3	SS	22													
1.9	SANDY GRAVEL trace silt.						407												
	compact to dense, brow	n, wet		4	SS	30													
				5	SS	43	406		. 23 .5	۱ .									
<u>405.4</u> 3.8	SANDY SILT trace clay, trace gravel, very dense, grey, damp						405												
404.0	(GLACIAL TILL)			6	SS	72/23cr	n												
404.2 4.9	End of Bore	hole																	<u>.</u>

Borehole was caving at 3.7m and water level at 0.9m upon completion of drilling. Water level in piezometer at 0.7m on January 28, 2008, at 1.0m on March 28, 2008 and at 0.8m on June 23, 2008.

		Colborne Street & Bea							DATE:									
		Fergus, Ontario Nigus Holdings Inc.												<u>nt - Hollo</u> eodetic		n Auger		1-07-24
				1			<u> </u>					0111.					-	<u> </u>
ELEV DEPTH		PROFILE	STRAT PLOT	NUMBER	SAME	"N" VALUES	ELEVATION SCALE	RESIS 2 SHEA 0 UN • PC	TANCE 0 4 AR STF NCONF	PLOT 06 RENG INED PEN.	TH kP	30 10 ra FIELD LAB V/	VANE	PLASTIC LIMIT W P WATEF 10	NATURAL NOISTURE CONTENT W O CONTE 20	w L	ORGANIC VAPOUR	STANDPII INSTALLAT OR REMARK
0.0 414.1 0.4				1	SS	6	414	$\left \right $										
0.7	CLAYEY SILT some sand, trace firm to stiff, browr			2	SS	16	413											⊻
	(GLACIAL TILL)		3	SS	9												
<u>411.8</u> 2.7	SANDY SILT trace clay, trace o	ravel,		4	SS	14	412											
	dense to very der (GLACIAL TILL grey	nse, brown, damp		5	SS	45	411											
409.7		of Borehole		6	SS	50/10c	410 m											

Borehole was open and water level at 1.2m upon completion of drilling. Water level in piezometer at 0.9m on January 28, 2008, at 0.9m on March 28, 2008 and at 0.9m on June 23, 2008.

		Colborne Street & Beat	tty Line									15 Jan						
		-												t - Hollow		-		
	CLIENT:	Nigus Holdings Inc.						_			N DAT	UM:	Ge	odetic			FILE:	1-07-24
ELEV DEPTH		PROFILE	STRAT PLOT	NUMBER	SAMF	LES	ELEVATION SCALE	RESIS 2 SHEA 0 U	AR STI	E PLOT 10 6 RENG FINED	TH kP	30 100	ANE		w 	w L	0RGANIC WAPOUR	STANDP INSTALLA OR REMARI
	Ground Surface					F	Ш					80 100		10	20	30	(ppin)	
0.0	1170mm TOPS	OIL	$\frac{\sqrt{N_z}}{N_z} = \frac{1}{N_z} \frac{\sqrt{N_z}}{\sqrt{N_z}}$ $\frac{\sqrt{N_z}}{\sqrt{N_z}} = \frac{1}{N_z} \frac{\sqrt{N_z}}{\sqrt{N_z}}$	1	ss	6	410											
409.2 1.2	SAND - trace si	ilt, loose, brown, moist	$\frac{\sqrt{t_j}}{t_j} \frac{\sqrt{t_j}}{\sqrt{t_j}}$	2	SS	8	409											Ā
409.0 1.4 408.5 1.9	GRAVEL AND S silty trace clay, very dense, brow			3	SS	59												
407.7	very dense, brow	ce silt, trace clay, vn, wet		4	SS	50/13ci	n ⁴⁰⁸						\geq					
2.7	FINE SAND trace silt, compact, brown	, wet		5	SS	17	407											
406.7 3.8 405.7	SANDY SILT - t hard, grey, mois occasional sand (GLACIAL TIL	seams		6	SS	50/5cn	406											
4.7	Enc	t of Borehole																

Borehole was open and water level at 0.9m upon completion of drilling. Water level in piezometer at 1.4m on January 28, 2008, at 1.2m on March 28, 2008, and at 1.2m on June 23, 2008.

	PROJECT: Colborne Street & Bea	tty Line					DAT	E:		16 Jai	nuary	2008				
	LOCATION: _ Fergus, Ontario						EQU	IPMEN	т: _	Track	-Mour	nt - Solie	d Stem	Auger	S	
•	CLIENT: Nigus Holdings Inc.						ELE	/ATIO	N DAT	UM:	Ge	eodetic			FILE	: 1-07-24
	SOIL PROFILE			SAMF	PLES	ALE	PENETRAT	ION CE PLOT	\geq	_		PLASTIC	NATURA		ll 미 리 대	STANDPI
ELEV DEPTH	DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SCALE	20 SHEAR S O UNCOM POCKE 20		TH kP	FIELD	VANE	PLASTIC LIMIT W P WATE 10		w	OR(INSTALLAT OR REMARI
0.0	300mm TOPSOIL	Z _I J ^N	<u>.</u>					-								
413.4 0.3			4 1	SS	21											
	SANDY SILT		-		-	413										$\overline{\Delta}$
	trace gravel to gravelly, trace clay,		-		-	413										
	compact to very dense, brown, moist		2	SS	24											
	(GLACIAL TILL)				-											
			-		-		$ \rangle$									Ţ
			3	ss	34	412	GR.SA. 24. 31.								-	
			_		-		24.01.		\leftarrow							
										\frown						
			4	SS	50/8cm	n										
						411									_	
			5	SS	50/15c	m										
	grey					410				/						
	3)															
										Y						
			-	-	-				/							
			6	SS	62	409						\vdash			-	
408.7			-		-	<u> </u>						$ \vdash $			<u> </u>	
5.0	End of Borehole															

NOTES:

Borehole was caving at 4.3m and water level at 0.6m upon completion of drilling. Water level in piezometer at 0.9m on January 28, 2008, frozen on March 28, 2008 and at 1.5m on June 23, 2008.

LOG	OF	BO	RE	HOL	.E 1	8
-----	----	----	----	-----	------	---

	PROJECT:	Colborne Street & Be	eatty Lin	е					DATE:			16 Januar	y 2008					
	LOCATION:	Fergus, Ontario							EQUIPI	MENT	: _	Track-Mou	unt - Sc	olid Ste	em Au	ugers		
	CLIENT:	Nigus Holdings Inc.							ELEVA		DAT	UM: _(Geodeti	с			FILE:	1-07
	SOIL	PROFILE			SAM	PLES	щ	PENE	TRATIO	N	_							
			Ŀ				SCAL		STANCE	PLOT_ 0 60		0 100	PLAST LIMIT	IC MOIS	URAL STURE ITENT	LIQUID LIMIT	ORGANIC VAPOUR	STAN INSTA
ELEV	DEO		L PLO	NIIMBER	ТҮРЕ	ILUE	NOL	SHE		RENGT			w P		w 0	wL	ORG VAF	REN
DEPTH	DES	CRIPTION	STRAT PLOT		≿	"N" VALUES	ELEVATION SCALE		NCONFI			FIELD VANI LAB VANE	WA	TER CO	ONTEN	T (%)	(ppm)	
411.7 0.0	Ground Surface				_	-			20 40	0 60) 8	0 100	1	0 2	20 3	80 		
0.0	460mm TOPSC	DIL	1 <u>, x</u>		SS	4												
411.2 0.5	WEATHERED																	$\overline{\Sigma}$
0.0	trace organics	DIGTORDED					411	+										-
410.7				2	ss	9												
1.1	SANDY SILT				_	_		$ \rangle$										
	trace clay, trace					_		\										
	loose to very de	nse, brown, moist,		3	ss	19	410)	\mathbf{k}									
	(GLACIAL TIL	L)				_				\searrow								
						_												
				4	SS	74/23c							1					
					1		409)										
				5	SS	50/15c	m											
	grey						408	3										
	0,																	
407.0				6	SS	50/15c	m 407	,										
4.7	End	d of Borehole					407											
																	1 1	

Borehole was caving at 4.3m and water level at 0.6m upon completion of drilling. Water level in piezometer at 0.6m on March 28, 2008 and at 0.6m above ground on June 23, 2008.

LOG	OF	BO	REF	IOL	E	19
-----	----	----	-----	-----	---	----

\sim	PROJECT: Colborne Street & Bo						
	LOCATION: Fergus, Ontario						
	CLIENT: Nigus Holdings Inc.					i	ELEVATION DATUM:GeodeticFILE:
	SOIL PROFILE			SAMF	PLES	SALE	PENETRATION RESISTANCE PLOT PLASTIC NATURAL LIQUID 20 40 60 80 100 PLASTIC MOISTURE LIQUID LIMIT CONTENT LIMIT CONTENT
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SCALE	RESISTANCE PLOT PLASTIC NATURAL MOISTURE LIQUID MOISTURE ST 20 40 60 80 100 IMIT CONTENT UOUD CONTENT ST ST ST ST NST SHEAR STRENGTH kPa •
0.0		<u>zi iz . i</u>					
412.5 0.3 412.1			1	SS	8		
0.7	Voose, brown, moist SAND - trace to some silt,		2	AS	17	412	
410.9	trace gravel, compact to dense, brown, wet		3	SS	33	411	
1.9	SANDY SILT trace clay, trace gravel,				-		
	dense to very dense, brown, moist (GLACIAL TILL)		4	SS	32	410	
			5	SS	50/13cr	'n	
408.2	grey		6	- 55	50/5cn	409	
4.6	End of Borehole						

LOG	OF	BO	REF	IOL	E	20
-----	----	----	-----	-----	---	----

	PROJECT: Colborne Street &																
	LOCATION: Fergus, Ontario CLIENT: Nigus Holdings I	nc								T: I DAT					Augers	FILE	: 1-07-2
		10.	1	CAME			PENE	TRATIC	N					, 			. <u>- 107 2</u>
ELEV DEPTH	SOIL PROFILE DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	SAMF	"N" VALUES	ELEVATION SCALE	RESIS 2 SHEA 0 UI • PC	AR STI NCONF	E PLOT 0 6 RENG INED PEN.	0 8 TH kP + × 0 8	0 10 a FIELD LAB V/	VANE	[₩] Ρ I WAT	C NATURA MOISTUI CONTEN W 		(mdd) ORGANIC (mdd) (mdd) (mdd) (mdd) (mdd) (mdd) (mdd) (md) (m	STANDF INSTALLA OR REMAF
0.0	410mm TOPSOIL	<u>x¹ 1x</u>	<u>×</u>														
414.3 0.4	WEATHERED / DISTURBED		21	SS	4												
- 414.0						414	++-									-	
0.7	SANDY SILT		2	SS	14		$ \rangle$										
	trace clay, trace gravel, compact to very dense, brown, wet		-		_		\										Ţ
	(GLACIAL TILL)				_	447		\backslash									
			3	SS	29	413											
	moist									\square							
			4	SS	50/13c	m						\geq					
412.0 2.7						412	2								_	-	
	CLAYEY SILT		\vdash		_												
	some sand, trace gravel, hard, brown, moist		5	SS	67					$\left \right $							
	(GLACIAL TILL)				-	41'											
			1						/								
			1_		_												
			6	SS	43	410) 		1							_	
409.7 5.0	End of Borehole		1														
		1															

Borehole was caving at 4.3m and water level at 1.2m upon completion of drilling. Water level in piezometer at 1.0m on January 28, 2008 and at 1.8m on March 28, 2008.

LOG OF	BOREHO	LE 12D
--------	--------	--------

	PROJECT: Colborne Street & Beatt	ty Line					DA	ΓE:		16 January	2008				
$\mathbf{\nabla}$										Track-Mou			n Augers		
	CLIENT: Nigus Holdings Inc.						ELE	VATIO	N DAT	UM: _ G	eodetic	2		FILE:	1-07-243
	SOIL PROFILE	_	Ś	SAMP	LES	ALE	PENETRA RESISTA		\sim		PLAST		AL LIQUID	lic JR	STANDPIP
ELEV DEPTH 408.9	DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	түре	"N" VALUES	ELEVATION SCALE	20 SHEAR O UNCO POCP 20	ONFINED ET PEN.	STH kP		₩ _P I	w 0	AL LIQUID JRE LIMIT NT ^W L ITENT (%) 30	d ORGANIC WAPOUR	INSTALLAT OR REMARK
0.0 408.5	360mm TOPSOIL WEATHERED / DISTURBED	$\frac{x^{1}l_{z}}{l_{z}} \frac{x}{x^{1}l_{z}}$	1	SS	10		1								
	trace organics		2	SS	16	408									
	some sand, trace gravel, stiff to very stiff, brown, moist		-		10										
407.0 1.9			3	SS	25	407		\rightarrow							<u> </u>
	SANDY SILT trace clay, trace gravel, very dense, brown, moist		4	SS	50/13cr	n									
	(GLACIAL TILL)		5	SS	50/13cr	406 1		SI.CL 5.0							
	grey					405									
			6	SS	50/10cr	ו 404									
						403									
			7	SS	50/10cr										
						402									⊻
			8	SS	50/8cm	401									
			9	6	50/45-	400									
399.6 9.3	End of Borehole		я	SS	50/15cr	1									

Terraprobe

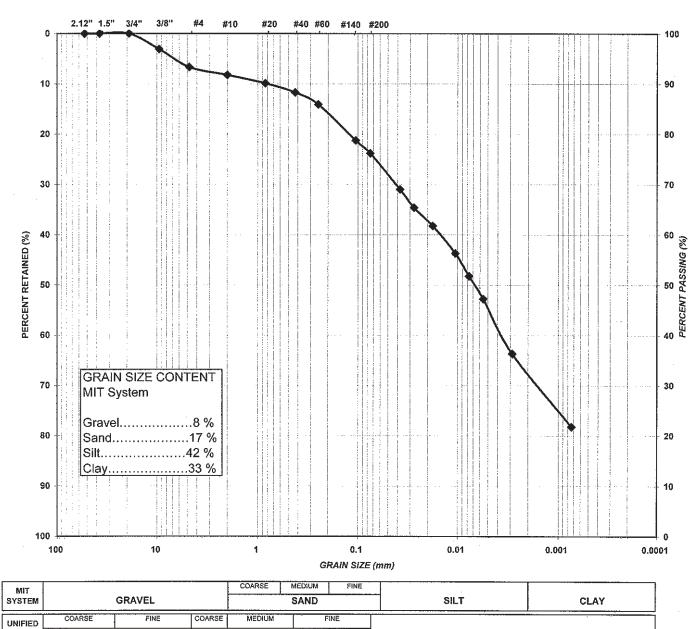
	CLIENT: Nigus Holdings Inc.								DAI		Ge	eodeti	C			FILE:	1-07-2
V TH	SOIL PROFILE			MPLES	ELEVATION SCALE	2 SHEA 0 UI • P0	TANCE 0 4 NR STI NCONF	PLOT 0 60 RENGT INED PEN.) 8 FH kP + ×	a FIELD LAB V	VANE	₩ _P I WA	TER CO	» O DNTEN		ପ୍ତି ORGANIC ଞ୍ଚି VAPOUR	STANDP INSTALLA OR REMAR
8.9 0.0	Ground Surface		_			2	0 4	0 60	8 (0 1	00	1	0 2	20 3	30		
8.5		X-1,															
0.4 8.2	WEATHERED / DISTURBED	1															
7.0	CLAYEY SILT some sand, trace gravel, stiff to very stiff, brown, moist				408												
1.9	2 .				407												
	(GLACIAL TILL)				406												
1.4	grey				405												
4.5	End of Borehole				404												
					403												
					402												
					401												
					400												


LOG OF	BOREHOL	.E 17D
--------	---------	--------

	LOCATION: Fer	lborne Street & Bea rous Ontario							ate: Quipm						lid Ste	-m Δι	iders		
\mathcal{N}	CLIENT: Nig	-							LEVAT					eodetic			ugero -	FILE:	_1-
	SOIL PRC	FILE			SAMF	PLES	Щ	PENET	RATION TANCE F		_				ΝΑΤΙ	IRAI		U m	S.
ELEV DEPTH	DESCRIPTI		STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SCALE	20 SHEA ○ UN ● PC	0 40 R STRE CONFIN CKET PI	60 ENGTH ED EN.	80 I kPa + FI × L4	ELD V AB VA	/ANE NE	[₩] Ρ I WAT				(add) ORGANIC (add) VAPOUR	INS R
410.4 0.0	Ground Surface 460mm TOPSOIL		<u>x^A 1_Z</u>	-			ш	20	9 40	60		10		1	U 2	0 3	30		
409.9			1/ <u>1</u> /	1	ss	12	410	$ \cdot $											
	SANDY SILT trace clay, trace grave compact, brown, mois (GLACIAL TILL)			2	SS	24													
409.2 1.2				1			409												
	CLAYEY SILT some sand, trace gra stiff to hard, brown, m			3	ss	19	400												
	(GLACIAL TILL)			1			100		\setminus										
	grey			4	ss	29	408												
				5	SS	34	407		\int										
406.7						1				\searrow									
3.8	SANDY SILT trace clay, trace grave very dense, grey, mo					4	406												
	(GLACIAL TILL)			6	SS	50/15cr	'n												
							405												
				7	SS	50/5cm	404												
							403												¥
				8	SS	50/8cm													
							402												
401.5 8.9		orehole		9	SS	50/5cm													-

LOG OF	BOREHO	DLE 17S
--------	--------	----------------

								EQUI	PMEN	IT: _	Trac	anuary k-Mou : _G	nt - Sc	olid St		-	FILE:	
	SOIL PROFILE			SAMF	PLES	ALE	PEN RES	ETRATIO	ON E PLO	ī.>			PLAST	IC NAT	URAL		<u>о</u> к	STA
ELEV DEPTH	DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHE O (20 AR ST JNCONI POCKET	40 RENC FINED FPEN.	60 GTH kF	80 Pa FIEL LAB	D VANE	W P WA	TER CO	URAL STURE ITENT 0 ONTEN 20 3	w L	d) ORGANIC VAPOUR	INST RE
0.0		$\frac{x^{1}x}{x^{1}} = \frac{x}{x}$																
409.9 0.5						410												
409.2	trace clay, trace gravel, compact, brown, moist																	
1.2	CLAYEY SILT some sand, trace gravel, stiff to hard, brown, moist					409												
	(GLACIAL TILL)					408												
	grey					407												
406.7						407												
	SANDY SILT trace clay, trace gravel, very dense, grey, moist					406												
4.5																		
						405												
						404												
						403												
						402												



SILT AND CLAY

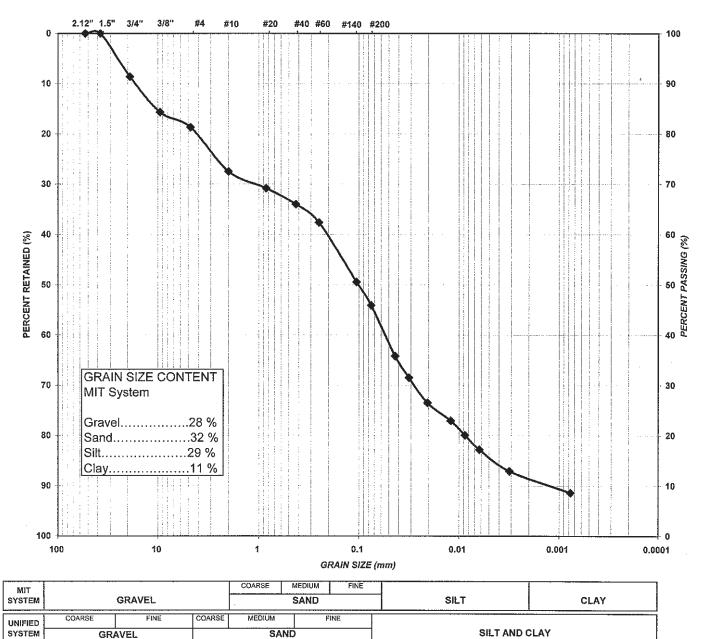
PROJECT: Nigus Property LOCATION: Fergus, Ontario CLIENT: Nigus Holdings Inc. BOREHOLE: 5 SAMPLE NUMBER: 4 SAMPLE DEPTH: 2.3 - 2.7 m SAMPLE DESCRIPTION: SILT and CLAY, some sand, trace gravel FILE NO.: 1-07-2438 LAB NO.: 1031A SAMPLE DATE: January 14, 2008 SAMPLED BY: L.H.

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

SAND

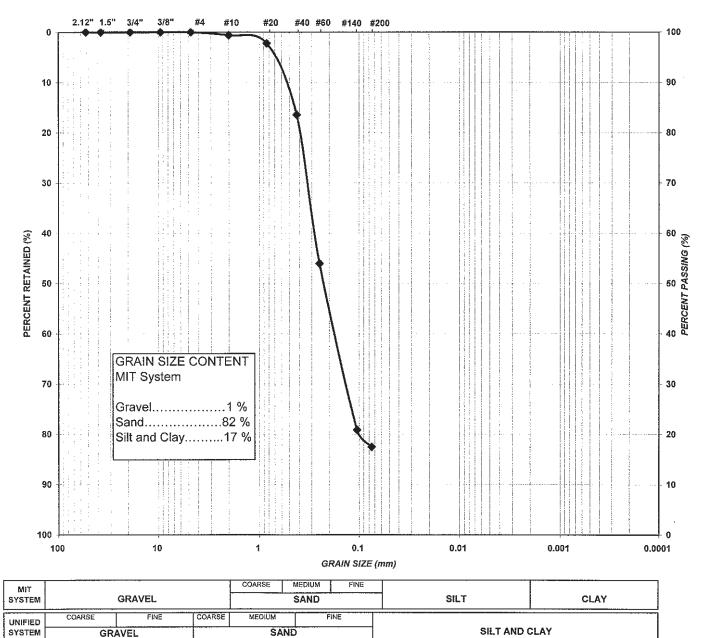
SYSTEM


GRAVEL

PROJECT: Nigus Property LOCATION: Fergus, Ontario CLIENT: Nigus Holdings Inc. BOREHOLE: 7 SAMPLE NUMBER: 5 SAMPLE DEPTH: 3.0 - 3.5 m SAMPLE DESCRIPTION: Silty, Gravelly, SAND, some clay FILE NO.: **1-07-2438** LAB NO.: **1031B** SAMPLE DATE: January 14, 2008 SAMPLED BY: L.H.

GRAIN SIZE DISTRIBUTION

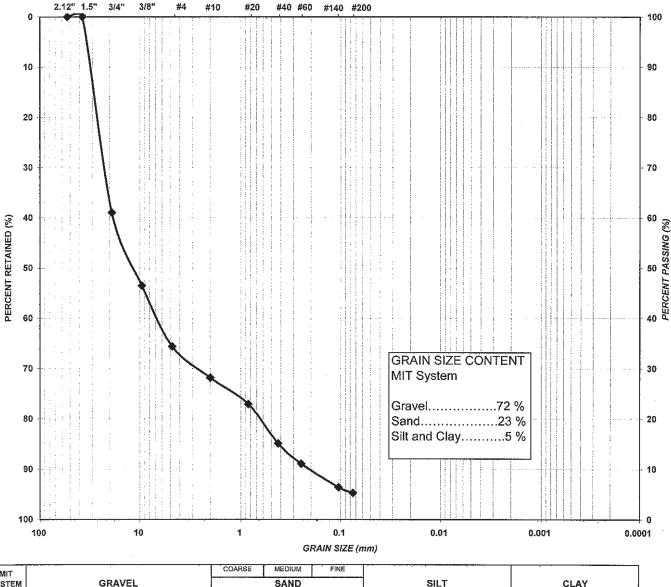
U.S. STANDARD SIEVE SIZES



PROJECT: Nigus Holding Inc. LOCATION: Fergus, Ontario CLIENT: Nigus Holdings Inc. BOREHOLE NUMBER : 8 SAMPLE NUMBER : 3 SAMPLE DEPTH: 1.5 - 2.0 m SAMPLE DESCRIPTION: SAND, some silt and clay, trace gravel FILE NO.: 1-07-2438 LAB NO.: 1031C SAMPLE DATE: January 15, 2008 SAMPLED BY: L.H.

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

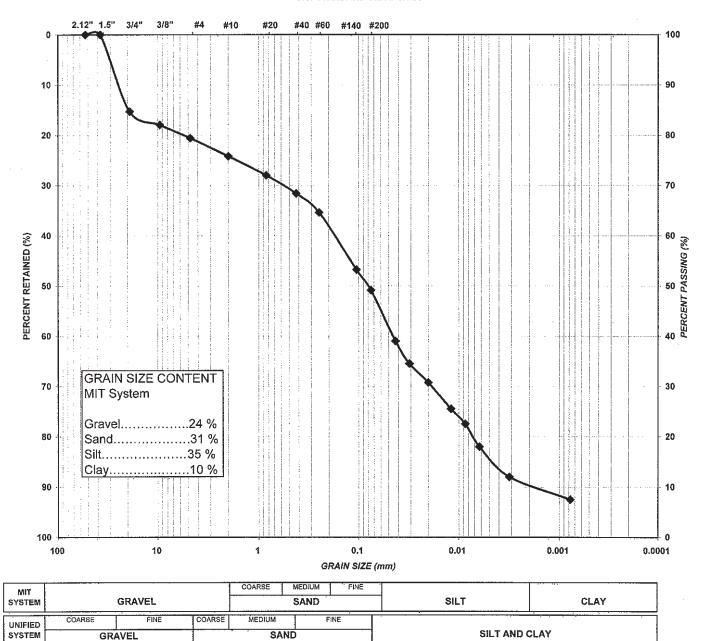


PROJECT: Nigus Holding Inc. LOCATION: Fergus, Ontario CLIENT: Nigus Holdings Inc. BOREHQLE NUMBER : 13 SAMPLE NUMBER : 5 SAMPLE DEPTH: 3.0 - 3.5 m SAMPLE DESCRIPTION: Sandy GRAVEL, trace silt FILE NO.: 1-07-2438 LAB NO.: 1031D SAMPLE DATE: January 15, 2008 SAMPLED BY: L.H.

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

MIT				COARSE	MEDIUM	FINE		,			
SYSTEM		GRAVEL			SAND		SILT	CLAY			
UNIFIED	COARSE	FINE	COARSE	MEDIUM		FINE		in the second			
SYSTEM	GR/	AVEL		SA	ND		SILT AND CLAY				



PROJECT: Nigus Property LOCATION: Fergus, Ontario CLIENT: Nigus Holdings Inc. BOREHOLE: 16 SAMPLE NUMBER: 3 SAMPLE DEPTH: 1.5 - 2.0 m

FILE NO.: 1-07-2438 LAB NO.: 1031E SAMPLE DATE: January 14, 2008 SAMPLED BY: L.H.

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

SAMPLE DESCRIPTION: Gravelly, Sandy, SILT, some clay

Appendix B

Sanitary Documents and Calculations

Fergus Calculation of the Uncommitted Reserve Capacity - Wastewater

Summary of Units	
Description	Total Units
Remaining Vacant Single, Semi & Townhouse Lots and Apartment Units	
By Registered Plan Of Subdivision	340
Remaining Vacant Single, Semi & Townhouse Lots and Apartment Units	
By Draft Approved Plan Of Subdivision	615
Zoned Multiple Units Outside Draft Plans of Subdivisions & Registered	
Plans of Subdivisions	55
Zoned Institutional - Allocation for Future Groves Memorial Hospital	153
Allowance for Infill and Redevelopment - residential/non-residential	712
FOR COMMITTED FIRM CAPACITY - Unconnected lots	1,875

URC Wastewater Calculation	
Net 3 Yr Average Day	4,336 m ³ /d
3 Yr Average Per Day Per Capita	305 litres/d/person

Typical Number of Building Units Constructed Annually

130.00

URC Firm Capacity - A	Available Actual	Maximum Day	Pumping Capaci	ty	
F =	8,000	m ³ /day			
PPU =	3.08	persons/unit			
Avg. Day Flow /lot =	0.94	m ³ /day/unit			
1	F = Design Capa	acity (m ³ /day)		8,000	m ³ /day
	Average Day Flo	ow (3 Yr Average	e)	4,336	m³/day
2	Committed Firm	Capacity		1,763	m ³ /day
		Oupdoily		1,875	units
3	Free Registered (Uncommitted	d Dwelling Unit	Capacity	1,902	m³/day
0	(Uncommitted	Reserve Capac	ity)	2,023	units
Δ	Capacity Comm	itment Under Co	unsideration	122	m ³ /day
+				130	units
5	CAPACITY AVA	ILABLE		YES	
6	Remaining Capa	acity		1,780	m ³ /day
0	Containing Oupt			1,893	units

Preliminary Sewer Sizing

North West Fergus SPA Draft Plan, Township of Centre Wellington

Project #: [300031145] Date: 16-Feb-18	Min Diameter = Mannings 'n'=	200 0.013	mm	Avg. Domestic Flow = Infiltration =				
Designed: ET	Min. Velocity =	0.60	m/s	Max. Peaking Factor =	4.00			
Checked: LN	Max. Velocity =	3.00	m/s	Min. Peaking Factor=	2.00	Factor of Safety =	10	%

	RESIDENTIAL										COMMER	CIAL/INDUST	RIAL/INSTITU	TIONAL				FLOW CAL	CULATIONS	S			PIPE DATA				
																				CONSTANT	г			PIPE			
DESCRIPTION	FROM	то		ACC.					ACCUM.		ACC.	EQUIV.	FLOW	EQUIV.	ACCUM.	INFILTRATION	TOTAL	PEAKING	POP.	COMM.	ACCUM.	TOTAL	SLOPE	DIAMETER	FULL FLOW	FULL FLOW	PERCENT
	мн	мн	AREA	AREA	UNITS	DENISTY	DENSITY	POP	RES.	AREA	AREA	POP.	RATE	POP.	EQUIV.		ACCUM.	FACTOR	FLOW	FLOW	COMM. FLOW	FLOW			CAPACITY	VELOCITY	FULL
			(ha)	(ha)	(#)	(P/ha)	(P/unit)		POP.	(ha)	(ha)	(p/ha)	(l/s/ha)		POP.	(l/s)	POP.		(l/s)	(l/s)	(I/s)	(l/s)	(%)	(mm)	(l/s)	(m/s)	(%)
AREA TO PUMPSTATION																											
	EV.74	50	54.00	54.00				0000	0000									0.44	04.0			00.0	0.50		00.4	0.07	500/
External (Low Density)	EXT1	E2	51.26	51.26		63		3230	3230							7.7	3230	3.41	31.9			39.6	0.50	300	68.4	0.97	58%
External (Medium Density)	EXT2	E2																					0.50	200	23.2	0.74	
External (Com/Inst/Ind)	EXT3	E2																					0.50	200	23.2	0.74	
Low Density	PH2 1	2	30.29	30.29	348		3.08	1072	1072							4.5	1072	3.78	11.7			16.3	0.50	200	23.2	0.74	70%
Medium Density	PH2_1 PH2_2	2	30.29	30.29	114		2.47	282	282							4.5	282	4.00	3.3			3.3	0.50	200	23.2	0.74	14%
Com/Inst/Ind	PH2_2 PH2_3	2			114		2.47	202	202	1.53	1.53		0.300			0.2	202	4.00	3.3	0.5	0.5	0.7	0.50	200	23.2	0.74	3%
Total Phase 2 Flow	2	E1		30.29					1354	1.00	1.53		0.300			4.8	1354	3.71	14.5	0.0	0.5	19.8	0.00	200	20.2	0.74	570
Total Filase 2 Flow	-			00.25					1004		1.00					4.0	1004	0.71	14.0		0.0	10.0		200			-
																											-
Low Density	PH3 1	3	30.85	30.85	424		3.08	1306	1306							4.6	1306	3.72	14.1			18.7	0.50	200	23.2	0.74	81%
Medium Density	PH3 2	3	00.00	00.00	88		2.47	218	218								218	4.00	2.5			2.5	0.50	200	23.2	0.74	11%
Com/Inst. Ind	PH3_3	3																						200			
Total Phase 3 Flow	3	E1		30.85					1524							4.6	1524	3.67	16.2			20.8		200			
Total Phase 2 & 3 Flow	E1	E2		61.13					2878		1.53					9.4	2878	3.46	28.8		0.5	38.7	0.50	300	68.4	0.97	57%
Peak Flow into PS	E2	PS		112.39					6108		1.53					17.1	6108	3.16	55.9		0.5	73.5	0.50	375	124.0	1.12	59%
Peak Flow into PS	PS	100		112.39					6108		1.53					17.1	6108	3.16	55.9		0.5	73.5	0.50	375	124.0	1.12	59%
PHASE 1 AREA																											+
Low Density	PH1 1	1	15.68	15.68	176		3.08	543	543							2.4	543	3.96	6.2		+	8.6	0.50	200	23.2	0.74	37%
Medium Density	PH1 2	1	10.00	10.00	40		2.47	99	99							2.7	99	4.00	1.1		+ +	1.1	0.50	200	23.2	0.74	5%
Com/Inst/Ind	PH1 3	1					2.71			2.70	2.70		0.320			0.4		7.00	1.1	0.9	0.9	1.3	0.50	200	23.2	0.74	5%
Committee ind										2.70	2.70		0.020			0.1				0.0	0.0	1.0	0.00	200	20.2	0.1 7	
Total Phase 1 Flows	1	100		15.68					642		2.70					2.8	642	3.92	7.3		0.9	10.9	0.50	200	23.2	0.74	47%
	1	INT		15.68					642		2.70					2.8	642	3.92	7.3		0.9	10.9	0.50	200	23.2	0.74	47%
Int. Dev. Area Flow	INT	TotInt		15.68					642		2.70					2.8	642	3.92	7.3		0.9	10.9	0.50	200	23.2	0.74	47%
ALL FLOWS COMBINED	100	Ex		128.07					6750		4.23					19.8	6750	3.12	61.0		1.3	82.1	0.30	375	96.0	0.87	86%

NOMINAL PIPE SIZE USED

Appendix C

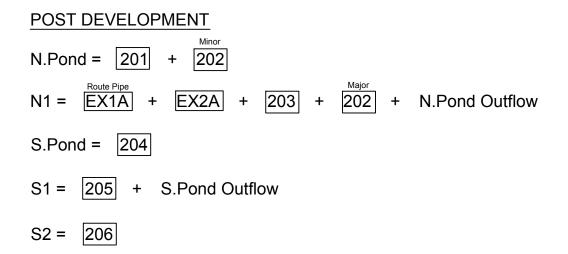
Storm Sewer Sizing

STORM SEWER DESIGN SHEET: (5 Year Storm)

FSR

North West Fergus SPA, Township of Centre Wellington

Designed: E	3-Dec-16 T					Ma St	Diameter = nnings 'n'= arting Tc =	300 0.013 10	mm min	Rainfall I	ntensity = A = B = C =	(Tc+B)^c 500 0.24	where 1	Γc is in minutes						
Checked: Ll	N					Factor	of Safety =	10	%		0-	0.6877 _)						NOMINAL PIPE S	JIZE USED
DESCRIPTION	FROM MH	то мн	AREA (ha)	RUNOFF COEFFICIENT "R"	'AR'	ACCUM. 'AR'	RAINFALL INTENSITY (mm/hr)	FLOW (m3/s)	CONSTANT FLOW (m3/s)	ACCUM. CONSTANT FLOW (m3/s)	TOTAL FLOW (m3/s)	LENGTH (m)	SLOPE (%)	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (m3/s)	FULL FLOW VELOCITY (m/s)	INITIAL Tc (min)	TIME OF CONCENTRATION (min)	ACC. TIME OF CONCENTRATION (min)	PERCENT FULL (%)
Street G/H/A Intersection	1	2	2.35	0.45	1.06	1.06	101.0	0.297			0.297	235.0	0.30	600	0.336	1.19	10.00	3.29	13.29	88%
Street A/M Intersection	2	3	4.44	0.45	2.00	3.06	83.4	0.707			0.707	260.0	0.30	825	0.786	1.47	13.29	2.95	16.24	90%
Street A/M Intersection	4	3	4.17	0.45	1.88	1.88	101.0	0.526			0.526	380.0	0.30	750	0.610	1.38	10.00	4.59	14.59	86%
Street A/H Intersection	3	5	7.31	0.45	3.29	8.22	72.8	1.662			1.662	45.0	0.30	1200	2.135	1.89	16.24	0.40	16.64	78%
Street A/B Intersection	6	5	1.88	0.45	0.85	0.85	101.0	0.237			0.237	160.0	0.30	600	0.336	1.19	10.00	2.24	12.24	71%
Street A/D Intersection	5	7	0.19	0.90	0.17	9.24	71.6	1.838			1.838	132.0	0.30	1200	2.135	1.89	16.64	1.17	17.80	86%
Street A/D Intersection	8	7	1.86	0.45	0.84	0.84	101.0	0.235			0.235	165.0	0.30	600	0.336	1.19	10.00	2.31	12.31	70%
North Pond - West Inlet	7	HW1				10.08	68.4	1.914			1.914	95.0	0.30	1200	2.135	1.89	17.80	0.84	18.64	90%
External Area 1	EXT1	101	8.54	0.53	4.53	4.53	81.5	1.025			1.025									
Farley Road/Street B Intersection	101	101	1.35	0.45	0.61	5.13	101.0	1.440			1.440	200.0	0.90	900	1.717	2.70	10.00	1.23	11.23	84%
Farley Road/Street B Intersection	103	102	2.10	0.45	0.95	0.95	101.0	0.265			0.265	210.0	1.60	450	0.361	2.27	10.00	1.54	11.54	73%
Farley Road/Street D Intersection	102	104	0.32	0.45	0.14	6.22	91.7	1.585			1.585	82.0	0.50	1050	1.931	2.23	11.54	0.61	12.16	82%
Farley Road/Street D Intersection	105	104	1.18	0.45	0.53	0.53	101.0	0.149			0.149	92.0	0.50	450	0.202	1.27	10.00	1.21	11.21	74%
Farley Road/Street A Intersection	104	106	0.31	0.45	0.14	6.89	88.5	1.695			1.695	82.0	1.40	1050	3.231	3.73	12.16	0.37	12.52	52%
Farley Road/Street A Intersection	107	106	1.66	0.45	0.75	0.75	101.0	0.210			0.210	145.0	1.20	450	0.312	1.96	10.00	1.23	11.23	67%
Street A/Street F Intersection	108	109	2.08	0.45	0.94	0.94	101.0	0.263			0.263	155.0	2.00	450	0.403	2.54	10.00	1.02	11.02	65%
Farley Road/Street A Intersection	109	106	2.37	0.52	1.23	2.17	94.6	0.570			0.570	333.0	0.30	825	0.786	1.47	11.02	3.77	14.79	72%
North Pond - East Inlet	106	HW1	1.55	0.45	0.70	10.51	71.1	2.075			2.075	225.0	0.65	1050	2.202	2.54	16.81	1.47	18.28	94%
External Area 2	EXT2	201	1.60	0.43	0.68	0.68	101.0	0.192			0.192									
Street A/H Intersection	201	202	3.25	0.45	1.46	2.15	101.0	0.602			0.602	140.0	0.30	825	0.786	1.47	10.00	1.59	11.59	77%
Street A	202	203	0.51	0.45	0.23	2.38	91.4	0.603			0.603	80.0	0.30	825	0.786	1.47	11.59	0.91	12.49	77%
Street A	204	203	0.63	0.45	0.28	0.28	101.0	0.080			0.080	140.0	0.30	375	0.096	0.87	10.00	2.68	12.68	83%
Pond Easement	203	205	2.58	0.45	1.16	3.82	86.0	0.913			0.913	250.0	0.30	975	1.227	1.64	12.68	2.53	15.22	74%
Pond Easement	205	206	1.34	0.25	0.34	4.15	76.1	0.878			0.878	145.0	0.30	975	1.227	1.64	15.22	1.47	16.69	72%
Pond Easement	206	HW2	3.62	0.55	1.99	6.15	71.5	1.220			1.220	220.0	0.30	1050	1.496	1.73	16.69	2.12	18.81	82%
	1001	1002	2.46	0.59	2.03	2.03	101.0	0.570			0.570	200.0	0.30	825	0.786	1.47	10.00	2.27	10.07	72%
Colborne/Street S Intersection Colborne/Street T Intersection	1001	1002	3.46 1.89	0.39	0.85	2.03	88.0	0.704			0.704	200.0 85.0	0.30	825	0.786	1.47	10.00 12.27	0.96	12.27 13.23	90%
Colborne/Street N Intersection	1002	1003	1.49	0.45	0.67	3.55	83.6	0.825			0.825	85.0	0.30	900	0.992	1.47	13.23	0.90	14.14	83%
Colborne/Pond 2	1003	1004	2.34	0.45	1.05	4.61	79.9	1.023			1.023	135.0	0.30	975	1.227	1.64	14.14	1.37	15.51	83%
Colborne/Pond 2	1004	1005	0.48	0.25	0.12	0.12	101.0	0.034			0.034	90.0	0.30	300	0.053	0.75	10.00	2.00	12.00	64%
Pond 2	1005	HW3	0.10	0.20	0.12	4.73	75.1	0.986			0.986	45.0	0.30	975	1.227	1.64	15.51	0.46	15.96	80%
Street N/O Intersection	2001	2002	1.60	0.45	0.72	0.72	101.0	0.202			0.202	220.0	0.30	525	0.236	1.09	10.00	3.37	13.37	86%
Street N/P Intersection	2002	2003	1.83	0.45	0.82	1.54	83.0	0.356			0.356	90.0	0.30	675	0.460	1.29	13.37	1.17	14.54	77%
Street N/Q Intersection	2003	2004	2.25	0.45	1.01	2.56	78.5	0.557			0.557	100.0	0.30	825	0.786	1.47	14.54	1.13	15.67	71%
Farley Road/Street N Intersection	2004	2005	2.24	0.45	1.01	3.56	74.6	0.738			0.738	92.0	0.30	900	0.992	1.56	15.67	0.98	16.65	74%
Street N/R Intersection	2005	2006	4.44	0.45	2.00	5.56	71.6	1.106			1.106	80.0	0.30	900x1800 (BOX)	3.059	1.89	16.65	0.71	17.36	36%
Street N/R Intersection	2007	HW4	2.81	0.45	1.26	1.26	101.0	0.355			0.355	285.0	0.30	675	0.460	1.29	10.00	3.69	13.69	77%
Pond 2	2006	2008	1.02	0.45	0.46	6.02	69.6	1.164			1.164	305.0	0.30	900x1800 (BOX)	3.059	1.89	17.36	2.69	20.05	38%
																				<u> </u>


Appendix D

Stormwater Management Pond Calculations and Modelling

MODEL SCHEMATICS

PRE-DEVELOPMENT

N1 =	101	+	Route Channel	+	Route Channel
S1 =	102				
S2 =	103				

MODELLING PARAMETERS

Pre-Development

Catchment	Area	TIMP	XIMP	ТР	CN
	(ha)	(%)	(%)	(hr)	-
EX1A	42.09	-	-	0.92	74
EX2A	2.14	-	-	0.32	71
EX3A	11.51	-	-	0.56	71
101	51.10	-	-	0.52	71
102	26.53	-	-	0.71	71
103	7.13	-	-	0.28	71
104	2.92	-	-	0.60	65
105	5.11	-	-	0.41	65

Post Development

Catchment	Area	TIMP	XIMP	ТР	CN
	(ha)	(%)	(%)	(hr)	-
EX1A	42.09	-	-	0.92	74
EX2A	2.14	-	-	0.32	71
201	54.56	53.9	29.6	-	71
202	3.86	46.7	28.3	-	71
203	1.06	38.2	19.4	-	71
204	27.40	55.0	29.8	-	71
205	1.34	-	-	0.33	71
206	2.69	55.0	28.0	-	71
207	1.48	-	-	0.41	65

PRE2016.DAT

2 Metric units *# Project Name: [SB] Project Number: [300031145] Date : 03-23-2017 Modeller : [JMS/AJC] Company : R.J. Burnside & Associates License # : 3245976 *# *# *# *# *% *% *% ame -----| READ STORM *# North West Fergus Secondary Area (NWFSPA) Pre Development *Pre-Development flows from the area north of Nichol Drain *Note: For Time-To-Peak calculations refer to Appendix. *External area to the north of the NWFSPA (Catchment EX1A). *The existing land use for this catchment is agricultural. The CN number *was established based on Soils Mapping (Listowel Loam) at 74. *This drainage will by-pass the SPA SWM ponds via the N-S realigned ditch. ID=[1], NHYD=["EX1A"], DT=[2]min, AREA=[42.09](ha), DWF=[0](cms), CN/C=[74], TP=[0.92]hrs, RAINFALL=[,,,,,](mm/hr), END=-1 DESIGN NASHYD ----| *Routing of EX1A *This is the routing of the External catchment to the north of the SPA *through the N-S ditch which would ultimately outlets to the Nichol Drain IDout=[2], NHYD=["EX1R"], IDin=[1], RDT=[2](min), CHLGTH=[700](m), CHSLOPE=[0.7](%), FPSLOPE=[0.7](%), ROUTE CHANNEL SECNUM=[1.1], NSEG=[1] (SEGROUGH, SEGDIST (m))=[0.035,8.2] NSEG times (DISTANCE (m), ELEVATION (m))=[0,414.2] SECNUM=[1.1], [4.3,412.7] [8.2,414.2] *%-----*Catchment 101 *This catchment is the majority of the NWFSPA NORTH of the Nichol Drain. ID=[3], NHYD=["101"], DT=[5]min, AREA=[51.10](ha), DWF=[0](cms), CN/C=[71], TP=[0.52]hrs, DESIGN NASHYD RAINFALL=[, , , ,](mm/hr), END=-1 *%-----|-----| -----| *Catchment EX3A *This catchment refers to the Keating lands north-east of SPA. *These land drain, via drains, to the N-S Ditch that runs through the SPA ID=[4], NHYD=["EX3A"], DT=[5]min, AREA=[11.51](ha), DWF=[0](cms), CN/C=[71], TP=[0.56]hrs, DESIGN NASHYD RAINFALL=[, , , ,](mm/hr), END=-1 *%-----|-----| -----|

PRE2016.DAT

*Routing of EX3A *This is the routing of the Keating property through the N-S Ditch which *ultimately outlets to the Nichol Drain IDout=[5], NHYD=["EX3R"], IDin=[4], RDT=[2](min), ROUTE CHANNEL CHLGTH=[700] (m), CHSLOPE=[0.7] (%) FPSLOPE=[0.7](%), SECNUM=[1.1], NSEG=[1] (SEGROUGH, SEGDIST (m))=[0.035,8.2] NSEG times (DISTANCE (m), ELEVATION (m))=[0,414.2] [4.3,412.7] [8.2,414.2] *%-----*Sum of the pre-development flows from Catchment 101 and EX3A (SWM Pond target *flow rates) IDsum=[6], NHYD=["Nor"], IDs to add=[3,5] ADD HYD -----| *%-----|------*External area to the south of the NWFSPA (Catchment EX2A). *This catchment area drains, via the Beatty Line roadside ditch *and drains directly to the Nichol Drain ID=[7], NHYD=["EX2A"], DT=[2]min, AREA=[2.14](ha), DWF=[0](cms), CN/C=[71], TP=[.32]hrs, DESIGN NASHYD RAINFALL=[, , , ,](mm/hr), END=-1 *%-----|-----*Total Flows (including external flows) draining to Node N1 ADD HYD IDsum=[8], NHYD=["N1"], IDs to add=[2,6,7] *%-----|-----|------*Catchment 104 *This catchment is a small portion of land draining to a ditch along the west *SPA boundary area (north of the woodlot), which drains through the Woodlot *to the Nichol Drain. ID=[3], NHYD=["104"], DT=[2]min, AREA=[2.92](ha), DWF=[0](cms), CN/C=[65], TP=[0.6]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 DESIGN NASHYD *%-----|-----| -----| *Catchment 105 *This catchment refers to the Woodlot, which drains to the Nichol Drain. ID=[4], NHYD=["105"], DT=[2]min, AREA=[5.11](ha), DWF=[0](cms), CN/C=[65], TP=[.41]hrs, DESIGN NASHYD RAINFALL=[, , , ,](mm/hr), END=-1 *%-----|-----| *Adding pre-development flows from Catchment 104 and 105 to Total Flows ADD HYD IDsum=[5], NHYD=["N2"], IDs to add=[3,4,8] *%-----|-----| -----| *Pre-Development flows from the area south of Nichol Drain *Catchment 102 *Total area south of the Nichol Drain sheet flowing to the Nicol Drain. *This is the peak release rate for the south area for the storm event. *This corresonds to Node S1 *%------|-----| ID=[1], NHYD=["102"], DT=[5]min, AREA=[26.53](ha), DWF=[0](cms), CN/C=[71], TP=[0.71]hrs, DESIGN NASHYD Page 2

*%	PRE2016.DAT RAINFALL=[, , , ,](mm/hr), END=-1					
*Remaining Catchmen	ts Draining to the Nichol Drain					
*Catchment 103 *This peak flows corresonpond to the Pre-Development flows that are leaving *the SPA flowing in a southerly direction via the 400mm culvert at Colborne St.						
* FLOW FROM THIS CA ****	TCHMENT IS Node S2					
DESIGN NASHYD	ID=[9], NHYD=["103S2"], DT=[1]min, AREA=[7.13](ha), DWF=[0](cms), CN/C=[71], TP=[0.28]hrs, RAINFALL=[, , , , ,](mm/hr), END=-1					
*%						
*All Flows (includin *(corresponds to Nor ADD HYD *%						
% START *% *	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[2] ["50Year.050"] <storm filename<="" td=""></storm>					
START	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[3] ["25Year.025"] <storm filename<="" td=""></storm>					
CTADT	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[4] ["10Year.010"] <storm filename<="" td=""></storm>					
*% START *% *%	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[5] ["5Year.005"] <storm filename<="" td=""></storm>					
*% START *% *%	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[6] ["2Year.002"] <storm filename<="" pre=""></storm></pre>					
[*] % FINISH						

PRE2016.sum

	============
sssss w w м м н н ү ү м м ооо 999 999	========
s www.мм.мм.н.н.үүмм.мм.оо 9999	
ssss www.mmm.hhhhh ү мммо о ## 9 9 9	Ver 4.05
S WW M M H H Y M M O O 9999 9999	Sept 2011
sssss wwmmhhymmooo 99	
9 9 9 9	# 3877524
StormWater Management HYdrologic Model 999 999	=========
***************************************	*****
**************************************	****
******* A single event and continuous hydrologic simulation model	****
**************************************	*****
**************************************	****
***************************************	*****
******* Distributed by: J.F. Sabourin and Associates Inc.	*****
********* Ottawa, Ontario: (613) 836-3884	*****
******** Gatineau, Quebec: (819) 243-6858	*****
******** E-Mail: swmhymo@jfsa.Com	****
+++++++++ Licensed user: R.J. Burnside & Associates Ltd	
	+++++++++
++++++ Brampton SERIAL#:3877524	+++++++++
+++++++++++++++++++++++++++++++++++++++	•+++++++++

TTTTT PROGRAM ARRAT DIMENSIONS TTTTT	********
******** Maximum value for ID numbers : 10	******
******** Max. number of rainfall points: 105408	********
******* Max. number of flow points : 105408	********
***************************************	****
***** DESCRIPTION SUMMARY TABLE HEADERS (units depend on METOUT in STA	
*****	*****
***** ID: Hydrograph IDentification numbers, (1-10).	****
***** NHYD: Hydrograph reference numbers, (6 digits or characters).	****
***** AREA: Drainage area associated with hydrograph, (ac.) or (ha.)	. *****
***** QPEAK: Peak flow of simulated hydrograph, (ft^3/s) or (m^3/s).	****
***** TpeakDate_hh:mm is the date and time of the peak flow.	****
***** R.V.: Runoff Volume of simulated hydrograph, (in) or (mm).	****
***** R.C.: Runoff Coefficient of simulated hydrograph, (ratio).	****
***** *: see WARNING or NOTE message printed at end of run.	****
***** **: see ERROR message printed at end of run.	****
***************************************	****
***************************************	****
	:::::::::
***************************************	****

***************************************	****
* DATE: 2017-07-17 TIME: 10:17:40 RUN COUNTER: 000353	*

* Input filename: C:\Users\hknill\Desktop\Projects\170714~1\PRE2016.	DAT *
<pre>* Output filename: C:\Users\hknill\Desktop\Projects\170714~1\PRE2016. * Summary filename: C:\Users\hknill\Desktop\Projects\170714~1\PRE2016.</pre>	out *
* Summary filename: C:\Users\hknill\Desktop\Projects\170714~1\PRE2016.	sum *
* User comments:	*
* 1:	*
* 2:	*
* 3:	*

Project Name: [SB] Project Number: [300031145] # : 03-23-2017 # Date # : [JMS/AJC] Modeller Company : R.J. Burnside & Associates # 3245976 License # # RUN:COMMAND# 001:0001-----START .00 hrs on 0] 2 (1=imperial, 2=metric output)] 1] TZERO = METOUT= NSTORM= 1] NRUN = 001:0002-----READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 99.17] 001:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-DESIGN NASHYD 01:EX1A 42.09 2.546 No_date 2:35 51.04 .515 [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50] 001:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-ROUTE CHANNEL -> 01:EX1A 42.09 2.546 No_date 2:35 51.04 n/a [RDT= 2.50] out<- 02:EX1R 42.09 2.514 No_date 2:42 51.04 n/a [L/S/n= 700./ .700/.035] {Vmax= 1.292:Dmax= .847} 001:0005-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 03:101 51.10 4.121 No_date 2:00 47.36 .478 DESIGN NASHYD 03:101 [CN= 71.0: N= 3.00] [Tp= .52:DT= 5.00] 001:0006-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 04:EX3A 11.51 .890 No_date 2:05 47.36 .478 [CN= 71.0: N= 3.00] [Tp= .56:DT= 5.00] 001:0007-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-ROUTE CHANNEL -> 04:EX3A 11.51 .890 No_date 2:05 47.36 n/a 11.51 .844 No_date 2:16 47.36 n/a [RDT= 1.67] out<- 05:EX3R [L/S/n= 700./ .700/.035] {Vmax= .991:Dmax= .570} 001:0008-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-51.10 4.121 No_date 2:00 47.36 n/a 11.51 .844 No_date 2:16 47.36 n/a 03:101 + 05:EX3R ADD HYD [DT= 1.67] SUM= 06:Nor 2:04 47.36 n/a 62.61 4.915 No_date 001:0009-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 07:EX2A 2.14 .226 No_date 1:47 47.36 .478 [CN= 71.0: N= 3.00]

[Tp= .32:DT= 2.50]

PRE2016.sum

001:0010ID:NHYD ADD HYD 02:EX1R + 06:Nor + 07:EX2A [DT= 1.67] SUM= 08:N1	42.09 62.61	
001:0011ID:NHYD DESIGN NASHYD 03:104 [CN= 65.0: N= 3.00] [Tp= .60:DT= 2.50]	AREA 2.92	QPEAK-TpeakDate_hh:mmR.VR.C .184 No_date 2:10 40.69 .410
001:0012ID:NHYD DESIGN NASHYD 04:105 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREA 5.11	QPEAK-TpeakDate_hh:mmR.VR.C .401 No_date 1:55 40.69 .410
001:0013ID:NHYD ADD HYD 03:104 + 04:105 + 08:N1 [DT= 1.67] SUM= 05:N2	2,92	QPEAK-TpeakDate_hh:mmR.VR.C .184 No_date 2:10 40.69 n/a .401 No_date 1:55 40.69 n/a 6.985 No_date 2:15 48.81 n/a 7.507 No_date 2:11 48.24 n/a
001:0014ID:NHYD DESIGN NASHYD 01:102 [CN= 71.0: N= 3.00] [Tp= .71:DT= 5.00]	AREA 26.53	QPEAK-TpeakDate_hh:mmR.VR.C 1.762 No_date
001:0015ID:NHYD DESIGN NASHYD 09:103S2 [CN= 71.0: N= 3.00] [Tp= .28:DT= 1.00]	AREA 7.13	QPEAK-TpeakDate_hh:mmR.VR.C .804 No_date 1:45 47.36 .478
001:0016ID:NHYD ADD HYD 01:102 + 05:N2 [DT= 1.67] SUM= 09:ND ** END OF RUN : 1	26.53	1.762 No date 2:15 47.36 n/a

RUN:COMMAND#

READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 88.24] 002:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 01:EX1A 42.09 2.119 No_date 2:35 42.75 .484 [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50] 002:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-ROUTE CHANNEL -> 01:EX1A 42.09 2.119 No_date 2:35 42.75 n/a [RDT= 2.50] out<- 02:EX1R 42.09 2.091 No_date 2:42 42.75 n/a [L/S/n= 700./ .700/.035] {Vmax= 1.236:Dmax= .792} 002:0005-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 03:101 51.10 3.420 No_date 2:00 39.50 .448 [CN= 71.0: N= 3.00] [Tp= .52:DT= 5.00] 002:0006-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 04:EX3A 11.51 .738 No_date 2:05 39.50 .448 [CN= 71.0: N= 3.00] [Tp= .56:DT= 5.00] 002:0007-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-ROUTE CHANNEL -> 04:EX3A 11.51 .738 No_date 2:05 39.50 n/a [RDT= 1.67] out<- 05:EX3R 11.51 .696 No_date 2:16 39.50 n/a [L/S/n= 700./ .700/.035] {Vmax= .945:Dmax= .531} 002:0008-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-ADD HYD 03:101 51.10 3.420 No_date 2:00 39.50 n/a + 05:EX3R 11.51 .696 No_date 2:16 39.50 n/a [DT= 1.67] SUM= 06:Nor 62.61 4.069 No_date 2:04 39.50 n/a 002:0009-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-DESIGN NASHYD 07:EX2A 2.14 .188 No_date 1:47 39.50 .448 [CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50] 002:0010-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-ADD HYD 02:EX1R 42.09 2.091 No_date 2:42 42.75 n/a + 06:Nor 62.61 4.069 No_date 2:04 39.50 n/a + 07:EX2A 2.14 .188 No_date 1:47 39.50 n/a [DT= 1.67] SUM= 08:N1 106.84 5.777 No_date 2:15 40.78 n/a + 06:Nor + 07:EX2A [DT= 1.67] SUM= 08:N1 002:0011-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN_NASHYD 03:104 2.92 .151 No_date 2:10 33.66 .381 [CN = 65.0: N = 3.00][Tp= .60:DT= 2.50] 002:0012-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 04:105 5.11 .331 No_date 1:55 33.66 .381 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50] 002:0013-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-ADD HYD 03:104 2.92 .151 No_date 2:10 33.66 n/a Page 4 Page 4

+ 04:105 + 08:N1 [DT= 1.67] SUM= 05:N2	PRE2016.sum 5.11 106.84 114.87	.331 No_date 5.777 No_date 6.206 No_date	1:55 2:15 2:13	33.66 n/a 40.78 n/a 40.28 n/a
002:0014ID:NHYD DESIGN NASHYD 01:102 [CN= 71.0: N= 3.00] [Tp= .71:DT= 5.00]	AREA 26.53	QPEAK-TpeakDate_ 1.461 No_date		
002:0015ID:NHYD DESIGN NASHYD 09:103S2 [CN= 71.0: N= 3.00] [Tp= .28:DT= 1.00]	AREA 7.13	QPEAK-TpeakDate_ .671 No_date		
002:0016ID:NHYD ADD HYD 01:102 + 05:N2 [DT= 1.67] SUM= 09:ND ** END OF RUN : 2	AREA 26.53 114.87 141.40	QPEAK-TpeakDate_ 1.461 No_date 6.206 No_date 7.663 No_date	2:15	
*****	*****	****	******	* * * * * * *

RUN:COMMAND#

003:0001-----_____ .00 hrs on 2 (1=impe 1] START [TZERO = 0] (1=imperial, 2=metric output)] METOUT= [NSTORM= [NRUN = 3 1 # Project Name: [SB] Project Number: [300031145] # : 03-23-2017 Date # Modeller : [JMS/AJC] # : R.J. Burnside & Associates : 3245976 Company License # # 003:0002-----_____ READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 77.92] # 003:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-42.09 2:35 35.25 .452 DESIGN NASHYD 01:EX1A 1.713 No_date [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50] 003:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-ROUTE CHANNEL -> 01:EX1A 42.09 1.713 No_date 2:35 35.25 n/a [RDT= 2.50] out<- 02:EX1R 42.09 1.687 No_date 2:42 35.25 n/a [RDT= 2.50] out<- 02:EX1R [L/S/n= 700./ .700/.035] {Vmax= 1.169:Dmax= .730} 003:0005-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-Page 5

DESIGN NASHYD 03:101 [CN= 71.0: N= 3.00] [Tp= .52:DT= 5.00]	PRE2016.sum 51.10	2.752 No_date	2:00	32.41 .416
003:0006ID:NHYD DESIGN NASHYD 04:EX3A [CN= 71.0: N= 3.00] [Tp= .56:DT= 5.00]	AREA 11.51	-QPEAK-TpeakDate_ .593 No_date	.hh:mm 2:05	R.VR.C 32.41 .416
003:0007ID:NHYD ROUTE CHANNEL -> 04:EX3A [RDT= 1.67] out<- 05:EX3R [L/S/n= 700./ .700/.035] {Vmax= .895:Dmax= .490}	AREA 11.51 11.51	-QPEAK-TpeakDate_ .593 No_date .557 No_date	hh:mm 2:05 2:16	R.VR.C 32.41 n/a 32.41 n/a
003:0008ID:NHYD ADD HYD 03:101 + 05:EX3R [DT= 1.67] SUM= 06:Nor	AREA 51.10 11.51 62.61	-QPEAK-TpeakDate_ 2.752 No_date .557 No_date 3.265 No_date	hh:mm 2:00 2:16 2:04	R.VR.C 32.41 n/a 32.41 n/a 32.41 n/a
003:0009ID:NHYD DESIGN NASHYD 07:EX2A [CN= 71.0: N= 3.00] [TP= .32:DT= 2.50]	AREA 2.14	-QPEAK-TpeakDate_ .152 No_date	hh:mm 1:47	R.VR.C 32.41 .416
003:0010ID:NHYD ADD HYD 02:EX1R + 06:Nor + 07:EX2A [DT= 1.67] SUM= 08:N1	AREA 42.09 62.61 2.14 106.84	-QPEAK-TpeakDate 1.687 No_date 3.265 No_date .152 No_date	hh:mm 2:42 2:04 1:47	R.VR.C 35.25 n/a 32.41 n/a 32.41 n/a
003:0011 DESIGN NASHYD 03:104 [CN= 65.0: N= 3.00] [TP= .60:DT= 2.50]	AREA	-QPEAK-TpeakDate_	_hh:mm	R.VR.C
003:0012ID:NHYD DESIGN NASHYD 04:105 [CN= 65.0: N= 3.00] [TP= .41:DT= 2.50]	AREA 5.11	-QPEAK-TpeakDate_ .264 No_date	hh:mm 1:55	R.VR.C 27.39 .352
003:0013ID:NHYD ADD HYD 03:104 + 04:105 + 08:N1 [DT= 1.67] SUM= 05:N2	2.92 5.11 106.84	-QPEAK-TpeakDate_ .120 No_date .264 No_date 4.631 No_date 4.970 No_date	2:10 1:55 2:15	27.39 n/a 27.39 n/a
003:0014ID:NHYD DESIGN NASHYD 01:102 [CN= 71.0: N= 3.00] [Tp= .71:DT= 5.00]	AREA 26.53	-QPEAK-TpeakDate_ 1.174 No_date	hh:mm 2:15	R.VR.C 32.41 .416
003:0015ID:NHYD DESIGN NASHYD 09:103S2 [CN= 71.0: N= 3.00] [Tp= .28:DT= 1.00]				
003:0016ID:NHYD ADD HYD 01:102 + 05:N2 [DT= 1.67] SUM= 09:ND ** END OF RUN : 3	AREA 26.53 114.87 141.40	-QPEAK-TpeakDate_ 1.174 No_date 4.970 No_date 6.142 No_date	hh:mm 2:15 2:13 2:15	R.VR.C 32.41 n/a 33.10 n/a 32.97 n/a

RUN:COMMAND#

004:0001-----.00 hrs on 0] 2 (1=imperial, 2=metric output)] 1] START TZERO = METOUT= NSTORM= [NRUN = 4]Ī Project Name: [SB] Project Number: [300031145] # : 03-23-2017 # Date # Modeller : [JMS/AJC] # : R.J. Burnside & Associates Company : 3245976 # License # 004:0002-----READ STORM Filename = STORM.001 Comment = [SDT= 5.00; SDUR= 4.00; PTOT= 63.67] # 004:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-42.09 1.217 No_date 2:35 25.52 .401 DESIGN NASHYD 01:EX1A [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50] 004:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-ROUTE CHANNEL -> 01:EX1A 42.09 1.217 No_date 2:35 25.52 n/a [RDT= 2.50] out<- 02:EX1R 42.09 1.196 No_date 2:45 25.52 n/a [RDT= 2.50] out<- 02:EX1R [L/S/n= 700./ .700/.035] {Vmax= 1.074:Dmax= .642} 004:0005-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 03:101 51.10 1.944 No_date 2:00 23.29 .366 [CN= 71.0: N= 3.00] [Tp= .52:DT= 5.00] 004:0006-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-11.51 .418 No_date 2:05 23.29 .366 DESIGN NASHYD 04:EX3A [CN= 71.0: N= 3.00] [Tp= .56:DT= 5.00] 004:0007-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-ROUTE CHANNEL -> 04:EX3A 11.51 .418 No_date 2:05 23.29 n/a [RDT= 1.67] out<- 05:EX3R [L/S/n= 700./ .700/.035] {Vmax= .817:Dmax= .428} .387 No_date 2:18 23.29 n/a 11.51 004:0008-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-1.944 No_date 2:00 23.29 n/a .387 No_date 2:18 23.29 n/a 51.10 ADD HYD 03:101 + 05:EX3R 11.51 2:04 23.29 n/a [DT= 1.67] SUM= 06:Nor 62.61 2.294 No_date

	PRE2016.sum	
004:0009ID:NHYD DESIGN NASHYD 07:EX2A [CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mm 2.14 .108 No_date 1:45	-R.VR.C 23.29 .366
004:0010ID:NHYD ADD HYD 02:EX1R + 06:Nor + 07:EX2A [DT= 1.67] SUM= 08:N1	AREAQPEAK-TpeakDate_hh:mm 42.09 1.196 No_date 2:45 62.61 2.294 No_date 2:04 2.14 .108 No_date 1:45 106.84 3.246 No_date 2:15	-R.VR.C 25.52 n/a 23.29 n/a 23.29 n/a 24.17 n/a
004:0011ID:NHYD DESIGN NASHYD 03:104 [CN= 65.0: N= 3.00] [Tp= .60:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mm 2.92 .084 No_date 2:10	-R.VR.C 19.43 .305
004:0012ID:NHYD DESIGN NASHYD 04:105 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mm 5.11 .184 No_date 1:55	-R.VR.C 19.43 .305
004:0013ID:NHYD ADD HYD 03:104 + 04:105 + 08:N1 [DT= 1.67] SUM= 05:N2	AREAQPEAK-TpeakDate_hh:mm 2.92 .084 No_date 2:10 5.11 .184 No_date 1:55 106.84 3.246 No_date 2:15 114.87 3.480 No_date 2:13	-R.VR.C 19.43 n/a 19.43 n/a 24.17 n/a 23.84 n/a
004:0014ID:NHYD DESIGN NASHYD 01:102 [CN= 71.0: N= 3.00] [Tp= .71:DT= 5.00]	AREAQPEAK-TpeakDate_hh:mm 26.53 .828 No_date 2:15	-R.VR.C 23.29 .366
004:0015ID:NHYD DESIGN NASHYD 09:103S2 [CN= 71.0: N= 3.00] [Tp= .28:DT= 1.00]	AREAQPEAK-TpeakDate_hh:mm 7.13 .387 No_date 1:44	-R.VR.C 23.29 .366
004:0016ID:NHYD ADD HYD 01:102 + 05:N2 [DT= 1.67] SUM= 09:ND ** END OF RUN : 4	AREAQPEAK-TpeakDate_hh:mm 26.53 .828 No_date 2:15 114.87 3.480 No_date 2:13 141.40 4.307 No_date 2:15	-R.VR.C 23.29 n/a 23.84 n/a 23.74 n/a
*****	*****	*****

RUN:COMMAND#

PRE2016.sum #************************************			
11			
005:0002 READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= # ****			
# ************************************			
005:0003ID:NHYD DESIGN NASHYD 01:EX1A [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50]	AREA 42.09	-QPEAK-TpeakDate_h .868 No_date	h:mmR.VR.C 2:35
005:0004ID:NHYD ROUTE CHANNEL -> 01:EX1A [RDT= 2.50] out<- 02:EX1R [L/S/n= 700./ .700/.035] {Vmax= .986:Dmax= .565}	AREA 42.09 42.09	-QPEAK-TpeakDate_h .868 No_date .850 No_date	h:mmR.VR.C 2:35
005:0005ID:NHYD DESIGN NASHYD 03:101 [CN= 71.0: N= 3.00] [Tp= .52:DT= 5.00]	AREA 51.10	-QPEAK-TpeakDate_h 1.378 No_date	h:mmR.VR.C 2:00 16.77 .320
005:0006ID:NHYD DESIGN NASHYD 04:EX3A [CN= 71.0: N= 3.00] [Tp= .56:DT= 5.00]	AREA 11.51	-QPEAK-TpeakDate_h .296 No_date	h:mmR.VR.C 2:05 16.77 .320
005:0007ID:NHYD ROUTE CHANNEL -> 04:EX3A [RDT= 1.67] out<- 05:EX3R [L/S/n= 700./ .700/.035] {Vmax= .749:Dmax= .376}	AREA 11.51 11.51	-QPEAK-TpeakDate_h .296 No_date .270 No_date	h:mmR.VR.C 2:05 16.77 n/a 2:18 16.77 n/a
005:0008ID:NHYD ADD HYD 03:101 + 05:EX3R [DT= 1.67] SUM= 06:Nor	51.10	1.378 No_date	2:00 16.77 n/a
005:0009ID:NHYD DESIGN NASHYD 07:EX2A [CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50]	AREA 2.14	-QPEAK-TpeakDate_h .077 No_date	h:mmR.VR.C 1:45 16.77 .320
005:0010ID:NHYD ADD HYD 02:EX1R + 06:Nor + 07:EX2A [DT= 1.67] SUM= 08:N1	AREA 42.09 62.61 2.14 106 84	-QPEAK-TpeakDate_h .850 No_date 1.617 No_date .077 No_date 2.282 No_date	h:mmR.VR.C 2:45 18.50 n/a 2:04 16.77 n/a 1:45 16.77 n/a 2:15 17.45 n/a
[DT= 1.07] SOM= 08.N1 005:0011 DESIGN NASHYD 03:104 [CN= 65.0: N= 3.00] [Tp= .60:DT= 2.50]	AREA	OPEAK-TpeakDate h	h:mmR.VR.C
005:0012ID:NHYD DESIGN NASHYD 04:105 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREA 5.11 Page 9	-QPEAK-TpeakDate_h .130 No_date	h:mmR.VR.C 1:52 13.82 .264

005:0013ID:NHYD ADD HYD 03:104 + 04:105 + 08:N1 [DT= 1.67] SUM= 05:N2	AREAQPEAK-TpeakDate_hh:mmR.VF 2.92 .059 No_date 2:10 13.82 5.11 .130 No_date 1:52 13.82 106.84 2.282 No_date 2:15 17.45 114.87 2.445 No_date 2:15 17.20	R.C n/a n/a n/a n/a
005:0014ID:NHYD DESIGN NASHYD 01:102 [CN= 71.0: N= 3.00] [Tp= .71:DT= 5.00]	AREAQPEAK-TpeakDate_hh:mmR.VF 26.53 .586 No_date 2:15 16.77	
005:0015ID:NHYD DESIGN NASHYD 09:103S2 [CN= 71.0: N= 3.00] [Tp= .28:DT= 1.00]	AREAQPEAK-TpeakDate_hh:mmR.VF 7.13 .277 No_date 1:43 16.77	≀.C .320
005:0016ID:NHYD ADD HYD 01:102 + 05:N2 [DT= 1.67] SUM= 09:ND ** END OF RUN : 5	AREAQPEAK-TpeakDate_hh:mmR.VF 26.53 .586 No_date 2:15 16.77 114.87 2.445 No_date 2:15 17.20 141.40 3.030 No_date 2:15 17.12	R.C n/a n/a n/a
*****	*****	

RUN: COMMAND#

006:0001-----_____ _____ START [TZERO = .00 hrs on [METOUT= 2 (1=imper [NSTORM= 1] [NRUN = 6] 0] (1=imperial, 2=metric output)] Project Name: [SB] Project Number: [300031145] Date_____: 03-23-2017 # # : [JMS/AJC] # Modeller : R.J. Burnside & Associates # Company License # # : 3245976 006:0002-----READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 35.43] # # 006:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN NASHYD 01:EX1A 42.09 .425 No_date 2:35 9.34 .264 [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50] 006:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-42.09 .425 No_date 2:35 9.34 n/a 42.09 .412 No_date 2:47 9.34 n/a ROUTE CHANNEL -> 01:EX1A [RDT= 2.50] out<- 02:EX1R [L/S/n= 700./ .700/.035]

{Vmax= .820:Dmax= .431}	PRE2016.sum	
006:0005ID:NHYD DESIGN NASHYD 03:101 [CN= 71.0: N= 3.00] [Tp= .52:DT= 5.00]	AREA 51.10	-QPEAK-TpeakDate_hh:mmR.VR.C .669 No_date 2:00 8.36 .236
		-QPEAK-TpeakDate_hh:mmR.VR.C .143 No_date 2:05 8.36 .236
006:0007ID:NHYD ROUTE CHANNEL -> 04:EX3A [RDT= 1.67] out<- 05:EX3R [L/S/n= 700./ .700/.035] {Vmax= .617:Dmax= .284}	11.51	-QPEAK-TpeakDate_hh:mmR.VR.C .143 No_date 2:05 8.36 n/a .126 No_date 2:21 8.36 n/a
006:0008ID:NHYD ADD HYD 03:101 + 05:EX3R [DT= 1.67] SUM= 06:Nor	AREA 51.10 11.51 62.61	-QPEAK-TpeakDate_hh:mmR.VR.C .669 No_date 2:00 8.36 n/a .126 No_date 2:21 8.36 n/a .774 No_date 2:04 8.36 n/a
006:0009ID:NHYD DESIGN NASHYD 07:EX2A [CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50]	AREA 2.14	-QPEAK-TpeakDate_hh:mmR.VR.C .038 No_date 1:45 8.36 .236
006:0010ID:NHYD ADD HYD 02:EX1R + 06:Nor + 07:EX2A	AREA 42.09 62.61 2.14	-QPEAK-TpeakDate_hh:mmR.VR.C .412 No_date 2:47 9.34 n/a .774 No_date 2:04 8.36 n/a .038 No_date 1:45 8.36 n/a 1.083 No_date 2:15 8.75 n/a
	AREA	-QPEAK-TpeakDate_hh:mmR.VR.C .028 No_date 2:07 6.74 .190
006:0012ID:NHYD DESIGN NASHYD 04:105 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREA 5.11	-QPEAK-TpeakDate_hh:mmR.VR.C .062 No_date 1:52 6.74 .190
03•104 חסא	2 92	-QPEAK-TpeakDate_hh:mmR.VR.C .028 No_date 2:07 6.74 n/a .062 No_date 1:52 6.74 n/a 1.083 No_date 2:15 8.75 n/a 1.160 No_date 2:15 8.61 n/a
006:0014ID:NHYD DESIGN NASHYD 01:102 [CN= 71.0: N= 3.00] [Tp= .71:DT= 5.00]	AREA 26.53	-QPEAK-TpeakDate_hh:mmR.VR.C .283 No_date 2:15 8.36 .236
006:0015ID:NHYD DESIGN NASHYD 09:103S2 [CN= 71.0: N= 3.00] [Tp= .28:DT= 1.00]	AREA 7.13	-QPEAK-TpeakDate_hh:mmR.VR.C .138 No_date 1:42 8.36 .236
006:0016ID:NHYD ADD HYD 01:102 + 05:N2	AREA 26.53 114.87 Page 11	-QPEAK-TpeakDate_hh:mmR.VR.C .283 No_date 2:15 8.36 n/a 1.160 No_date 2:15 8.61 n/a

[DT= 1.67] SUM= 09:ND	PRE2016.sum 141.40	1.443 No_date	2:15	8.56 n/a
006:0002 FINISH				
_ ************************************	*****	****	******	****
WARNINGS / ERRORS / NOTES				
Simulation ended on 2017-07-17	at 10:17:43			
=======================================				

Prop2016.DAT

2 Metric units *# Project Name: [SB] Project Number: [300031145] Date : 02-19-2018 Modeller : [JMS/AJC] Company : R.J. Burnside & Associates License # : 3245976 *# *# *# ×# STORM_FILENAME=["STORM.001"] READ STORM *%------|-----|------| *# North West Fergus Secondary Area - Post Development *%-----| *Nov 2016 - Updated to split major and minor flows in Park and School blocks *Generated from latest Calc Plan dated Sep 8, 2016 *NWFSP Site Area north of the Nichol Drain, this area is assumed to be *collected and conveyed to the Proposed North Pond for both major and minor. *This includes both Catchments 201A and 201B on Fig 10. *The area also includes the Keating Property (Beatty Line Project) based on *grading plans and design sheet prepared by GM BluePlan Keating Area = 8.54ha *with an imp 47% - added directly to NWFSPA (46.03ha) ID=[3], NHYD=["201"], DT=[5]min, AREA=[54.56](ha), XIMP=[0.296], TIMP=[0.539], DWF=[0](cms), LOSS=[2], CN=[71], SLOPE=[1](%), RAINFALL=[,,,,,](mm/hr), END=-1 DESIGN STANDHYD *%-----|---*Includes the school and park blocks *Minor flows are collected and conveyed to the North Pond, Major flows drain *overland directly to Nichol Drain *Refers to Catchment 202 ID=[4], NHYD=["202"], DT=[2]min, AREA=[3.86](ha), XIMP=[0.283], TIMP=[0.467], DWF=[0](cms), LOSS=[2], CN=[71], SLOPE=[1](%), RAINFALL=[, , , ,](mm/hr), END=-1 DESIGN STANDHYD *%-----|-----*Split of major and minor flows *Minor flow (5-year) was calculated using Rational Method IDin=[4], CINLET=[0.47](cms), NINLET=[1], MAJID=[5], MajNHYD=["202Maj"], MINID=[6], MinNHYD=["202min"], TMJSTO=[0](cu-m) COMPUTE DUALHYD *%----------| *Area to North Pond *Includes major and minor flows from 201 and minor flows from 202 ADD HYD IDsum=[7], NHYD=["TO POND"], IDs to add=[3,6] *%-----|-----| *This is the proposed North Pond, this pond collects SPA north of the *Nichol Drain, plus a 8.54ha portion of the Beatty Line Project. *This pond limits the post-development flow to the design storm's pre *development flow rate.

ROUTE RESERVOIR	Prop2016.DAT IDout=[1], NHYD=["NPOND"], IDin=[7], RDT=[2](min), TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)
$\begin{bmatrix} 0.0 & , & 0.0 \\ 0.076 & , 0.1765 \\ 0.107 & , 0.372 \\ 0.131 & , 0.5675 \\ 0.142 & , 0.6652 \\ 0.144 & , 0.6863 \\ 0.17 & , 0.7203 \\ 0.334 & , 0.8336 \\ 0.573 & , 0.9469 \\ 0.868 & , 1.0483 \\ 1.209 & , 1.1734 \\ 1.209 & , 1.1734 \\ 1.591 & , 1.2986 \\ 2.009 & , 1.4237 \\ 2.46 & , 1.5489 \\ 2.943 & , 1.666 \\ 3.455 & , 1.7992 \\ 4.56 & , 2.0655 \\ 3.994 & , 1.9324 \\ 4.56 & , 2.0655 \\ -1 & , -1 \end{bmatrix}$	(max twenty pts) IDovf=[]. NHYDovf=[]
*Area that runs unc	ontrolled in both major and minor conditions lots along Nichol Drain as well as some lots along
DESIGN STANDHYD	<pre>ID=[2], NHYD=["203"], DT=[1]min, AREA=[1.06](ha), XIMP=[0.194], TIMP=[0.382], DWF=[0](cms), LOSS=[2], CN=[71], SLOPE=[1](%), RAINFALL=[,,,,,](mm/hr), END=-1</pre>
*All flows to node *Includes outlet fl	
ADD HYD *%	IDsum=[3], NHYD=["NOR"], IDs to add=[1,2,5]
*External area to t *The existing land *was established ba	he north of the NWFSPA (Catchment EX1A). use for this catchment is agricultural. The CN number sed on Soils Mapping (Listowel Loam) at 74. by-pass the SPA SWM ponds via the N-S realigned ditch.
DESIGN NASHYD	ID=[1], NHYD=["EX1A"], DT=[2]min, AREA=[42.09](ha), DWF=[0](cms), CN/C=[74], TP=[0.92]hrs, RAINFALL=[, , , ,](mm/hr), END=-1
	g of the External catchment to the north of the SPA tch which would ultimately outlets to the Nichol Drain
ROUTE PIPE	PTYPE=[2]rect, IDout=[2], NHYD=["EX1R"], RNUMBER=[1], PWIDTH=[1800](mm), PHEIGHT=[900](mm), PLNGTH=[915](m), PROUGH=[0.013], PSLOPE=[0.002](m/m), IDin=[1], RDT=[2](min)
*% *External area to t	he south of the NWFSPA (Catchment EX2A).
* *This catchment are *and drains directl	a drains, via the Beatty Line roadside ditch y to the Nichol Drain Page 2

Prop2016.DAT

ID=[9], NHYD=["EX2A"], DT=[2]min, AREA=[2.14](ha), DWF=[0](cms), CN/C=[71], TP=[0.32]hrs, DESIGN NASHYD RAINFALL=[, , , ,](mm/hr), END=-1 *%_____|_____ *Total flows (including external) under post-development conditions to Node N1 IDsum=[4], NHYD=["N1"], IDs to add=[2,3,9] ADD HYD *%-----|---------| *This is the NWFSP Site Area adjacent to the Nichol Drain directly to the south. *Drainage area based on Draft Plan and preliminary grading to South Pond. *Refers to Catchment 204 ID=[1], NHYD=["204"], DT=[2]min, AREA=[27.40](ha), XIMP=[0.296], TIMP=[0.545], DWF=[0](cms), LOSS=[2], CN=[71], SLOPE=[1](%), RAINFALL=[,,,,,](m/hr), END=-1 DESIGN STANDHYD *%-----|-----*This is the proposed south pond. NHYD=["SPOND"], IDin=[1], ROUTE RESERVOIR IDout=[8], RDT=[2](min) TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m) 0,0] 0.07521,0.3249] 0.283,0.38] 0.586,0.55 0.828,0.67 1.174,0.87] 1.461,0.99] 1.762,1.15] [-1 , -1], NHYDovf=[(max twenty pts) ł IDovf=[*%-----|-----*Maior and minor flows run uncontrolled in this area (outlet to Nichol Drain) *Refers to Catchment 205 ID=[9], NHYD=["205"], DT=[2]min, AREA=[1.34](ha), DWF=[0](cms), CN/C=[71], TP=[.33]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 DESIGN NASHYD *%-----|----------| *All flows to node \$1 *Includes outlet flows from the south pond and the uncontrolled area that *outlets directly to Nichol Drain ADD HYD IDsum=[1], NHYD=["S1"], IDs to add=[8,9] *%-----|------* Portion of the site which will continue to flow to the south uncontrolled * mostly park and rear yards draining to wetland south side of Colbourne St. *(via a 400mm CSP culvert). * Refers to Catchment area 206 ****** * FLOW FROM THIS CATCHMENT IS Node S2 ****** ID=[5], NHYD=["206S2"], DT=[1]min, AREA=[2.69](ha), XIMP=[0.252], TIMP=[0.495], DWF=[0](cms), LOSS=[2], CN=[71], SLOPE=[1](%), RAINFALL=[,,,,,](mm/hr), END=-1 DESIGN STANDHYD *%-----|--------| *Remaining Catchments Draining to the Nichol Drain * *Catchment 207 *This catchment refers to the Woodlot, which drains to the Nichol Drain. Page 3

Prop2016.DAT

DESIGN NASHYD	ID=[2], NHYD=["207"], DT=[2]min, AREA=[7.96](ha), DWF=[0](cms), CN/C=[65], TP=[0.41]hrs, RAINFALL=[,,,,,](mm/hr), END=-1
*Includes all exter	reas that are released uncontrolled from the site that do
ADD HYD *%	IDsum=[9], NHYD=["ND"], IDs to add=[2,1,4]
*% START *% *%	 TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[2] ["50Year.050"] <storm filename<="" td=""></storm>
% START *% *%	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[3] ["25Year.025"] <storm filename<="" td=""></storm>
% START *% *%	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[4] ["10Year.010"] <storm filename<="" td=""></storm>
START *% *%	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[5] ["5Year.005"] <storm filename<="" td=""></storm>
*% START *% *%	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[6] ["2Year.002"] <storm filename<="" pre=""></storm></pre>
FINISH	

Prop2016.sum

	=============
sssss w w m m h h y y m m ooo 999 999	
S WWW MM MM H H YY MM MM O O 9 9 9 9	
SSSSS WWWMMMHHHHH Y MMMO O ## 9 9 9 9	Ver 4.05
S W W M M H H Y M M O O 9999 9999	Sept 2011
SSSSS WW M M H H Y M M OOO 9 9	=========
9999	# 3877524
	# J077J24
StormWater Management HYdrologic Model 999 999	

A STILLE EVENT AND CONTINUOUS NYULUTOUTE SIMULATION MOUEL	********
********* based on the principles of HYMO and its successors	********
******** OTTHYMO-83 and OTTHYMO-89.	****

******** Distributed by: J.F. Sabourin and Associates Inc.	******
******** Ottawa, Ontario: (613) 836-3884	*****
******** Gatineau, Quebec: (819) 243-6858	****
******** E-Mail: swmhymo@jfsa.Com	*****
***************************************	*****
***************************************	-++++++++++++++++++++++++++++++++++++++
+++++++ Licensed user: R.J. Burnside & Associates Ltd	+++++++++++++++++++++++++++++++++++++++
+++++++++ Brampton SERIAL#:3877524	******
++++++++++++++++++++++++++++++++++++++	
*******	****

TTTTT PROGRAM ARRAT DIMENSIONS TTTTT	****
******** Max. number of rainfall points: 105408	********
********* Max. number of flow points : 105408	********
***************************************	*****
***** DESCRIPTION SUMMARY TABLE HEADERS (units depend on METOUT in STA	ART) *****
****	*****
***** ID: Hydrograph IDentification numbers, (1-10).	*****
***** NHYD: Hydrograph reference numbers, (6 digits or characters).	* * * * *
***** AREA: Drainage area associated with hydrograph, (ac.) or (ha.)	. *****
***** QPEAK: Peak flow of simulated hydrograph, (ft\3/s) or (m^3/s).	****
***** TpeakDate_hh:mm is the date and time of the peak flow.	* * * * *
***** R.V.: Runoff Volume of simulated hydrograph, (in) or (mm).	* * * * *
***** R.C.: Runoff Coefficient of simulated hydrograph, (ratio).	****
***** *: see WARNING or NOTE message printed at end of run.	****
***** **: see ERROR message printed at end of run.	* * * * *
**************************************	****

	· ·· ·· ·· ·· ·· ·· ·· ··

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
**************************************	
***************************************	
* DATE: 2018-02-20 TIME: 13:10:54 RUN COUNTER: 001382	*
***************************************	*****
* Input filename: C:\SWMHYMO\STORYB~1\180218\Prop2016.DAT	*
<pre>* Output filename: C:\SWMHYMO\STORYB~1\180218\Prop2016.out * Summary filename: C:\SWMHYMO\STORYB~1\180218\Prop2016.sum</pre>	*
* Summary filename: C:\SWMHYMO\STORYB~1\180218\Prop2016.sum	*
* User comments:	*
* 1:	*
* 2:	
	*
* 3:	

Prop2016.sum # Project Name: [SB] Project Number: [300031145] : 02-19-2018 # Date # : [JMS/AJC] Modeller Company : R.J. Burnside & Associates # 3245976 License # # RUN:COMMAND# 001:0001-----START .00 hrs on 2 (1=imper 1 ] 01 [TZERO =[METOUT= (1=imperial, 2=metric output)] NSTORM= 1 Ī [NRUN = 001:0002-----READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 99.17] # # 001:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN STANDHYD 03:201 54.56 10.043 No_date 1:30 69.97 .706 [XIMP=.30:TIMP=.54] [SLP=1.00:DT= 5.00] [LOSS= 2 :CN= 71.0] 001:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-DESIGN STANDHYD 04:202 3.86 .746 No_date 1:25 67.19 .678 [XIMP=.28:TIMP=.47] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0] 001:0005-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-1:25 COMPUTE DUALHYD 04:202 3.86 .746 No_date 67.19 n/a .45 .276 No_date Major System / 05:202Maj 67.19 n/a 1:25 3.41 Minor System \ 06:202min .470 No_date 1:1767.19 n/a 001:0006-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-10.043 No_date 69.97 n/a ADD HYD 03:201 54.56 1:30 + 06:202min [DT= 2.50] SUM= 07:TO POND .470 No_date 10.513 No_date 3.41 1:1767.19 n/a 57.97 1:30 69.81 n/a 001:0007-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-57.97 ROUTE RESERVOIR -> 07:TO POND 10.513 No_date 1:30 69.81 n/a [RDT= 2.50] out<- 01:NPOND 57.97 4.462 No_date 2:07 69.81 n/a 2 .00 .000 No_date .00 n/a overflow <= 04: 0:00 {MxStoUsed=.2043E+01, TotOvfVol=.0000E+00, N-Ovf= 0, TotDurOvf= 0.hrs} 001:0008-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN STANDHYD 02:203 1.06 .183 No_date 1:30 62.70 .632 [XIMP=.19:TIMP=.38] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0] 001:0009-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-

	Prop2016.sum 57.97 4.462 No_date 2:07 69.81 n/a 1.06 .183 No_date 1:30 62.70 n/a .45 .276 No_date 1:25 67.19 n/a 59.48 4.533 No_date 2:05 69.66 n/a
001:0010ID:NHYD DESIGN NASHYD 01:EX1A [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42.09
001:0011ID:NHYD ROUTE PIPE -> 01:EX1A * [RDT= 2.50] out<- 02:EX1R [L/S/n= 915./ .200/.013] {Vmax= 1.892:Dmax= .742} {HGTH= .91:WDTH= 1.81}	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42.09
DESIGN NASHYD 09:EX2A [CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 2.14 .226 No_date 1:47 47.36 .478
ADD HYD 02:EX1R + 03:NOR + 09:EX2A [DT= 1.00] SUM= 04:N1	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42.09 2.517 No_date 2:40 51.04 n/a 59.48 4.533 No_date 2:05 69.66 n/a 2.14 .226 No_date 1:47 47.36 n/a 103.71 6.727 No_date 2:17 61.64 n/a
001:0014ID:NHYD DESIGN STANDHYD 01:204 [XIMP=.30:TIMP=.55] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40
ROUTE RESERVOIR -> 01:204	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40
001:0016ID:NHYD DESIGN NASHYD 09:205 [CN= 71.0: N= 3.00] [Tp= .33:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 1.34 .139 No_date 1:47 47.36 .478
001:0017ID:NHYD ADD HYD 08:SPOND + 09:205 [DT= 2.50] SUM= 01:S1	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40
001:0018ID:NHYD DESIGN STANDHYD 05:206S2 [XIMP=.25:TIMP=.50] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 2.69 .517 No_date 1:26 67.64 .682
001:0019ID:NHYD DESIGN NASHYD 02:207 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 7.96 .625 No_date 1:55 40.69 .410
001:0020ID:NHYD ADD HYD 02:207 + 01:S1	AREAQPEAK-TpeakDate_hh:mmR.VR.C 7.96 .625 No_date 1:55 40.69 n/a 28.74 1.725 No_date 2:10 69.13 n/a Page 3

		Prop2016.sum				
+	04:N1	103.71	6.727 No_date	2:17	61.64	n/a
[DT= 1.00] SUM=	09:ND	140.41	8.967 No_date	2:13	61.99	n/a
** END OF RUN : $1$						

#### 

#### RUN: COMMAND#

002:0001-----START .00 hrs on 2 (1=imper 1 ] 0] TZERO = (1=imperial, 2=metric output)] METOUT= NSTORM= 2 1 [NRUN = # Project Name: [SB] Project Number: [300031145] # : 02-19-2018 Date # Modeller : [JMS/AJC] # Company : R.J. Burnside & Associates License # 3245976 # 002:0002-----_____ READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 88.24] # North West Fergus Secondary Area - Post Development * # # 002:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-DESIGN STANDHYD 03:201 54.56 8.640 No_date 1:30 60.42 .685 [XIMP=.30:TIMP=.54] [SLP=1.00:DT= 5.00] [LOSS= 2 :CN= 71.0] 002:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-.602 No_date 1:25 57.88 .656 DESIGN STANDHYD 04:202 3.86 [XIMP=.28:TIMP=.47] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0] 002:0005-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-COMPUTE DUALHYD 04:202 3.86 .602 No_date 1:25 57.88 n/a 57.88 n/a Major System / 05:202Maj Minor System \ 06:202min .132 No_date 1:25 57.88 .21 n/a 3.65 .470 No_date 1:1757.88 n/a 002:0006-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-8.640 No_date 60.42 n/a ADD HYD 03:201 54.56 1:30 57.88 + 06:202min [DT= 2.50] SUM= 07:TO POND 3.65 .470 No_date 1:17n/a 1:30 60.26 n/a 58.21 9.110 No date 002:0007-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-ROUTE RESERVOIR -> 07:TO POND 58.21 9.110 No_date 60.26 n/a 1:30 3.599 No_date 60.26 n/a [RDT= 2.50] out<- 01:NPOND 58.21 2:10 .00 n/a 2 .00 .000 No_date overflow <= 04: 0:00 {MxStoUsed=.1835E+01, TotOvfVol=.0000E+00, N-0vf= 0, TotDurOvf= 0.hrs}

	Prop2016.sum
002:0008ID:NHYD DESIGN STANDHYD 02:203 [XIMP=.19:TIMP=.38] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 1.06 .152 No_date 1:30 53.65 .608
002:0009ID:NHYD ADD HYD 01:NPOND	AREAQPEAK-TpeakDate_hh:mmR.VR.C 58.21
+ 02:203 + 05:202Мај	58.21 3.599 No_date 2:10 60.26 n/a 1.06 .152 No_date 1:30 53.65 n/a .21 .132 No_date 1:25 57.88 n/a 59.48 3.657 No_date 2:08 60.13 n/a
002:0010ID:NHYD DESIGN NASHYD 01:EX1A [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42.09
002:0011 ROUTE PTPE -> 01:FX14	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42 09 2 119 No date 2:35 42 75 n/a
[RDT= 2.50] out<- 02:EX1R [L/S/n= 915./ .200/.013] {Vmax= 1.800:Dmax= .654} {HGTH= .90:WDTH= 1.80}	42.09 2.119 No_date 2:35 42.75 n/a 42.09 2.093 No_date 2:40 42.75 n/a
002:0012 DESIGN NASHYD 09:FX2A	AREAQPEAK-TpeakDate_hh:mmR.VR.C 2.14 .188 No_date 1:47 39.50 .448
[CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50]	
002:0013ID:NHYD ADD HYD 02:EX1R	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42.09 2.093 No_date 2:40 42.75 n/a
+ 03:NOR + 09:EX2A	42.09 2.093 No_date 2:40 42.75 n/a 59.48 3.657 No_date 2:08 60.13 n/a 2.14 .188 No_date 1:47 39.50 n/a 103.71 5.526 No_date 2:20 52.65 n/a
DESIGN STANDHYD 01:204 [XIMP=.30:TIMP=.55] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40
002:0015 ROUTE RESERVOIR -> 01:204	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40
[RDT= 2.50] out<- 08:SPOND {MxStoUsed=.9447E+00}	27.40 1.352 No_date 2:17 60.62 n/a
002:0016ID:NHYD DESIGN NASHYD 09:205 [CN= 71.0: N= 3.00] [Tp= .33:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 1.34 .116 No_date 1:47 39.50 .448
002:0017ID:NHYD ADD HYD 08:SPOND	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40 1.352 No_date 2:17 60.62 n/a
+ 09:205 [DT= 2.50] SUM= 01:S1	27.40 1.352 No_date 2:17 60.62 n/a 1.34 .116 No_date 1:47 39.50 n/a 28.74 1.430 No_date 2:12 59.64 n/a
002:0018ID:NHYD	AREAQPEAK-TpeakDate_hh:mmR.VR.C 2.69 .439 No_date 1:27 58.22 .660
002:0019ID:NHYD	AREAQPEAK-TpeakDate_hh:mmR.VR.C Page 5
	-

DESIGN NASHYD [CN= 65.0: N [Tp= .41:DT	I= 3.001	Prop2016.sum 7.96	.515 No_date	1:55	33.66 .381
002:0020 ADD HYD [DT= 1.00] ** END OF RUN :	ID:NHYD 02:207 + 01:S1 + 04:N1 SUM= 09:ND 2	AREA( 7.96 28.74 103.71 140.41	QPEAK-TpeakDate_ .515 No_date 1.430 No_date 5.526 No_date 7.368 No_date	hh:mm 1:55 2:12 2:20 2:15	R.VR.C 33.66 n/a 59.64 n/a 52.65 n/a 53.00 n/a

RUN:COMMAND#

003:0001-----START .00 hrs on 0] 2 (1=imperial, 2=metric output)] TZERO = METOUT= LNSTORM= 1 ] [NRUN = 3 1 # Project Name: [SB] Project Number: [300031145] : 02-19-2018 # Date # : [JMS/AJC] Modeller Company : R.J. Burnside & Associates License # : 3245976 # # 003:0002------READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 77.92] 003:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN STANDHYD 03:201 54.56 7.292 No_date 1:30 51.59 .662 [XIMP=.30:TIMP=.54] [SLP=1.00:DT= 5.00] [LOSS= 2 :CN= 71.0] 003:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.-DESIGN STANDHYD 04:202 3.86 .520 No_date 1:20 49.30 .633 [XIMP=.28:TIMP=.47] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0] 003:0005-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm---R.V.-R.C.- 
 COMPUTE DUALHYD
 04:202
 3.86
 .520 No_date
 1:20
 49.30
 n/a

 Major System /
 05:202Maj
 .05
 .050 No_date
 1:20
 49.30
 n/a

 Minor System /
 06:202min
 3.81
 .470 No_date
 1:20
 49.30
 n/a
 003:0006-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-ADD HYD 03:201 54.56 7.292 No_date 1:30 51.59 n/a .470 No_date + 06:202min 3.81 1:20 49.30 n/a 7.762 No_date [DT= 2.50] SUM= 07:TO POND 58.37 1:30 51.44 n/a Page 6

### Prop2016.sum

POULTE RESERVATE $- \times 07.TO POND$	AREAQPEAK-TpeakDate_hh:mmR.VR.C 58.37 7.762 No_date 1:30 51.44 n/a 58.37 2.770 No_date 2:12 51.44 n/a .00 .000 No_date 0:00 .00 n/a 0000E+00, N-Ovf= 0, TotDurOvf= 0.hrs}
003:0008ID:NHYD DESIGN STANDHYD 02:203 [XIMP=.19:TIMP=.38] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 1.06 .123 No_date 1:30 45.35 .582
003:0009ID:NHYD ADD HYD 01:NPOND + 02:203 + 05:202Maj [DT= 1.00] SUM= 03:NOR	AREAQPEAK-TpeakDate_hh:mmR.VR.C 58.37 2.770 No_date 2:12 51.44 n/a 1.06 .123 No_date 1:30 45.35 n/a .05 .050 No_date 1:20 49.30 n/a 59.48 2.813 No_date 2:11 51.33 n/a
003:0010ID:NHYD DESIGN NASHYD 01:EX1A [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42.09 1.713 No_date 2:35 35.25 .452
003:0011ID:NHYD ROUTE PIPE -> 01:EX1A [RDT= 2.50] out<- 02:EX1R [L/S/n= 915./ .200/.013] {Vmax= 1.694:Dmax= .561} {HGTH= .90:WDTH= 1.80}	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42.09
003:0012ID:NHYD DESIGN NASHYD 09:EX2A [CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 2.14 .152 No_date 1:47 32.41 .416
003:0013ID:NHYD ADD HYD 02:EX1R + 03:NOR + 09:EX2A [DT= 1.00] SUM= 04:N1	AREAQPEAK-TpeakDate_hh:mmR.VR.C 42.09
003:0014ID:NHYD DESIGN STANDHYD 01:204 [XIMP=.30:TIMP=.55] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0]	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40 3.718 No_date 1:27 51.77 .664
003:0015ID:NHYD ROUTE RESERVOIR -> 01:204 [RDT= 2.50] out<- 08:SPOND {MxStoUsed=.8089E+00}	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40
	AREAQPEAK-TpeakDate_hh:mmR.VR.C 1.34 .094 No_date 1:47 32.41 .416
	AREAQPEAK-TpeakDate_hh:mmR.VR.C 27.40

003:0018ID:NHYD DESIGN STANDHYD 05:206S2 [XIMP=.25:TIMP=.50] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0]	Prop2016.sum AREA 2.69	-QPEAK-TpeakDate_ .360 No_date	hh:mm 1:27	R.VR. 49.54 .	C 636
003:0019ID:NHYD DESIGN NASHYD 02:207 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREA 7.96	-QPEAK-TpeakDate_ .412 No_date	hh:mm 1:55	R.VR. 27.39 .	C 352
003:0020ID:NHYD ADD HYD 02:207 + 01:S1 + 04:N1 [DT= 1.00] SUM= 09:ND ** END OF RUN : 3		-QPEAK-TpeakDate_ .412 No_date 1.126 No_date 4.372 No_date 5.808 No_date	1:55 2:15	27.39 50.87 44.41	C n/a n/a n/a
*****	*****	*****	*****	******	

#### RUN: COMMAND#

004:0001-----START .00 hrs on 2 (1=imper 1 ] 01 TZERO =(1=imperial, 2=metric output)] METOUT= NSTORM= [NRUN = 4]Project Name: [SB] Project Number: [300031145] # : 02-19-2018 # Date # : [JMS/AJC] Modeller # : R.J. Burnside & Associates Company License # : 3245976 # 004:0002-----READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 63.67] # # 004:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN STANDHYD 03:201 54.56 5.616 No_date 1:25 39.79 .625 [XIMP=.30:TIMP=.54] [SLP=1.00:DT= 5.00] [LOSS= 2 :CN= 71.0] 004:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-3.86 .419 No_date 1:20 37.88 .595 DESIGN STANDHYD 04:202 [XIMP=.28:TIMP=.47] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0] 004:0005-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-3.86 .419 No_date 1:20 37.88 n/a COMPUTE DUALHYD 04:202 Page 8

Р	rop2016.sum			
Major System / 05:202Maj Minor System \ 06:202min	.00 3.86	.000 No_date .419 No_date	0:00 1:20 37	.00 n/a 7.88 n/a
004:0006ID:NHYD	AREA	-QPEAK-TpeakDate_	hh:mmR	VR.C
ADD HYD 03:201 + 06:202min	54.56 3.86	5.616 No_date	1:25 39	9.79 n/a 7 88 n/a
ADD HYD 03:201 + 06:202min [DT= 2.50] SUM= 07:TO POND	58.42	5.996 No_date	1:25 39	9.66 n/a
004:0007ID:NHYD	AREA	-QPEAK-TpeakDate_	hh:mmR	.VR.C
ROUTE RESERVOIR -> 07:TO POND	58.42	5.996 No_date	1:25 39	9.66 n/a
ROUTE RESERVOIR -> 07:TO POND [RDT= 2.50] out<- 01:NPOND overflow <= 04: 2 {MxStoUsed=.1345E+01, TotOvfVol=	.00	.000 No_date	0:00	.00 n/a
{MxStoUsed=.1345E+01, TotOvfVol=	.0000E+00,	N-Ovf= 0, TotD	ur0vf= (	).hrs}
004:0008ID:NHYD	AREA	-QPEAK-TpeakDate_	hh:mmR	VR.C
DESIGN STANDHYD 02:203 [XIMP=.19:TIMP=.38]	1.06	.090 No_date	1:21 34	1.37.540
[SLP=1.00:DT= 1.00]				
[LOSS= 2 :CN= 71.0]				
004:0009ID:NHYD	AREA	-QPEAK-TpeakDate_	hh:mmR	.VR.C
ADD HYD 01:NPOND + 02:203 + 05:202Maj [DT= 1.00] SUM= 03:NOR	1.06	.090 No_date	$1:21$ $3^{\circ}$	1.37 n/a
+ 05:202Maj	.00	.000 No_date	0:00	.00 n/a
004:0010 DESIGN_NASHYD01:EX1A	42 00	-QPEAK-TpeakDate_	hh:mmR	VR.C
LCN= 74.0: N= 3.00	42.09	1.217 NO_uale	2.55 2.	J.JZ .401
[Tp= .92:DT= 2.50]				
004:0011ID:NHYD	AREA	-QPEAK-TpeakDate_	hh:mmR	VR.C
ROUTE PIPE -> 01:EX1A [RDT= 2.50] out<- 02:EX1R [L/S/n= 915./ .200/.013]	42.09 42.09	1.217 No_date 1 199 No_date	2:35 2:	5.52 n/a 5.52 n/a
[L/S/n= 915./ .200/.013]	12105	11155 <u>No_uucc</u>	2112 2.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
{Vmax= 1.528:Dmax= .442} {HGTH= .90:WDTH= 1.80}				
		ODEAK TreakDate		V P C
004:0012ID:NHYD DESIGN_NASHYD09:EX2A	2.14	-QPEAK-TPEakDate_ .108 No_date	1:45 23	.vк.с 3.29.366
[CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50]				
004:0013ID:NHYD ADD HYD 02:EX1R	AREA	-QPEAK-TpeakDate_	hh:mmR	.VR.C
+ 03:NOR	59.48	1.773 No_date	2:20 39	9.56 n/a
+ 09:EX2A [DT= 1.00] SUM= 04:N1	2.14	1.199 No_date 1.773 No_date .108 No_date 2.949 No_date	1:45 23	3.29 n/a
004:0014 DESIGN STANDHYD 01:204	AREA 27 40	-QPEAK-TpeakDate_ 2 898 No date	hh:mmR 1.27 30	.VR.C 9 94 627
[XIMP=.30:TIMP=.55]	27.10	2.000 No_duce	1.27 5.	
[SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0]				
		ODEAK TRACKDATA	hh.mm -	
004:0015 ROUTE RESERVOIR -> 01:204	27.40	2.898 No_date	1:27 39	.vк.с Э.94 n/a
ROUTE RESERVOIR -> 01:204 [RDT= 2.50] out<- 08:SPOND	27.40	.765 No_date	2:22 39	9.94 n/a
$\{MxStoUsed=.6387E+00\}$				
004:0016 DESIGN NASHYD 09:205		-QPEAK-TpeakDate_ .067 No_date		
[CN= 71.0: N= 3.00]		.007 NO_Uale	1.7/ Z.	
	Page 9			

[Tp= .33:DT= 2.50]

Prop2016.sum

004:0017ID:NHYD ADD HYD 08:SPOND + 09:205 [DT= 2.50] SUM= 01:S1	1.34 .067 No_date 1:47 23.29 r	C n/a n/a n/a
004:0018ID:NHYD DESIGN STANDHYD 05:206S2 [XIMP=.25:TIMP=.50] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0]	AREAQPEAK-TpeakDate_hh:mmR.VR.0 2.69 .278 No_date 1:22 37.97 .	
004:0019ID:NHYD DESIGN NASHYD 02:207 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mmR.VR.0 7.96 .287 No_date 1:55 19.43 .3	2 305
ADD HYD 02:207 + 01:S1	28.74 .802 No_date 2:20 39.16 r 103.71 2.949 No_date 2:30 33.53 r	C n/a n/a n/a n/a
*****	******	

#### RUN:COMMAND#

005:0001-----START # Project Name: [SB] Project Number: [300031145] : 02-19-2018 # Date # Modeller : [JMS/AJC] : R.J. Burnside & Associates # Company : 3245976 # License # 005:0002-----------READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 52.43] 005:0003-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-DESIGN STANDHYD 03:201 54.56 4.139 No_date 1:25 30.89 .589 [XIMP=.30:TIMP=.54] [SLP=1.00:DT= 5.00] [LOSS= 2 :CN= 71.0] 005:0004-----ID:NHYD-----AREA----QPEAK-TpeakDate_hh:mm----R.V.-R.C.-Page 10

DESIGN STANDHYD 04:20 [XIMP=.28:TIMP=.47] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0]	Prop2016.sum 02 3.86	.357 No_date	1:20 29.31 .559
005:0005ID:NHY COMPUTE DUALHYD 04:20 Major System / 05:20 Minor System \ 06:20	′DAREA )2 3.86 )2Maj .00 )2min 3.86	-QPEAK-TpeakDate .357 No_date .000 No_date .357 No_date	_hh:mmR.VR.C 1:20
005:0006ID:NHY ADD HYD 03:20 + 06:20 [DT= 2.50] SUM= 07:TC	DAREA D1 54.56 D2min 3.86 D POND 58.42	-QPEAK-TpeakDate 4.139 No_date .357 No_date 4.441 No_date	_hh:mmR.VR.C 1:25
005:0007ID:NHY ROUTE RESERVOIR -> 07:TC [RDT= 2.50] out<- 01:NF overflow <= 04: {MxStoUsed=.1125E+01, Tc	POND 58.42 POND 58.42 2 .00	4.441 No_date 1.076 No_date .000 No_date	1:25 30.78 n/a 2:35 30.78 n/a 0:00 .00 n/a
005:0008ID:NHY DESIGN STANDHYD 02:20 [XIMP=.19:TIMP=.38] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0]			
005:0009ID:NHY ADD HYD 01:NF + 02:20 + 05:20 [DT= 1.00] SUM= 03:NC	DAREA POND 58.42 03 1.06 02Maj .00 0R 59.48	-QPEAK-TpeakDate 1.076 No_date .074 No_date .000 No_date 1.092 No_date	_hh:mmR.VR.C 2:35 30.78 n/a 1:20 26.21 n/a 0:00 .00 n/a 2:35 30.70 n/a
005:0010ID:NHY DESIGN NASHYD 01:EX [CN= 74.0: N= 3.00] [Tp= .92:DT= 2.50]	′DAREA	-QPEAK-TpeakDate	_hh:mmR.VR.C
005:0011ID:NHY ROUTE PIPE -> 01:EX [RDT= 2.50] out<- 02:EX [L/S/n= 915./ .200/.01 {Vmax= 1.371:Dmax= .35 {HGTH= .90:WDTH= 1.80}	(1A 42.09 (1R 42.09 (3] (1)	-QPEAK-TpeakDate .868 No_date .852 No_date	_hh:mmR.VR.C 2:35
005:0012ID:NHY DESIGN NASHYD 09:EX [CN= 71.0: N= 3.00] [Tp= .32:DT= 2.50]	′DAREA (2A 2.14	-QPEAK-TpeakDate .077 No_date	_hh:mmR.VR.C 1:45
005:0013ID:NHY ADD HYD 02:EX + 03:NC + 09:EX [DT= 1.00] SUM= 04:N1	/DAREA (1R 42.09 )R 59.48 (2A 2.14 - 103.71	-QPEAK-TpeakDate .852 No_date 1.092 No_date .077 No_date 1.966 No date	_hh:mmR.VR.C 2:42
005:0014ID:NHY DESIGN STANDHYD 01:20 [XIMP=.30:TIMP=.55] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0]	′DAREA	-QPEAK-TpeakDate	_hh:mmR.VR.C
005:0015ID:NHY	DAREA Page 11	-QPEAK-TpeakDate	_hh:mmR.VR.C

ROUTE RESERVOIR -> 01:204 [RDT= 2.50] out<- 08:SPOND {MxStoUsed=.5149E+00}	Prop2016.sum 27.40 2.238 No_date 1:22 27.40 .523 No_date 2:32	
005:0016ID:NHYD DESIGN NASHYD 09:205 [CN= 71.0: N= 3.00] [Tp= .33:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mm 1.34 .047 No_date 1:42	R.VR.C 7 16.77 .320
005:0017ID:NHYD ADD HYD 08:SPOND + 09:205 [DT= 2.50] SUM= 01:S1	AREAQPEAK-TpeakDate_hh:mm 27.40 .523 No_date 2:32 1.34 .047 No_date 1:42 28.74 .545 No_date 2:22	2 31.01 n/a
005:0018ID:NHYD DESIGN STANDHYD 05:206S2 [XIMP=.25:TIMP=.50] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0]		R.VR.C L 29.29.559
005:0019ID:NHYD DESIGN NASHYD 02:207 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREAQPEAK-TpeakDate_hh:mm 7.96 .202 No_date 1:52	R.VR.C 2 13.82 .264
005:0020ID:NHYD ADD HYD 02:207 + 01:S1 + 04:N1 [DT= 1.00] SUM= 09:ND ** END OF RUN : 5	7.96 .202 No_date 1:52 28.74 .545 No_date 2:22 103.71 1.966 No_date 2:38 140.41 2.620 No_date 2:38	2 13.82 n/a 7 30.35 n/a 8 25.46 n/a 3 25.80 n/a
***************************************	************	****

RUN:COMMAND#

006:0001---_____ START [TZERO = .00 hrs on 0] [METOUT= 2 (1=imperial, 2=metric output)] TZERO = Project Name: [SB] Project Number: [300031145] Date_____: 02-19-2018 # # # Modeller : [JMS/AJC] Company : R.J. Burnside & Associates License # : 3245976 # # 006:0002-----READ STORM Filename = STORM.001 Comment = [SDT= 5.00:SDUR= 4.00:PTOT= 35.43] 

	Pr	op2016.sum	n	_		
006:0003 DESIGN STANDHYD [XIMP=.30:TIMP=.5 [SLP=1.00:DT= 5.0 [LOSS= 2 :CN= 71.	03:201 [4] [0]	AREA 54.56	QPEAK-T  2.721	peakDate_ No_date	_hh:mm 1:25	R.VR.C 18.41 .520
006:0004 DESIGN STANDHYD [XIMP=.28:TIMP=.4 [SLP=1.00:DT= 2.5 [LOSS= 2 :CN= 71.	04:202 [7] [0]	AREA 3.86	QPEAK-T .271	peakDate_ No_date	_hh:mm 1:20	R.VR.C 17.37 .490
006:0005 COMPUTE DUALHYD Major System / Minor System \	ID:NHYD 04:202 05:202Maj 06:202min	AREA 3.86 .00 3.86	QPEAK-T .271   .000   .271	peakDate_ No_date No_date No_date	_hh:mm 1:20 0:00 1:20	R.VR.C 17.37 n/a .00 n/a 17.37 n/a
006:0006 ADD HYD [DT= 2.50] SUM=	ID:NHYD 03:201 06:202min 07:TO POND	AREA 54.56 3.86 58.42	QPEAK-T 2.721 .271 2.902	peakDate_ No_date No_date No_date	_hh:mm 1:25 1:20 1:25	R.VR.C 18.41 n/a 17.37 n/a 18.34 n/a
006:0007 ROUTE RESERVOIR -> [RDT= 2.50] out<- overflow <= {MxStoUsed=.8190E+		ARFA		neakDate	hh·mm	
006:0008 DESIGN STANDHYD [XIMP=.19:TIMP=.3 [SLP=1.00:DT= 1.0 [LOSS= 2 :CN= 71.	02:203 [8] [0]	AREA 1.06	QPEAK-T  .055	peakDate_ No_date	_hh:mm 1:20	R.VR.C 15.04 .424
006:0009 ADD HYD + [DT= 1.00] SUM=	ID:NHYD 01:NPOND 02:203 05:202Maj 03:NOR	AREA 58.42 1.06 .00 59.48	QPEAK-T .313   .055   .000   .318	peakDate_ No_date No_date No_date No_date No_date	_hh:mm 3:52 1:20 0:00 3:50	R.VR.C 18.34 n/a 15.04 n/a .00 n/a 18.28 n/a
006:0010 DESIGN NASHYD [CN= 74.0: N= 3.0 [Tp= .92:DT= 2.5	01:EX1A 00]	AREA 42.09	QPEAK-T  .425	peakDate_ No_date	_hh:mm 2:35	R.VR.C 9.34 .264
006:0011 ROUTE PIPE -> [RDT= 2.50] out<- [L/S/n= 915./ .2 {Vmax= 1.073:Dmax {HGTH= .90:WDTH=	01:EX1A 02:EX1R 00/.013] = .218}	AREA 42.09 42.09	QPEAK-T  .425   .413	peakDate_ No_date No_date	_hh:mm 2:35 2:47	R.VR.C 9.34 n/a 9.34 n/a
006:0012 DESIGN NASHYD [CN= 71.0: N= 3.0 [Tp= .32:DT= 2.5	09:EX2A 00]					
006:0013 ADD HYD + [DT= 1.00] SUM=	02:EX1R 03:NOR 09:EX2A	42 09	413 (	No date	2.47	934 n/a
-						

Pro	op2016.sum	1		
006:0014ID:NHYD DESIGN STANDHYD 01:204 [XIMP=.30:TIMP=.55] [SLP=1.00:DT= 2.50] [LOSS= 2 :CN= 71.0]	AREA 27.40	1.499 No_date	_nn:mm 1:25	R.VR.C 18.48 .522
006:0015ID:NHYD ROUTE RESERVOIR -> 01:204 [RDT= 2.50] out<- 08:SPOND {MxStoUsed=.3612E+00}	AREA 27.40 27.40	QPEAK-TpeakDate_ 1.499 No_date .212 No_date	hh:mm 1:25 3:05	R.VR.C 18.48 n/a 18.48 n/a
006:0016ID:NHYD DESIGN NASHYD 09:205 [CN= 71.0: N= 3.00] [Tp= .33:DT= 2.50]	AREA 1.34	QPEAK-TpeakDate_ .023 No_date	hh:mm 1:45	R.VR.C 8.36 .236
006:0017ID:NHYD ADD HYD 08:SPOND + 09:205 [DT= 2.50] SUM= 01:S1	AREA 27.40 1.34 28.74	QPEAK-TpeakDate_ .212 No_date .023 No_date .218 No_date	hh:mm 3:05 1:45 3:02	R.VR.C 18.48 n/a 8.36 n/a 18.01 n/a
006:0018ID:NHYD DESIGN STANDHYD 05:206S2 [XIMP=.25:TIMP=.50] [SLP=1.00:DT= 1.00] [LOSS= 2 :CN= 71.0]	AREA 2.69	QPEAK-TpeakDate_ .167 No_date	hh:mm 1:21	R.VR.C 17.21 .486
006:0019ID:NHYD DESIGN NASHYD 02:207 [CN= 65.0: N= 3.00] [Tp= .41:DT= 2.50]	AREA 7.96	QPEAK-TpeakDate_ .097 No_date	hh:mm 1:52	R.VR.C 6.74 .190
006:0020ID:NHYD ADD HYD 02:207 + 01:S1 + 04:N1 [DT= 1.00] SUM= 09:ND	7.96 28.74 103.71 140.41	.097 No_date .218 No_date .697 No_date .951 No_date	hh:mm 1:52 3:02 3:02 3:00	R.VR.C 6.74 n/a 18.01 n/a 14.45 n/a 14.74 n/a
006:0002 FINISH				
- ************************************	*****	****	*****	****
001:0011 ROUTE PIPE -> *** WARNING: New pipe size used Simulation ended on 2018-02-20	for routir at 13:10:5	ng. 57		

=

# BURNSIDE

#### NORTH POND IMPERVIOUS CALCULATIONS

Total Drainage Area=	<mark>594900</mark> m2	or 59.49 ha	
Institutional Areas (m2)	(maj & min split)	Commercial Areas(m2	:)
Total Area=	2.577 ha Area	Total Area	0 ha Area
TIMP XIMP	65% 1.68 ha 40% 1.03 ha	TIMP XIMP	90% 0.00 ha
External Areas (m2)		SWM Block(m2)	
85400 Keating Land			h Pond
Total Area	8.54 ha Area	Total Area	2.17 ha Area
TIMP XIMP	47%         4.01 ha           30%         2.56 ha	TIMP XIMP	50% 1.09 ha 50% 1.09 ha
Residential Areas(m2) 357585 remainder 16025 Medium Dane	Sib. (Db 1)		(maj & min split) (Ph 2) (incl. controlled Ph 1)
16935 Medium Dens 53235 Medium Dens 6665 Low Density (	sity (Ph 2)	10760 Park	
Total Area	43.44 ha	Total Area	2.76 ha
TIMP low XIMP low	Area 55% 19.67 ha 28% 10.01 ha	TIMP ph 1 XIMP ph 1	Area 10% 0.13 ha 5% 0.06 ha
TIMP med XIMP med	Area 65% 4.56 ha 35% 2.46 ha	TIMP ph 2 XIMP ph 2	Area <u>10%</u> 0.11 ha <u>5%</u> 0.05 ha
TIMP uncont XIMP uncont	Area 55% 0.37 ha 28% 0.19 ha	TIMP uncont	Area 10% 0.040 ha 5% 0.020 ha
Total Area (less Residential)= Total Residential Area(if not able	16.05 ha e to directly measure)=	43.44 ha	
<u>CATCHMENT 201 - Both Ma</u> Total TIMP=		II TIMP= 53.9 %	Total Area
Total XIMP= TOTAL Area (201)=		II XIMP= 29.6 % TOTAL Pervious (201)	
CATCHMENT 202 - Only Mir			
Total TIMP= Total XIMP= TOTAL Area (202)=		II TIMP= 46.7 % II XIMP= 28.3 % TOTAL Pervious (202)	= 2.06 ha
CATCHMENT 203 - Both Ma			
Total TIMP= Total XIMP= TOTAL Area (203)=		II TIMP= 38.2 % II XIMP= 19.4 % TOTAL Pervious (203)	= 0.66 ha
TOTAL Modelled Area=	59.49 ha	TOTAL Pervious A	rea= 27.84 ha
OVERALL TIMP OVERALL XIMP	0.532 0.294		
TOTAL Area to Pond=	58.43 ha	TOTAL Pervious A	rea= 27.19 ha
OVERALL TIMP OVERALL XIMP	0.535 0.295		

_____

NW Fergus
300031145
J.Scott
L.Niemi
16-Feb-18

# BURNSIDE

32.91 ha 2.69 ha 1.48 ha 1.34 ha

SOUTH	POND	IMPERVIOUS	CALCUL	ATIONS

Total South Plan Area=	329106 m2 o	r
Total Drainage Area to Colborne=	26900 m2 or	r
Total Site Control Area=	14800 m2 o	r
Total Drainage Area to Nichol=	13400 m2 o	r
Total Drainage Area to Pond=	274006 m2 o	r
Note: Roof leaders will discharge to the	lawn	

Area 0.00 ha 0.00 ha

Area 12.45 ha 6.34 ha

Area 1.30 ha 0.66 ha

Area 0.74 ha 0.38 ha

27.40 ha

2.69 ha

54.5 %

29.6 %

49.5 % 25.2 %

90.0 % 90.0 %

55.0 % 28.0 %

Overall TIMP=

#### Institutional Areas (m2)

Total Area=	0 h	na
TIMP	<u>55%</u> 30%	
XIMP	30%	

Medium Density		
22900	Colborne Street	
Total Area	2.29	ha
		Area
TIMP	65%	1.49 ha
XIMP	35%	0.80 ha

Residential Area	s(m2)	
226406	to Pond	
23600	to Colborne	
13400	to Nichol	
Area to Pond Area to Colborne Area to Nichol TIMP (Pond)		2.64 ha 2.36 ha 1.34 ha 55%
XIMP (Pond)		28%

TIMP (colborne)	55%
XIMP (colborne)	28%
TIMP (nichol)	55%
XIMP (nichol)	28%

ichor)		
ichol)		

#### **TOTAL Area to Pond** Total TIMP=

Total TIMP=	1.33 ha	Overall TIMP=
TOTAL Area to Coll	oorne Culvert	2.69
Total XIMP=	8.11 ha	Overall XIMP=

Total XIMP=	0.68 ha	Overall XIMP=
TOTAL Area with s	ite controls	1.48 ha
Total TIMP=	1.33 ha	Overall TIMP=
Total XIMP=	1.33 ha	Overall XIMP=

14.94 ha

TOTAL Area directly	to Nichol Drain	1.34 ha
Total TIMP=	0.74 ha	Overall TIMP=
Total XIMP=	0.38 ha	Overall XIMP=

1.34			
27.40	ha		
<b>Commercial Area</b>	s(m2)		
	to pond		
14800	to drain		
Area to Pond		0	
Area to Drain		1.48	
		90%	Area
TIMP (pond)			0.00 ha
XIMP (pond)		90%	0.00 ha
			Aree
TIMP (drain)		90%	Area 1.33 ha
XIMP (drain)		90%	1.33 ha
		90%	1.55 Ha
SWM Block(m2)			
	South Pond		
10000	South Fond		
Total Area		1.88	ha
Total Area		1.88	
			Area
Total Area TIMP XIMP		50%	Area 0.94 ha
TIMP			Area
TIMP		50%	Area 0.94 ha
TIMP		50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n	12)	50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n	12)	50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n 5900	1 <b>2)</b> to pond/drain	50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n 5900	12)	50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n 5900	1 <b>2)</b> to pond/drain	50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n 5900	1 <b>2)</b> to pond/drain	50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n 5900	1 <b>2)</b> to pond/drain	50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n 5900	1 <b>2)</b> to pond/drain	50%	Area 0.94 ha
TIMP XIMP Parkland Areas(n 5900	1 <b>2)</b> to pond/drain	50%	Area 0.94 ha 0.94 ha
TIMP XIMP Parkland Areas(n 5900 3300	1 <b>2)</b> to pond/drain	<u>50%</u> 50%	Area 0.94 ha 0.94 ha
TIMP XIMP Parkland Areas(n 5900 3300 Area to Pond	1 <b>2)</b> to pond/drain	50% 50%	Area 0.94 ha 0.94 ha
TIMP XIMP Parkland Areas(n 5900 3300 Area to Pond	1 <b>2)</b> to pond/drain	50% 50%	Area 0.94 ha 0.94 ha
TIMP XIMP Parkland Areas(n 5900 3300 Area to Pond Area to Pond Area to Colborne	1 <b>2)</b> to pond/drain	50% 50%	Area 0.94 ha 0.94 ha
TIMP XIMP Parkland Areas(n 5900 3300 Area to Pond Area to Colborne	1 <b>2)</b> to pond/drain	50% 50%	Area 0.94 ha 0.94 ha 0.94 ha ha Area
TIMP XIMP Parkland Areas(n 5900 3300 Area to Pond Area to Pond Area to Colborne	1 <b>2)</b> to pond/drain	50% 50%	Area 0.94 ha 0.94 ha ha ha Area 0.06 ha 0.03 ha
TIMP XIMP Parkland Areas(n 5900 3300 Area to Pond Area to Pond Area to Colborne	1 <b>2)</b> to pond/drain	50% 50%	Area 0.94 ha 0.94 ha ha ha Area 0.06 ha
TIMP XIMP Parkland Areas(m 5900 3300 Area to Pond Area to Pond Area to Colborne TIMP (Pond) XIMP (Pond)	1 <b>2)</b> to pond/drain	50% 50% 0.59 0.33 10% 5%	Area 0.94 ha 0.94 ha ha ha Area 0.06 ha 0.03 ha
TIMP XIMP Parkland Areas(n 5900 3300 Area to Pond Area to Pond Area to Colborne TIMP (Pond) XIMP (Pond)	1 <b>2)</b> to pond/drain	50% 50%	Area 0.94 ha 0.94 ha 0.94 ha ha Area 0.06 ha 0.03 ha Area
TIMP XIMP Parkland Areas(m 5900 3300 Area to Pond Area to Pond Area to Colborne TIMP (Pond) XIMP (Pond)	1 <b>2)</b> to pond/drain	50% 50% 0.59 0.33 10% 5%	Area 0.94 ha 0.94 ha 0.94 ha ha Area 0.06 ha 0.03 ha Area 0.03 ha
TIMP XIMP Parkland Areas(m 5900 3300 Area to Pond Area to Pond Area to Colborne TIMP (Pond) XIMP (Pond)	1 <b>2)</b> to pond/drain	50% 50% 0.59 0.33 10% 5%	Area 0.94 ha 0.94 ha 0.94 ha ha Area 0.06 ha 0.03 ha Area 0.03 ha
TIMP XIMP Parkland Areas(m 5900 3300 Area to Pond Area to Pond Area to Colborne TIMP (Pond) XIMP (Pond)	1 <b>2)</b> to pond/drain	50% 50% 0.59 0.33 10% 5%	Area 0.94 ha 0.94 ha 0.94 ha ha Area 0.06 ha 0.03 ha Area 0.03 ha

Project: File: Designed by: Date:	NW Fergus 300031145 L.Niemi 16-Feb-18	<b>B</b> URNS	SIDE	File: Designed by:	NW Fergus 300031145 J.Scott, A. Crookes L.Niemi, J. Smith 16-Feb-18	C	BURNS	SIDE
	nent Pool Requireme Quality Storage Requiren	ent - SOUTH POND nents Based on Receiving Waters.		Wet Pond Permament Pool Requirement - NORTH POND MOE Table 3.2 Water Quality Storage Requirements Based on Receiving Waters.				
IMPERVIOUSNESS Protection Level (1, 2	2, or 3)	54.5 % 1		IMPERVIOUSNESS Protection Level (1, 2,	, or 3)	53.47 %		
NOTE - 40 cu.m/ha ha	as been removed from MC	E table values for Ex. Detention Portion		NOTE - 40 cu.m/ha has	s been removed from MC	DE table values for Ex. Dete	ention Portion	
Storage/Olume         Known (x)         Calc (y)           Imperviousness (%)         (cu.m./ha)         Total Permanent Pool (%)           35         100         54.5         148.81           70         185         210           95.0         236         Extrapolated		Required (cu.m)			Total Permanent Pool Required (cu.m) 8540.10			
Normal (Level 2) Pro	tection			Normal (Level 2) Prote	ection			
x Imperviousness (%) 35 55 70 85 <b>95.0</b>	y Permanent Pool StorageVolume (cu.m./ha) 50 70 90 110 121	Known (x)     Calc (y)       Imperviousness     Permanent Pool (%)       StorageVolume (cu.m./ha)       54.5       69.52	Total Permanent Pool Required (cu.m) 1904.99	x Imperviousness (%) 35 55 70 85 <b>95.0</b>	y Permanent Pool StorageVolume (cu.m./ha) 50 70 90 110 121		Calc (y) Permanent Pool geVolume (cu.m./ha) 68.47	Total Permanent Pool Required (cu.m) 4000.31
Basic (Level 3) Prote x	y Permanent Pool	Known (x) Calc (y)		Basic (Level 3) Protec x	<b>y</b> Permanent Pool	Known (x)	Calc (y)	
Imperviousness (%) 35 55 70 85 <b>95.0</b>	StorageVolume (cu.m./ha) 20 35 45 55 <b>62</b>	Imperviousness         Permanent Pool           (%)         StorageVolume (eu.m./ha)           54.5         34.64           Extrapolated         StorageVolume (eu.m./ha)	Total Permanent Pool Required (cu.m) 949.23	Imperviousness (%) 35 55 70 85 <b>95.0</b>	StorageVolume (cu.m./ha) 20 35 45 55 <b>62</b>		Permanent Pool geVolume (cu.m./ha) 33.85	Total Permanent Pool Required (cu.m) 1977.77

#### **EXTENDED DETENTION CALCULATIONS**

	Ð



#### Extended Detention Storage Required - SCS Method SOUTH POND

Q =	(P-IA)^2/P-(IA-S)
S =	-254+25400/CN
T IMP =	54.5 %

#### SOUTH POND

#### **Pervious Area Impervious Area** P = P = 25 mm 25 mm IA = 2.5 mm IA = 2.5 mm CN = 71 CN = 98 103.7 S = S = 5.2 4.0 mm Q = 18.3 mm Q = total per imp SCS Runoff Volume 4.0 18.3 mm 27.40 Drainage Area 12.46 14.94 ha Storage Volume 500 2732 3232 cu.m

**Extended Detention Component of SOUTH Pond :** 

3232 cu.m

BURNSIDE

#### Orifice Sizing per MOE 2003 SWM Manual - Falling Head Equation

#### $t = 2*Ap*(h^0.5)/(C*Ao*(g*2)^0.5)$

t = Ao = h = C = Ap =	discharge coefficient	of orifice ation above orifice (depth of e area for extended detentic	0.64		*based on 24hr El *to be calculated *depth of ED *based on pond d	·
	Ao = Actual Diameter Actual Drawdown Tin	0.0453 sq.m ne	d = d =	240 mm 230 mm 26.148 hrs	Ao =	0.042

#### **EXTENDED DETENTION CALCULATIONS**



Project:	NW Fergus
File:	300031145
Designed by:	J.Scott, A. Crookes
Checked by:	L.Niemi, J. Smith
Date:	16-Feb-18

### Extended Detention Storage Required - SCS Method NORTH POND

Q =	(P-IA)^2/P-(IA-S)
S =	-254+25400/CN
T IMP =	53.47 %

### NORTH POND

Pervious Area		Imperviou	s Area			
P = IA = CN = S = Q =	25 mm 2.5 mm 71 103.7 4.0 mm	P = IA = CN = S = Q =	25 mm 2.5 mm 98 5.2 18.3 mm			
	27.19 1090 tion Component of NORTH er MOE 2003 SWM Manual -		total mm 58.43 ha 6803 cu.m 6803 cu.m			
t = Ao = h = C = Ap =	drawdown time cross sectional area of orifica maximum water elevation ab discharge coefficient average pond surface area for Ao = $0.070$ Actual Diameter Actual Drawdown Time	ove orifice (c	depth of ED) 0. detention 9465. d = 2 d = 2	100 seconds sq.m 72 m 0.6 00 sq.m 298 mm 298 mm 295 mm 317 hrs	*based on 24hr E *to be calculated *depth of ED *based on pond d Ao =	

## SEDIMENT FOREBAY SIZING SOUTH POND

Project:	NW
File:	3000
Designed by:	J.Sco
Checked by:	L.Nier
Date:	16-F

NW Fergus 300031145 J.Scott, A. Crookes L.Niemi, J. Smith 16-Feb-18



NORTH FC		
	SOUTH POND Forebay Length: T	vo calculations (per MOE SWMP Manual, 2003)
	Calculations Dist = SQRT( r * Qp / Vs ) on 4.5, MOE 2003)	2) Dispersion Length Dist = (8 * Q) / (d * Vf) (Equation 4.6,MOE 2003)
where:	Dist = Forebay length (m) r = Length to width ratio of forebay Qp = Peak flowrate from the pond during quality design storm (cms) Vs = Settling velocity (m/s)	where: Dist = Forebay length (m) Q = inlet flowrate (cms) d = depth of permanent pool in forebay (m) Vf = desired forebay velocity (m/s)
given:	r = 2 Qp = 0.07481 cms *see below Vs = 0.0003 m/s	given: $Q = 1.164$ cms *see below d = 2 m Vf = 0.5 m/s
therefore:	Dist = 22.3 metres Width= 11.2 metres	therefore: Dist = 9.3 metres Width= 4.7 metres Min Bottom Width= 1.2 metres *MOE equation 4.6 Pond Side Slopes: 5
	flowrate (Qp) from pond based on release rate and tended detention multiplied by a factor of 2.0 for	Calc. Top Width= 21.164 metres
Extended D	etention Vol 3232 cu.m (extended det. volume) elease Rate 24 hrs (typically 24 or 48)	Peak inflow rate calculated based on STORM SEWER DESIGN FLOW per rational method sewer calculation.
	Qp 0.07481 cms	NOTE - 5 year Storm sewer design Sheet output

Minimum Forebay Dimension:	Actual Forebay Design:
Length= 42.3 meters Width= 21.2 meters	Length=45.0Width=22.0meters
	Check Average velocity in forebay <= 0.15 m/s
	Pond Side Slopes: $5 H : 1 V$ Q = V x A Q = 1.164 A = 24 sq.metres
	therefore: V = 0.0485 m/s Design: <b>OK</b>

## SEDIMENT FOREBAY SIZING SOUTH POND

Project: File: Designed by: Checked by: Date:

NW Fergus 300031145 J.Scott, A. Crookes L.Niemi, J. Smith 16-Feb-18



SOUTH FOREBAY SOUTH PO	ND Forebay Length: Two ca	Iculations (per MOE SWMP Manua	al, 2003)
1) Settling Calculations Dist = SQRT( r * Qp / Vs ) (Equation 4.5, MOE 2003)		2) Dispersion Length (Equation 4.6,MOE 2003)	Dist = (8 * Q) / (d * Vf)
Qp = Peak flow	width ratio of forebay rate from the pond ality design storm (cms)	where: Dist = Forebay length ( Q = inlet flowrate (cm d = depth of perman Vf = desired forebay	ns) nent pool in forebay (m)
given: $r = 2$ Qp = 0.07481 Vs = 0.0003	cms *see below	given: $Q = 0.979$ cms d = 2 m Vf = 0.5 m/s therefore: Dist = 7.8 metres	*see below
· · · · · · · · · · · · ·	metres metres	Width=3.9 metresMin Bottom Width=1.0 metresPond Side Slopes:5Calc. Top Width=20.979 metres	*MOE equation 4.6
Peak quality flowrate (Qp) from por volume of extended detention multi peaking		Calc. Top Length= 41.958 meters	5
	cu.m (extended det. volume) hrs (typically 24 or 48)	Peak inflow rate calculated based on S FLOW per rational method sewer calcu	
Qp 0.07481		NOTE - 5 year Storm sewer design Sh	eet output
Minimum Forebay Dimension:		Actual Forebay Design:	
0	meters meters	Length= 45.0 meters Width= 22.0 meters	
		Check Average velocity in forebay <= Pond Side Slopes: 5 H : 1 V Q = V x A Q = 0.979 A	/
		therefore: V = 0.0408 m/s Design: <b>OK</b>	

## SEDIMENT FOREBAY SIZING NORTH POND

Project:	
File:	
Designed by:	
Checked by:	
Date:	

NW Fergus 300031145 J.Scott, A. Crookes L.Niemi, J. Smith 16-Feb-18



NORTH FOREBAY NORTH POND Forebay Length: Two ca	Iculations (per MOE SWMP Manual, 2003)
1) Settling Calculations Dist = SQRT( r * Qp / Vs ) (Equation 4.5, MOE 2003)	2) Dispersion Length Dist = (8 * Q) / (d * Vf) (Equation 4.6,MOE 2003)
where:Dist =Forebay length (m)r =Length to width ratio of forebayQp =Peak flowrate from the pond during quality design storm (cms)Vs =Settling velocity (m/s)	where: Dist = Forebay length (m) Q = inlet flowrate (cms) d = depth of permanent pool in forebay (m) Vf = desired forebay velocity (m/s) given: Q = 4.092 cms *see below
given: r = 2 Qp = 0.15747 cms *see below Vs = 0.0003 m/s	d = 2 m $Vf = 0.5 m/s$
therefore: Dist = 32.4 metres Width= 16.2 metres	therefore: Dist = 32.7 metres Width= 16.4 metres Min Bottom Width= 4.1 metres *MOE equation 4.6 Pond Side Slopes: 5 Calc. Top Width= 24.092 metres
Peak quality flowrate (Qp) from pond based on release rate and volume of extended detention multiplied by a factor of 2.0 for peaking	Calc. Top Length= 48.184 meters
Extended Detention Vol 6803 cu.m (extended det. volume) Release Rate 24 hrs (typically 24 or 48)	Peak inflow rate calculated based on STORM SEWER DESIGN FLOW per rational method sewer calculation.
Qp 0.15747 cms	NOTE - 5-year Storm sewer design Sheet output for total north storm sewer inlet flow
Minimum Forebay Dimension:	Actual Forebay Design:
Length= 48.2 meters Width= 24.1 meters	Length= 52.0 meters Width= 25.0 meters
	Check Average velocity in forebay <= 0.15 m/s Pond Side Slopes: 5 H : 1 V Q = V x A Q = 4.092 A = 30 sq.metres
	therefore: V = 0.1364 m/s Design: <b>OK</b>

## SECONDARY SEDIMENT FOREBAY SIZING

Project:	NW Fergus
File:	300031145
Designed by:	J.Scott, A. Crookes
Checked by:	L.Niemi
Date:	16-Feb-18

SOUTH FOREBAY

NORTH POND Forebay Length: Two calculations (per MOE SWMP Manual, 2003)

1) Settling Calculations Dist = SQRT( r * Qp / Vs ) (Equation 4.5, MOE 2003)	2) Dispersion Length Dist = (8 * Q) / (d * Vf) (Equation 4.6,MOE 2003)
where:Dist =Forebay length (m)r =Length to width ratio of forebayQp =Peak flowrate from the pond during quality design storm (cms)Vs =Settling velocity (m/s)	where: Dist = Forebay length (m) Q = inlet flowrate (cms) d = depth of permanent pool in forebay (m) Vf = desired forebay velocity (m/s) given: Q = 1.328 cms *see below
given: r = 2 Qp = 0.15747 cms *see below Vs = 0.0003 m/s	given: Q = 1.328 cms *see below d = 1.5 m Vf = 0.5 m/s
therefore: Dist = 32.4 metres Width= 16.2 metres	therefore: Dist = 14.2 metres Width= 7.1 metres Min Bottom Width= 1.8 metres *MOE equation 4.6 Pond Side Slopes: 5 Calc. Top Width= 16.77 metres
Peak quality flowrate (Qp) from pond based on release rate and volume of extended detention multiplied by a factor of 2.0 for peaking	Calc. Top Length= 33.54 metres
Ext. Detention Vol 6803 cu.m (extended det. volume) Release Rate 24 hrs (typically 24 or 48)	Peak inflow rate calculated based on STORM SEWER DESIGN FLOW per rational method sewer calculation.
Qp 0.15747 cms	NOTE - Combination of 5-year and 100-year capture within the sewers
Minimum Forebay Dimension:	Actual Forebay Design:
Length= 33.5 meters Width= 16.8 meters	Length= 36.0 meters Width= 17.0 meters
	Check Average velocity in forebay <= 0.15 m/s Pond Side Slopes: $5 H : 1 V$ Q = V x A Q = 1.328 A = 14 sq.metres
	therefore: V = 0.093 m/s Design: <b>OK</b>

#### POND DESIGN PARAMETERS



 Project:
 NW Fergus

 File:
 300031145

 Designed by:
 J.Scott, A. Crookes

 Checked by:
 L.Niemi, J. Smith

 Date:
 16-Feb-18

#### North Pond Design Parameters:

#### Total Minor System Drainage Area to Pond Forebay (including Collie Court)

Catchment Area:	58.43 ha
Calculated CN:	71
Total Impervious:	53.5 %
Directly Connected Impervious:	29.5 %

#### Total Major System Drainage Area to Pond (excludes Park and School)

Catchment Area:	54.56 ha
Total Impervious:	53.9 %
Directly Connected Impervious:	29.6 %

#### North Pond Control Parameters:

	Pre Dev Flow	Unc. Flow to Pond*	HYMO Output Pond Outflow	Required Storage	Stage	Provided Storage	Unc. Flow to Nichol**	Total Flow to Nichol***
	(cms)	(cms)	(cms)	(cu.m)	(m)	(cu.m)	(cms)	(cms)
Ex. Det.				6,803	409.57	6,857		
2 year	0.774	2.902	0.313	8,190	409.69	8,190	0.005	0.318
5 year	1.617	4.441	1.076	11,250	409.96	11,250	0.016	1.092
10 year	2.294	5.996	1.745	13,450	410.14	13,450	0.028	1.773
25 year	3.265	7.762	2.770	16,240	410.36	16,240	0.043	2.813
50 year	4.069	9.110	3.599	18,350	410.53	18,350	0.058	3.657
100 year	4.915	10.513	4.462	20,430	410.68	20,430	0.071	4.533

* Includes all of Catchment 201 and the minor flows from Catchment 202

** Includes all of Catchment 203 and the major flows from Catchment 202

*** Includes outflow from pond, all of Catchment 203 and the major flows from Catchment 202 (flow to NOR)

#### Berm/Overflow Spillway - North Pond

#### **Permanent Pool Volumes**

Qw = Cd*b*H^1.5		Volume Required Volume Provided	8,540 cu.m 11.327 cu.m
Cd = Coefficient of discharge = 1.70 H = Head over weir b = Length of weir	5	Forebay PP Volume Forbay PP Volume R	1,780 cu.m 16% <b>OK</b>
Emergency Overflow Flow (Max 100 year)	10.513 cms	Forebay PP Area Forebay PP Area Rai	1,890 sq.m 23% <b>OK</b>
Maximum Head Calculated Length	<mark>0.3</mark> m 37.52 m	Forebay Berm	North South
	Spill 1	Flow (Pipe Inflow) Maximum Head	4.092 1.328 cms 0.3 0.3 m
Provided Length Calculated Flow	<b>38.0 m</b> 10.646 cms	Calculated Length Provided Length Calculated Flow	14.61 4.74 m 15.00 5.00 m 4.202 1.401 cms

#### Inlet Spillway Depth Calculation

(from Drainage Block 100 YEAR)	
100 year flow (Hymo)	10.513 cu.m/s
Pipe flow (from design sheet)	5.420 cu.m/s
Spillway Flow (100yr-pipe)	5.093 cu.m/s
Calc. Flow Depth (Pond Slope)	0.2 m
Spillway Width	10 m
Spillway Roughness	0.035 (based on grass surface)

#### **100 YEAR FLOW DEPTHS**

							Spillway D	ata	
Drainage Block	Spillway Side Slop	es	Bottom	Peak	Flow	Slope	Area	Wetted	Capacity
	V	Н	Width	Flow	Depth			Perimeter	
	(m)	(m)	(m)	(L/s)	(m)	(%)	(sq. m)	(m)	(L/s)
Typ. Pond Slope	1	4	8.4	5.093	0.2	20	1.840	10.05	7.58
Access Road	1	4	8.4	5.093	0.2	10	1.840	10.05	5.36

#### POND DESIGN PARAMETERS

 Project:
 NW Fergus

 File:
 300031145

 Designed by:
 J.Scott

 Checked by:
 L.Niemi

 Date:
 16-Feb-18



#### South Pond Design Parameters:

#### Total Drainage Area to Pond Forebay & to Pond for Quantity Control

Catchment Area:	27.40 ha
Calculated CN:	71
Total Impervious:	54.5 %
Directly Connected Impervious:	29.6 %

#### South Pond Control Parameters:

	Pre Dev Flow (cms)	Unc. Flow to Pond* (cms)	HYMO Output Pond Outflow (cms)	Required Storage (cu.m)	Unc. Flow to Nichol (1) (cms)	Site Controlled Flow to Nichol (2) (cms)	Total Flow to Nichol (3) (cms)
Ex. Det.	(6113)	(enis)	(6113)	3,232	(0113)	(cilis)	(0113)
2 year	0.283	1.499	0.212	3,612	0.023	0.029	0.218
5 year	0.586	2.238	0.523	5,149	0.047	0.059	0.545
10 year	0.828	2.898	0.765	6,387	0.067	0.083	0.802
25 year	1.174	3.718	1.068	8,089	0.094	0.116	1.126
50 year	1.461	4.627	1.352	9,447	0.116	0.143	1.430
100 year	1.762	5.346	1.628	10,790	0.139	0.172	1.725

ок

ок

* Includes all of Catchment 204

(1) Includes all of Catchment 205

(2) Includes controlled flow from Catchment 207

(3) Includes outflow from pond and all of Catchment 205 (flow to S1)

### Permanent Pool Volumes

Volume Required	4,077 cu.m
Volume Provided	12,095 cu.m
Forebay PP Volume	2,605 cu.m
Forbay PP Volume Ratio	22%
Forebay PP Area	2,720 sq.m
Forebay PP Area Ratio	34%

#### South Uncontrolled (flow to S2)

South Uncontrolle	d (flow to S2)	
Drainage Area	2.69	ha
		Uncont.
	Pre Dev.	Post Dev.
	Flow	Flow
	(cms)	(cms)
2 Year	0.138	0.107
5 Year	0.277	0.226
10 Year	0.387	0.287
25 Year	0.543	0.360
50 Year	0.671	0.439
100 Year	0.804	0.517

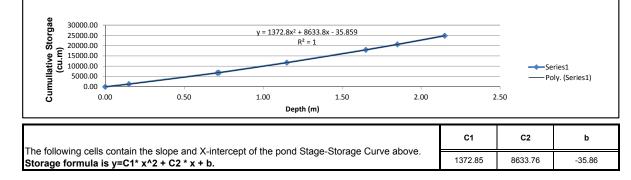
Nichol Drain @ D/S Limits of Site (flow to ND) Drainage Area 140.41 ha

		Controlled
	Pre Dev.	Post Dev.
	Flow	Flow
	(cms)	(cms)
2 Year	1.443	0.951
5 Year	3.030	2.620
10 Year	4.307	3.938
25 Year	6.142	5.808
50 Year	7.663	7.368
100 Year	9.265	8.967

#### Commercial Site Controls (Catchment 207)

Drainage Area	a	1.48	ha
		Uncont.	Controlled
	Pre Dev.	Post Dev.	Post Dev.
	Flow	Flow	Flow
	(cms)	(cms)	(cms)
2 Year	0.029	0.096	0.029
5 Year	0.059	0.176	0.059
10 Year	0.083	0.237	0.083
25 Year	0.116	0.324	0.116
50 Year	0.143	0.391	0.143
100 Year	0.172	0.632	0.172

* Post to be controlled to Pre rates or lower


## NORTH POND SWM Pond Storage Calculations

INPUT AREA

Base of Pond: 405.85 N.W.L.: 408.85 masl Increment for Volume: 0.2 m Required Permanent Pool Volume: 8540 m³ Permanent Pool Volume Provided: 11327 m³

#### PERMANENT POOL ELEVATION / STORAGE INFORMATION

Description	Elevation	Stage	Elev Above PP	Deep Pool 1	Deep Outlet	Forebay	Total Area	Avg. Area	Incremental Storage	Cumulative Storage	Cumulative Storage in Outlet Pool	Cumulative Storage in Forebay	Cumulative Storage above Permanent Pool
	(m)	(m)	(m)	(m2)		(m2)	(m2)	(m2)	(m3)	(m3)			(m3)
	405.85	-1.65		0	825	0	825.00					0.00	
	406.00	-1.50		0	950	0	950.00	887.50	133.12	133.12	133.12	0.00	
	406.50	-1.00		0	1390	0	1390.00	1170.00	585.00	718.12	718.12	0.00	
	406.85	-0.65		0	2210	180	2390.00	1890.00	661.50	1379.63	1328.63	51.00	
	407.00	-0.50		0	2465	235	2700.00	2545.00	381.75	1761.37	1692.21	69.17	
	407.35	-0.15		0	3075	430	3505.00	3102.50	1085.88	2847.25	2655.42	191.83	
	407.5	0.00		0	3370	530	3900.00	3702.50	555.37	3402.62	3134.29	268.33	
	408.00	0.50		0	4365	920	5285.00	4592.50	2296.25	5698.87	5068.04	630.83	
	408.5	1.00		0	5380	1385	6765.00	6025.00	3012.50	8711.37	7504.29	1207.08	
NWL	408.85	1.35	0.00	0	6290	1890	8180.00	7472.50	2615.38	11326.75	9546.54	1780.21	0.00
	409.00	1.50	0.15	8830	0	0	8830.00	8505.00	1275.75	12602.50	12602.50		1275.75
	409.56	2.06	0.71	10720	0	0	10720.00	9775.00	5474.00	18076.50	18076.50		6749.75
Extended Detention	409.57	2.07	0.72	10750	0	0	10750.00	10735.00	107.35	18183.85	18183.85		6857.10
	410.00	2.50	1.15	11935	0	0	11935.00	11342.50	4877.28	23061.12	23061.12		11734.37
1.04/	410.50	3.00 3.20	1.65	13095	0	U	13095.00	12515.00	6257.50	29318.62	29318.62		17991.87
HWL	410.70	3.20	1.85 2.15	13540 14305	0	0	13540.00	13317.50	2663.50	31982.12	31982.12 36158.87		20655.37
Freeboard	411.00	3.50	2.15	14305	U	U	14305.00	13922.50	4176.75	36158.87	30158.87		24832.12



Red numbers indicate user input areas.

BURNSIDE

Location:NW FergusProject #:300031145Designed by:L.NiemiDate:2/16/2018



### SWM Pond Storage Calculations - South Pond

#### INPUT AREA

Base of Pond:	405.65	Red numbers indicate user input areas.
N.W.L.:	408.65	masl
Increment for Volume:	0.2	m
	4077	3
Required Permanent Pool Volume:	4077	m
Democrat Deel Valume Devided	12095	
Permanent Pool Volume Provided:	12095	m

## ELEVATION / STORAGE INFORMATION

	Elevation	Stage	Area 1	Area 2	Total Area	Avg. Area	Incremental Storage	Cumulative Storage	Cumulative Storage above Permanent Pool	Required Volume
	(m)	(m)	(m2)	(m2)	(m2)	(m2)	(m3)	(m3)	(m3)	(m3)
Base of Pond :	405.65	0.00	0	1090	1090.00		0.00			
	406.65	1.00	300	2270	2570.00	1830.00	1830.00	1830.00	0.00	
	407.65	2.00	1310	3670	4980.00	3775.00	3775.00	5605.00	0.00	
NWL :	408.65	3.00	2720	5280	8000.00	6490.00	6490.00	12095.00	0.00	4,077
ED	409.05	3.40	0	9530	9530.00	8765.00	3506.00	15601.00	3506.00	3,232
Top of Pond	409.80	4.15	0	11750	11750.00	10640.00	7980.00	23581.00	11486.00	10,790
Freeboard:	410.10	4.45	0	12560	12560.00	12155.00	3646.50	27227.50	15132.50	

EXTENDED DET	ENTION AND COOL V	NATER PE	RMANENT POO	DL VOLUME	CALCU	LATIONS	
NORTH POND							
							Burnside
Project:	NW Fergus					J	DOUROIDE
File:	300031145						
Designed by:	J. Scott						
Checked by:	L. Niemi						
Date:	16-Feb-18						
Cool Water Volu	me Required (betweer	n 1.5m and	3.0m deep in o	utlet) - SCS	Method	for 10mm Eq	uivalent Runoff
Q =	(P-IA)^2/P-(IA-S)						
S =	-254+25400/CN						
T IMP =	53.5 %						
Pervious Area			Impervious Ar	ea			
i civious Area			Inpervious Ar	6a			
P =	10 mm		P =	1	10 mm		
IA =	2.5 mm		IA =	2	.5 mm		
CN =	71		CN =		98		
S =	103.7		S =	5	.2		
Q =	0.5 mm		Q =	4	.4 mm		
		per	imp	total			
SCS Runoff Volu	me	0.5	4.4		mm		
Drainage Area		27.2	31.24	58.43	ha		
Runoff Volume		137	1385	1523	cu.m		
	Volume Required btwn '			1523	cu.m		
Permanent Pool	Available btwn 1.5 and 3	3.0m in Out	le	2655	cu.m		
Discharge time f	for Available Cool Wat	ter per MOE	E 2003 SWM Ma	nual - Fallir	ng Head	Equatior	
t = 2*Ap*(h^0.5)/	(C*Ao*(g*2)^0.5)						
h =	water elevation above		cool water volum	e		0.20 m	
Ao =	cross sectional area of	of orifice				0.06 sq.m	
C =	discharge coefficient					0.64	
Ap =	average pond surface	area				8505 sq.m	*based on pond design
, .p	avoiago pona oanaoo	aroa			L	oq	bacea en pena aceign
t =	drawdown time				=	42064 secon	ds
-					=	12 hrs	
EXTENDED DET	ENTION AND COOL W	NATER PE	RMANENT POO		CALCU	LATIONS	
SOUTH POND	ENTION AND COOL V	WATER PE	RMANENT POO	OL VOLUME	CALCU		D
	ENTION AND COOL V	WATER PE	RMANENT POO	DL VOLUME	CALCU		RI IRNSIDE
	ENTION AND COOL V	WATER PE	RMANENT POO	DL VOLUME	CALCU		Burnside
SOUTH POND		WATER PE	RMANENT POO	DL VOLUME	CALCU		Burnside
SOUTH POND Project:	NW Fergus	WATER PE	RMANENT POO	DL VOLUME	CALCU		Burnside
SOUTH POND Project: File:	NW Fergus 300031145	WATER PE	RMANENT POO	DL VOLUME	CALCU		Burnside
SOUTH POND Project: File: Designed by:	NW Fergus 300031145 J. Scott	WATER PE	RMANENT POO	DL VOLUME	CALCU		Burnside
SOUTH POND Project: File: Designed by: Checked by:	NW Fergus 300031145 J. Scott L. Niemi	WATER PE	RMANENT POO	DL VOLUME	CALCU		Burnside
SOUTH POND Project: File: Designed by: Checked by: Date:	NW Fergus 300031145 J. Scott L. Niemi						
SOUTH POND Project: File: Designed by: Checked by: Date:	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18						
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (betweer						
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (betweer (P-IA)^2/P-(IA-S)						
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN						
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (betweer (P-IA)^2/P-(IA-S)						
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN			utlet) - SCS			
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN		3.0m deep in o	utlet) - SCS			
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN		3.0m deep in o	utlet) - SCS ea			
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 %		3.0m deep in o Impervious Ar	utlet) - SCS ea	i Method		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 %		3.0m deep in o Impervious Ar P =	utlet) - SCS ea 2	: Method		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 %		3.0m deep in o Impervious Ar P = IA =	utlet) - SCS ea	5 Method 10 mm 5 mm		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm		3.0m deep in o Impervious Arr P = IA = CN =	utlet) - SCS ea 	5 <b>Method</b> 10 mm 15 mm 38		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 71 103.7		3.0m deep in o Impervious Ar P = IA = CN = S =	utlet) - SCS ea 	5 <b>Method</b> 10 mm 5 mm 98		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 71 103.7 0.5 mm	n 1.5m and per	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp	utlet) - SCS ea 	5 <b>Method</b> 10 mm 5 mm 98		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volui	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 71 103.7 0.5 mm	n 1.5m and per 0.5	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4	utlet) - SCS ea 2 5 4	5 <b>Method</b> 10 mm 5 mm 98		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volut Drainage Area	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 71 103.7 0.5 mm	n 1.5m and <b>per</b> 0.5 12.5	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94	utlet) - SCS ea 2 5 4 total 27.40	10 mm 5 mm 98 2 4 mm		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volui	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 71 103.7 0.5 mm	n 1.5m and per 0.5	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4	utlet) - SCS rea 2 2 5 4 total	5 <b>Method</b> 10 mm 55 mm 38 22 .4 mm		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volume Prainage Area Runoff Volume	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me	n 1.5m and per 0.5 12.5 63	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663	utlet) - SCS ea 2 2 5 4 total 27.40 726	10 mm 10 mm 5 mm 98 2.4 mm nm ha		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volum Drainage Area Runoff Volume Permanent Pool V	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me	per 0.5 12.5 63 1.5 and 3.00	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle	utlet) - SCS ea 2 2 3 4 total 27.40 726 726	10 mm 10 mm 5 mm 98 2.4 mm nm ha		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volum Drainage Area Runoff Volume Permanent Pool V	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me	per 0.5 12.5 63 1.5 and 3.00	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle	utlet) - SCS ea 2 2 5 4 total 27.40 726	10 mm 5 mm 5 mm 2 4 mm ha cu.m		
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volu Drainage Area Runoff Volume Permanent Pool /	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 71 103.7 0.5 mm me Volume Required btwn 1	<b>per</b> 0.5 12.5 63 1.5 and 3.0r 3.0m in Out	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le	utlet) - SCS ea 2 2 5 4 total 27.40 726 726 1830	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	for 10mm Eq	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volu Drainage Area Runoff Volume Permanent Pool /	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me	per 0.5 12.5 63 1.5 and 3.0 3.0m in Out	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le	utlet) - SCS ea 2 2 5 4 total 27.40 726 726 1830	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	for 10mm Eq	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volume Permanent Pool / Permanent Pool / Permanent Pool /	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me Volume Required btwn 1 Available btwn 1.5 and 3 for Available Cool Wat	per 0.5 12.5 63 1.5 and 3.0 3.0m in Out	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le	utlet) - SCS ea 2 2 5 4 total 27.40 726 726 1830	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	for 10mm Eq	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volu Drainage Area Runoff Volume Permanent Pool /	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me Volume Required btwn 1 Available btwn 1.5 and 3 for Available Cool Wat	per 0.5 12.5 63 1.5 and 3.0 3.0m in Out	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le	utlet) - SCS ea 2 2 5 4 total 27.40 726 726 1830	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	for 10mm Eq	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volu Drainage Area Runoff Volume Permanent Pool / Dermanent Pool / Discharge time for t = 2*Ap*(h^0.5)/	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me Volume Required btwn 1.5 and 3 for Available btwn 1.5 and 3 for Available Cool Wat (C*Ao*(g*2)^0.5)	<b>per</b> 0.5 12.5 63 1.5 and 3.0 3.0m in Out ter per MOE	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le E 2003 SWM Ma	utlet) - SCS ea 2 2 5 4 total 27.40 726 1830 nual - Fallir	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	for 10mm Eq	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volum Drainage Area Runoff Volume Permanent Pool / Discharge time f t = 2*Ap*(h^0.5)/ h =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 71 103.7 0.5 mm me Volume Required btwn 4 Available btwn 1.5 and 3 for Available Cool Wat (C*Ao*(g*2)^0.5] water elevation above	per 0.5 12.5 63 1.5 and 3.0 3.0m in Out ter per MOE	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le E 2003 SWM Ma	utlet) - SCS ea 2 2 5 4 total 27.40 726 1830 nual - Fallir	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	for 10mm Eq	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volu Drainage Area Runoff Volume Permanent Pool / Dermanent Pool / Discharge time for t = 2*Ap*(h^0.5)/	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me Volume Required btwn 1.5 and 3 for Available btwn 1.5 and 3 for Available Cool Wat (C*Ao*(g*2)^0.5)	per 0.5 12.5 63 1.5 and 3.0 3.0m in Out ter per MOE	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le E 2003 SWM Ma	utlet) - SCS ea 2 2 5 4 total 27.40 726 1830 nual - Fallir	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	for 10mm Eq	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volum Drainage Area Runoff Volume Permanent Pool / Discharge time f t = 2*Ap*(h^0.5)/ h =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 71 103.7 0.5 mm me Volume Required btwn 4 Available btwn 1.5 and 3 for Available Cool Wat (C*Ao*(g*2)^0.5] water elevation above	per 0.5 12.5 63 1.5 and 3.0 3.0m in Out ter per MOE	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le E 2003 SWM Ma	utlet) - SCS ea 2 2 5 4 total 27.40 726 1830 nual - Fallir	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	For 10mm Eq Equation 0.10 m	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volue Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volume Permanent Pool / Permanent Pool / Permanent Pool / Discharge time f t = 2*Ap*(h^0.5)/ h = Ao = C =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me Volume Required btwn 1 Available btwn 1.5 and 3 for Available Cool Wat (C*Ao*(g*2)^0.5] water elevation above cross sectional area o discharge coefficient	per 0.5 12.5 63 1.5 and 3.0r 3.0m in Out ter per MOE	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le E 2003 SWM Ma	utlet) - SCS ea 2 2 5 4 total 27.40 726 1830 nual - Fallir	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	Equatior 0.10 m 0.04 sq.m 0.64	uivalent Runoff
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volue Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Voluine Permanent Pool / Permanent Pool / Permanent Pool / Discharge time fi t = 2*Ap*(h^0.5)/ h = Ao =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me Volume Required btwn 1 Available btwn 1.5 and 3 for Available Cool Wat (C*Ao*(g*2)^0.5] water elevation above cross sectional area o	per 0.5 12.5 63 1.5 and 3.0r 3.0m in Out ter per MOE	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le E 2003 SWM Ma	utlet) - SCS ea 2 2 5 4 total 27.40 726 1830 nual - Fallir	10 mm 15 mm 16 mm 18 12 14 mm 12 14 mm 14 15 16 16 16 16 16 16 16 16 16 16	Equatior 0.10 m 0.04 sq.m	
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volu Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volui Drainage Area Runoff Volume Permanent Pool / Dermanent Pool / Discharge time ft t = $2*Ap*(h^0.5)/$ h = Ao = C = Ap =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S; -254+25400/CN 54.5 % 100 mm 2.5 mm 71 103.7 0.5 mm me Volume Required btwn 1.5 and 3 for Available btwn 1.5 and 3 for Available Cool Watt (C*Ao*(g*2)^0.5; water elevation above cross sectional area o discharge coefficient average pond surface	per 0.5 12.5 63 1.5 and 3.0r 3.0m in Out ter per MOE	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le E 2003 SWM Ma	utlet) - SCS ea 2 2 5 4 total 27.40 726 1830 nual - Fallir	10 mm 15 mm 16 mm 17 mm 18 mm 19 mm 19 mm 19 mm 10	Equatior 0.10 m 0.04 sq.m 0.64 7000 sq.m	uivalent Runoff
SOUTH POND Project: File: Designed by: Checked by: Date: Cool Water Volue Q = S = T IMP = Pervious Area P = IA = CN = S = Q = SCS Runoff Volume Permanent Pool / Permanent Pool / Permanent Pool / Discharge time f t = 2*Ap*(h^0.5)/ h = Ao = C =	NW Fergus 300031145 J. Scott L. Niemi 16-Feb-18 me Required (between (P-IA)^2/P-(IA-S) -254+25400/CN 54.5 % 10 mm 2.5 mm 103.7 0.5 mm me Volume Required btwn 1 Available btwn 1.5 and 3 for Available Cool Wat (C*Ao*(g*2)^0.5] water elevation above cross sectional area o discharge coefficient	per 0.5 12.5 63 1.5 and 3.0r 3.0m in Out ter per MOE	3.0m deep in o Impervious Ar P = IA = CN = S = Q = imp 4.4 14.94 663 m in Outle le E 2003 SWM Ma	utlet) - SCS ea 2 2 5 4 total 27.40 726 1830 nual - Fallir	10 mm 15 mm 16 mm 17 mm 18 mm 19 mm 19 mm 19 mm 10	Equatior 0.10 m 0.04 sq.m 0.64	uivalent Runoff

## POND DESIGN VOLUMETRIC TURNOVER CALCULATION NORTH POND



Project:NW FergusFile:300031145Designed by:J. ScottChecked by:L. NiemiDate:16-Feb-18

#### Permanent Pool Volumes

Volume Required	8,540	cu.m
Volume Provided	11,327	cu.m

## Site Runoff Coefficient Determination

Total Impervious Area	31.24 ha
Runoff Coefficient	0.57
Total Pervious Area	27.19 ha
Runoff Coefficient	0.07 (sandy loam per MTO methodology)

#### Site Composite Runoff Coefficient

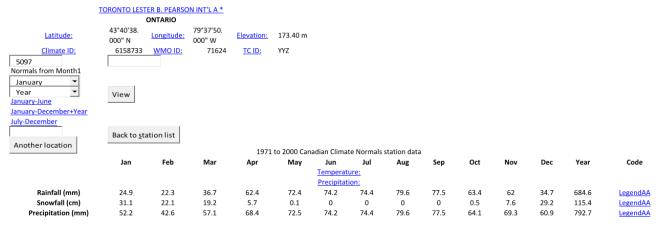
#### Permanent Pool Requirements (per MOE Design Standards)

Volume = Runoff Coefficient * Drainage Area * Depth of Rainfall in Driest Month

Site Drainage Area	58.43 ha
Site Composite Runoff Coefficient	0.34
Rainfall Depth*	63.4 mm

* Rainfall based on October average monthly Rainfall data for Toronto Lester B Pearson International Airport Rain Guage data (1971 to 2000) as driest "non-winter" month

0.34


(per PP Sheet) (per design)

Minimum Permanent Pool Volume Required	8,540	cu.m
Maximum Permanent Pool Volume Permitted	12,580	cu.m

	Total Permanent Pool Volume Provided 11,327 cu.m OK
--	-----------------------------------------------------

http://climate.weather.gc.ca/climate_normals/results_e.html?stnID=5097&autofwd=1

Metadata including Station Name, Province, Latitude, Longitude, Elevation, Climate ID, WMO ID, TC ID



## POND DESIGN VOLUMETRIC TURNOVER CALCULATION SOUTH POND



 Project:
 NW Fergus

 File:
 300031145

 Designed by:
 J. Scott

 Checked by:
 L. Niemi

 Date:
 16-Feb-18

### Permanent Pool Volumes

Volume Required	4,077	cu.m
Volume Provided	12,095	cu.m

(per PP Sheet) (per design)

#### Site Runoff Coefficient Determination

14.94 ha
0.58
12.46 ha
0.07 (sandy loam per MTO methodology)

#### Site Composite Runoff Coefficient

#### Permanent Pool Requirements (per MOE Design Standards)

Volume = Runoff Coefficient * Drainage Area * Depth of Rainfall in Driest Month

Site Drainage Area	27.40 ha
Site Composite Runoff Coefficient	0.35
Rainfall Depth*	63.4 mm

* Rainfall based on October average monthly Rainfall data for Toronto Lester B Pearson International Airport Rain Guage data (1971 to 2000) as driest "non-winter" month

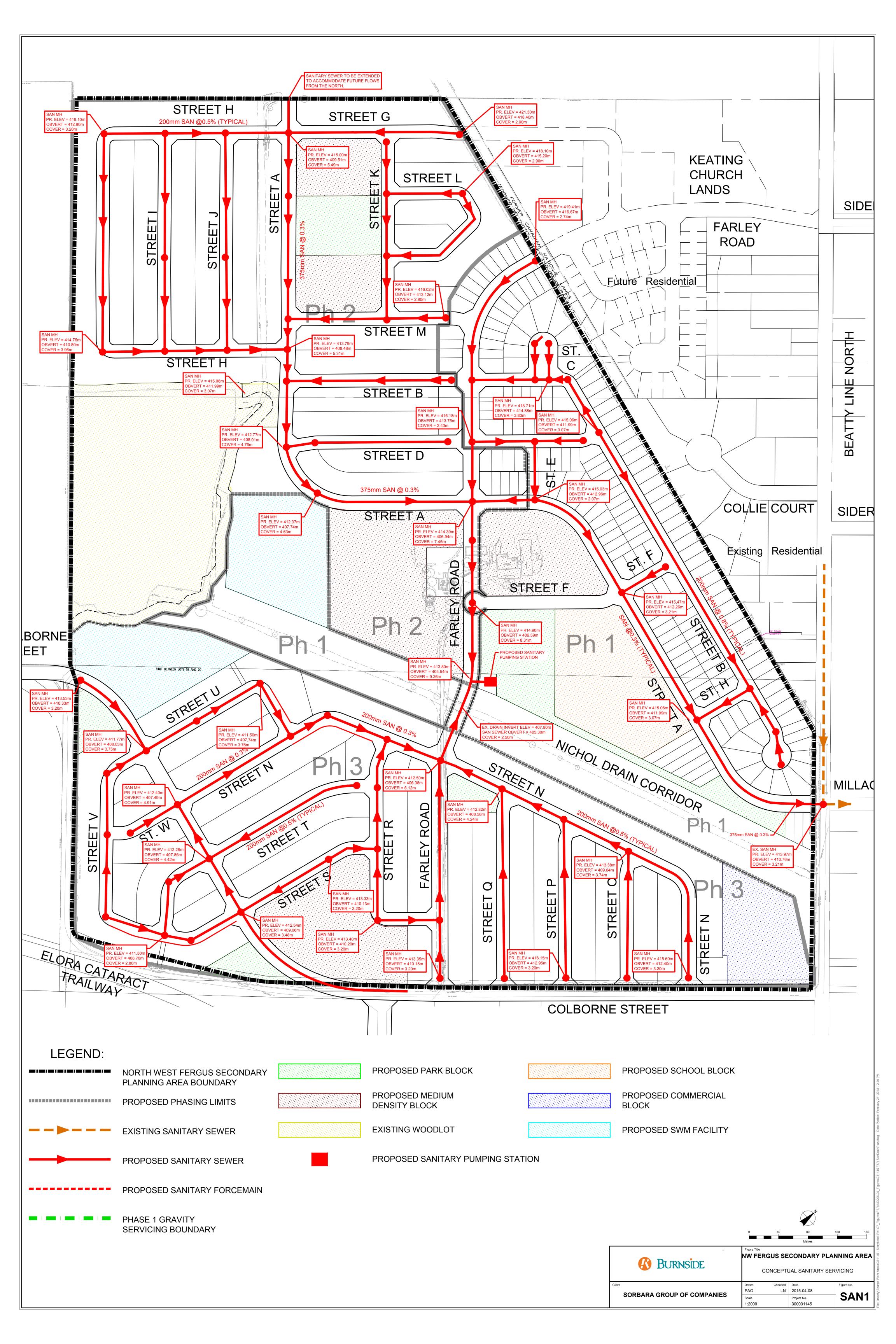
0.35

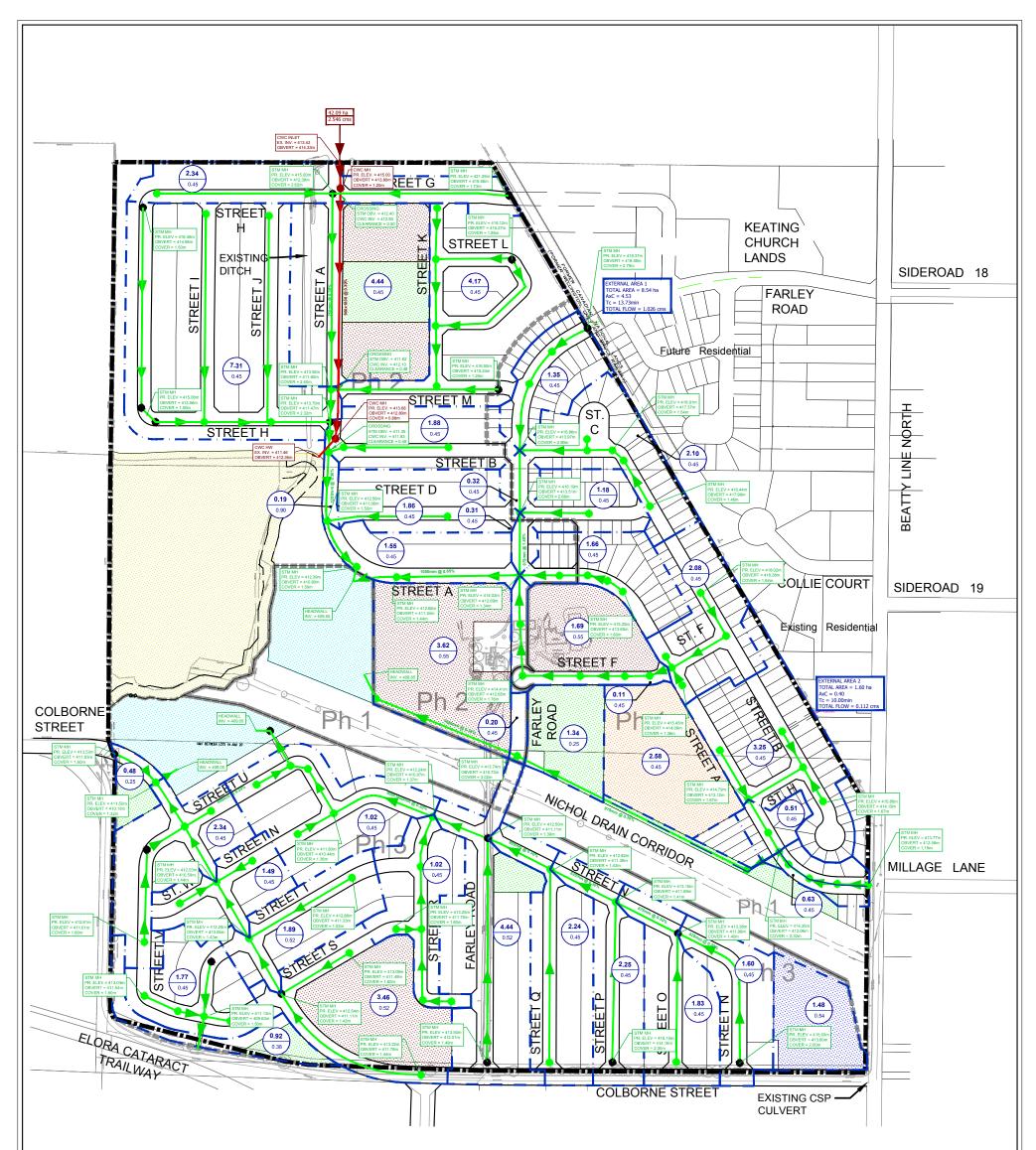
Minimum Permanent Pool Volume Required	4,077	cu.m
Maximum Permanent Pool Volume Permitted	6,062	cu.m

Total Permanent Pool Volume Provided	12,095 cu.m	ОК

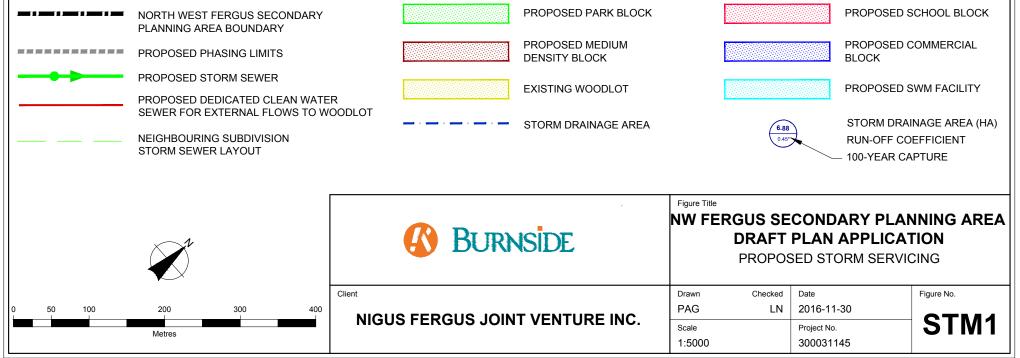
http://climate.weather.gc.ca/climate_normals/results_e.html?stnID=5097&autofwd=1

Metadata including Station Name, Province, Latitude, Longitude, Elevation, Climate ID, WMO ID, TC ID


	TORONTO LES	TER B. PEARSO ONTARIO	ON INT'L A *											
Latitude:	43°40'38. 000" N	Longitude:	79°37'50. 000" W	Elevation:	173.40 m									
Climate ID: 5097 Normals from Month1	6158733	WMO ID:	71624	<u>TC ID:</u>	YYZ									
January  Year  January-June	View													
January-December+Year July-December Another location	Back to <u>s</u> t	ation list		1971	to 2000 Cana	adian Climat	te Normals	station data						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Code
						Temperat Precipitat								
Rainfall (mm)	24.9	22.3	36.7	62.4	72.4	74.2	74.4	79.6	77.5	63.4	62	34.7	684.6	<u>LegendAA</u>
Snowfall (cm)	31.1	22.1	19.2	5.7	0.1	0	0	0	0	0.5	7.6	29.2	115.4	LegendAA
Precipitation (mm)	52.2	42.6	57.1	68.4	72.5	74.2	74.4	79.6	77.5	64.1	69.3	60.9	792.7	<u>LegendAA</u>




Drawings




LEGEND:	NORTH WEST FERGUS SECONDARY PLANNING AREA BOUNDARY PROPOSED PHASING LIMITS PROPOSED FDC SEWER		PROPOSED PARK BLOCK PROPOSED MEDIUM DENSITY BLOCK EXISTING WOODLOT		Pi Bi	ROPOSED SCHOOL BL ROPOSED COMMERCI. LOCK ROPOSED SWM FACIL REA REQUIRING BACK UMP PUMPS	AL
			BURNSIDE			CONDARY PLA PLAN APPLICA IDATION DRAINAC FDC) SERVICING	ATION
0 50 100	200 300 400 Metres	Client	GUS JOINT VENTURE INC.	Drawn PAG Scale 1:5000	Checked LN	Date 2016-11-30 Project No. 300031145	Figure No.





## LEGEND:

